

Supplementary Material

Influence of Phenethyl Acetate and Naphthalene Addition before and after Pyrolysis on the Quantitative Analysis of Bio-oil

Xuyan Song ^{1,2}, Min Wei ¹, Qiang Gao ², Xi Pan ¹, Junpeng Yang ¹, Fan Wu ^{2,*} and Hongyun Hu ^{2,*}

- ¹ Technology Center of China Tobacco Hubei Industry Limited-liability Company, Wuhan, 430040, China; songxy@hbtobacco.cn (X.S.); weim@hbtobacco.cn (M.W.); 11013210@hbtobacco.cn (X.P.); 11013211@hbtobacco.cn (J.Y.)
- ² State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; gaoq@hust.edu.cn
- * Correspondence: wu_fan@hust.edu.cn (F.W.); hongyunhu@hust.edu.cn (H.H.);

Received: 9 October 2020; Accepted: 22 November 2020; Published: 25 Nobember 2020

Figure S1. Schematic diagram of experimental device.

Figure S2. The composition distribution of noncondensable gas from tobacco waste (TW) and sawdust waste (SW) with and without the addition of phenethyl acetate (-phe) and naphthalene (-nap).

Figure S3. FTIR analysis of biochar from tobacco waste (TW) and sawdust waste (SW) with and without the addition of phenethyl acetate (-phe) and naphthalene (-nap): (**a**) the biochar from tobacco waste (TW); (**b**) the biochar from sawdust waste (SW).

Figure S4. GC/MS chromatograms of (**a**) bio-oil from tobacco waste with the addition of phenethyl acetate (**b**) bio-oil from sawdust waste with the addition of phenethyl acetate (**c**) bio-oil from tobacco waste with the addition of phenethyl acetate before pyrolysis (**d**) bio-oil from sawdust waste with the addition of phenethyl acetate before pyrolysis (**e**) bio-oil from tobacco waste with the addition of naphthalene before pyrolysis (**f**) bio-oil from sawdust waste with the addition of naphthalene before pyrolysis.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).