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Abstract: Since the electricity market liberalisation of the mid-1990s, forecasting energy demand
and prices in competitive markets has become of primary importance for energy suppliers, market
regulators and policy makers. In this paper, we propose a non-parametric model to obtain point
and interval predictions of price and demand. It does not require any parametric assumption on
the distribution of the error term or on the functional relationships linking the response variable to
covariates. The assumed location—scale model provides a non-parametric estimation of the conditional
mean and of the conditional variance by means of a Generalised Additive Model. Interval forecasts,
at any given confidence level, are then obtained using a further non-parametric estimation of
the innovation’s quantile. Since both the conditional mean and the conditional variance of the
response variable are non-linear functions of covariates depending on calendar factors, renewable
energy productions and other market variables, the resulting model is very flexible. It easily adapts
to market conditions as well as to the non-linear characteristics of demand, supply and prices.
An application to hourly data for the Italian electricity market, over the period 20152019 period,
shows the one-day-ahead forecasting performance of the model for zonal electricity prices and level
of demand.

Keywords: zonal electricity prices; zonal electricity demand; forecasting; interval forecasting;
conditional variance modelling; non-parametric models

1. Introduction

Electricity market variables forecasting is of great economic and environmental importance
and, indirectly, provides benefits for the entire economy. Accurate electricity power load and price
predictions are important to utility companies for their daily activities and future planning and to
market operators and investors in the decision making processes. They are also useful for market
actors and transmission system operators (TSO) in scheduling production activity and avoiding
temporary electrical power failures (see, e.g., [1,2]). Moreover, electricity market liberalisation greatly
enhanced the level of competition in electricity markets asking for more accurate demand and price
predictions. To meet the increasing demand for new and more sophisticated forecasting methodologies,
over the last few decades, a number of methods and ideas with varying degrees of novelty and
success, were developed, (see, e.g., [3] for a recent overview of forecasting methods). As indicated by
several authors ([4,5] among others), electricity time series exhibit a complex behaviours characterised
by non-linear time and cross-sectional dependence, heteroscedasticity, multiple seasonal cycles,
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extreme spikes, kurtosis and, sometimes, outliers. Moreover, both prices and loads depend—possibly
non-linearly—on other exogenous market variables, including renewable energy productions.

Nevertheless, until recently, models proposed in the literature have mainly dealt with complex
seasonal cycles within a time series approach. They include Holt-Winters exponential smoothing
methods, seasonal autoregressive integrated moving average (SARIMA) model (see, e.g., [6-15]),
linear regression models [16] and any combination thereof [17,18]. Ref. [8] considered a reasonable
improvement in the existing exponential smoothing methods introducing a double seasonal exponential
smoothing approach, as well as seasonal ARIMA models. The limit of this approach is that the same
intra-daily cycle is assumed to hold for all days of the week. Ref. [12] proposed a new approach, based on
state-space models, to forecast time series with multiple innovation patterns. To avoid the need for
modelling the intra-daily seasonality of hourly Spanish electricity consumptions, Ref. [19] suggested
using individual models for each hour of the day. The same strategy, in a different context, was also
suggested by [20]. As an improvement of his previous work, Ref. [9,10] proposed a triple seasonal
model, which was able to describe intra-day, intra-week and intra-year cycles. With specific reference to
the Italian electricity market, Ref. [18] recently considered long memory heteroscedastic linear regression
models to investigate the impact of new technological developments, market concentration, congestion
and volume on zonal price dynamics, while [21], after a deep empirical analysis of the characteristics of
the Italian market, mainly focused on the relevant issue of market congestion and interdependency of
Italian zonal prices. Ref. [22] provided a survey of state-of-the-art electricity price forecasting, focusing
on three broad classes of models: autoregressive, regime-switching, and conditional volatility models.
They concluded their empirical analysis by arguing that, among the stylised facts regarding electricity
markets, the lack of clear-cut evidence for a specific analytical framework is the most peculiar, favouring
the development of new semi-parametric methods. To take into account such issues, they proposed the
adoption of time-varying parameters dynamic factor models. Comprehensive and up-to-date reviews
of energy load and prices forecasting techniques are given, respectively, in [1,4,23,24].

In reviewing some of the main methodological issues and techniques for short-term forecasting
of loads and prices, Ref. [20] recommendes non-linear models such as neural networks and
forecast combinations, as a way to exploit predictive information provided by different models.
Combining forecasts is also the focus of the work of [25]. Ref. [20], in a recent survey, presented a
detailed analysis for the structural approach for electricity modelling, emphasising its merits with
respect to traditional reduced-form models. Although several recent works advocate a broad and
flexible structural framework for spot prices, incorporating demand, capacity and fuel prices in several
ways, this approach was neglected, until recently.

The fast development of electricity markets along with their complexity and the overall level
of competition among operators recently stimulated significant interest in probabilistic forecasting
(see, e.g., [4]). Probabilistic forecasting involves computing quantiles, intervals or the whole predictive
density rather than simple point predictions based on the conditional mean. As pointed out by [27],
the probabilistic approach serves several purposes such as stochastic unit commitment, power
supply planning, the prediction of equipment failure, and the integration of renewable energy
sources, (see, e.g., [28]). The literature on probabilistic electricity forecasting is quite limited [2],
particularly compared to that of probabilistic forecasting in general [29] or probabilistic renewable
energy forecasting [30-33]. Ref. [5] recognised that few papers dealing with time series models provide
predictive intervals, while forecasting intervals were considered by (e.g., [34-36]). In reviewing
various statistical and artificial intelligence techniques for energy forecasting, Ref. [37] discussed the
factors affecting forecast accuracy such as weather data, time factors, customer classes and economic
factors. Moreover, in their discussion about future research directions, the authors pointed out that
additional progress in load forecasting and its use in industrial applications could be achieved by
providing short-term predictive distributions rather than point forecasts. In this regards, Refs. [2,34]
proposed resorting to seasonal autoregressive moving average-generalised autoregressive conditional
heteroschedastic (SARMA-GARCH) models, which describe seasonality and other regular and linear
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behaviours as well as the dynamics of price volatility. Ref. [38] produced predictive intervals by means
of cascading neural networks and modified U-D factorisation, respectively, but did not provide any
formal assessment of their results. Ref. [39] extended the class of support vector machines to account
for heteroscedasticity in the data. Ref. [40] proposed a wavelet-based hybrid neural network for
short-term electricity prices forecasting. In an interesting work, Ref. [41] argued for interval forecasting,
as a way to describe the uncertainty and reliability of energy price and load point forecasts. To obtain
them, he proposed an additive non-parametric model whose location, scale and shape parameters
were non-linear additive functions of the covariates. Additive models for conditional expectation were
proposed by [42,43] and extended to predict individual quantiles by [44,45]. Linear quantile regression
models have also been used by [46], for day-ahead and intra-daily markets, to produce probabilistic
forecasts of hourly spot prices with the aim of reducing forecast bias and the width of forecast intervals.
Hybrid methods combining a time-series approach with machine learning and data mining techniques
were also proposed by the literature on probabilistic forecasting. Ref. [47] compared the Box-Cox
transform, ARMA errors, Trend, and Seasonal components (BATS) models and their trigonometric
versions (TBATS) of [14], artificial neural networks and seasonal autoregressive methods to predict
electricity in the Danish day-ahead market. Ref. [48] described a hybrid approach based on k-means
clustering to obtain interval forecasts. A different research stream includes forecasting intervals within
a machine-learning approach traditionally used for optimal point forecasts. Within this emerging
field, ensemble methods are suggested by [49] and Bayesian deep learning models by [50]. As an
evolution of the combination approach used for point forecasts, methods to combine probabilistic
density forecasts were also experimented with by [51,52].

All previous considerations and empirical findings asked for more flexible structural approaches to
non-linear modelling of complex dependence structures between interacting covariates being enabling
the production of accurate point and prediction intervals. The goal of this work is to build reliable
interval (or probabilistic) predictions that are able to adapt to the evolving conditions of the electricity
market, by modelling the conditional mean and variance as non-parametric functions of suitable
covariates. In what follows, we cast the forecasting problem within the wide family of the generalised
additive regression model (GAM). This class of models, originally suggested by [53], is widely used
in industry and business due to its flexibility and good forecasting results. GAM models are more
flexible than standard linear models but, unlike time series models, maintain the interpretability of
a general regression surface. The family of additive models for conditional locations were recently
enriched by [54] through the inclusion of additive models for the scale and shape parameters of
a large class of distributions, including the Gaussian, Student-t, Poisson or Binomial distributions.
Within this approach, here we consider a simpler non-parametric location-scale model. Since we
are mostly concerned with estimating the functions by modelling conditional mean and variance,
model parameters are estimated using quasi-maximum likelihood approach assuming a Gaussian
mis-specified likelihood function. Non-parametric prediction intervals are then obtained by adopting
a suitable non-parametric bootstrapping procedure [55] for the in-sample standardised residuals.
This allows the avoidance of the restrictive assumption of specifying a parametric distribution for
the error term, thereby reducing the computational burden without losing too much efficiency and
model interpretability. The advantage of this approach over linear regression and pure time series
methods is twofold. First, our method easily accounts for multiple seasonal patterns without the
need for including additional large-dimensional state variables for the exponential smoothing state
space methods (see, e.g., [56]). Moreover, the non-parametric model is flexible enough to adapt to
the non-linear effect of seasonal cycles, as well as additional covariates, on the response variable,
without losing the structural interpretation of the model parameters. Second, our model accounts for
the heteroscedastic nature of the data, thereby adapting the interval forecasts to periods of high and
low volatility.

The rest of this paper is structured as follows. Section 2 describes the variables belonging
our dataset that relates to the Italian electricity market. Section 3 introduces the semi-parametric
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heteroscedastic additive regression model and details the parameter estimation via the non-linear
back-fitting algorithm. Section 4 shows the output of the model and its interpretation. The forecasting
exercise is performed in Section 5, which includes an in-sample analysis to identify the more
appropriate models and the out-of-sample forecasting results. Section 6 concludes.

2. The Data

The Italian Power EXchange (IPEX) is divided into portions of the power grid, called Zones,
in which for system security purposes, there are physical limits to transfers of electricity to/from other
geographical zones. At present, there are six geographical zones: northern Italy, central-northern
Italy, central-southern Italy, southern Italy, Sicilia and Sardegna. There are some national virtual
zones that are the pole of limited production and some foreign virtual zones, representing points of
interconnection with neighbouring countries. In this work we consider only the two main national
geographical zones: northern Italy (NORD) and southern Italy (SUD). For these two zones, and for the
period 1 January 2015-31 December 2019, the following variables, were available forday ¢ (t = 1,...,n)
and load period (hour) h (h =1,...,24):

- Pyj:is the hourly time series of zonal prices, in euros per megawatt-hour (€/MWh), as defined in
the Day-Ahead Market (in Italian Mercato del Giorno Prima, MGP). For this market, P, j, is available
attimet —1;

- Dy is the hourly time series of the zonal demand for energy (in MWh) as defined in the MGP.
Again, as for the price, the demand D, ), (h = 1,...,24) is available at time t — 1;

- Wind,, PV, Hydro, j,, Hydro.R; ,, Therm, ,: represent the hourly time series of, respectively, wind,
photovoltaic, hydro from river basins, hydro rivers and thermal energy production (in MWh);

- Imp,: is the hourly time series of the amount of energy (in MWh) imported from other zones
including imports from abroad. This variable is available only for the northern zone;

- PSV;): denotes the hourly time series of the gas price at the Virtual Trading Point (in Italian Punto
di Scambio Virtuale, PSV), for givenday t =1,...,nand hour h = 1,...,24. Since this variable has
daily frequency, the hourly time series was obtained by imposing PSV, ; = PSV;forh =1, ...,24.

In addition to these variables, other calendar variables were used:

- trend,;): represents the “trend” variable or the long—run dynamics on day t. When working with
hourly data, we assume that trend; ;, = trend;, i.e., that the trend variable is constant within a day.
This also applies to other variables that have, logically, a daily frequency;

- dayyear, ;: represents the yearly periodicity of the data. It is described by a vector repeating the
sequence 1,2,...,365(366). For hourly data dayyear; , = dayyear, forh =1,...,24;

- dayweek; j,: represents the weekly periodicity of the data. It is described by repeating the periodic
sequence 1,...,7. For hourly data dayweekyear; ;, = dayweek; forh = 1,...,24;

- hour;;: thehourof theday t =1,2,...,(h =1,...,24);

- bank;j: is a dummy variable that accounts for bank holidays assuming a value of 1 if day ¢ is a
bank holiday and 0 otherwise. For hourly data bank; , = bank; forh =1,...,24

Figure 1 presents boxplots of the variability in prices and demand for the northern and southern
zones grouped by the hour of the day (hour) for the years 2015-2019. All reveal a strong daily seasonal
pattern as well as the presence of fat-tailed hourly distributions, which are issues well-documented in
the literature, (see, e.g., [9-12,57]). Looking at the scale of the boxplots of demand (bottom panels),
it is immediately clear that the northern zone is much more relevant the southern in terms of volume.
Indeed, the average electricity production is approximately 15,000 MWh for the northern zone and
only about 2500 MWh for the southern one. The strong heterogeneous behaviour in different hours of
the day is an additional stylised fact characterising this kind of data. The former empirical evidence is
relevant for either the objectives of the present paper and the conclusion of our analyses. Regarding the
objectives, the observed heterogeneity motivates the use of semi—parametric heteroscedastic models
which will be proposed in the next section. Moreover, since larger volumes reflect in a larger variability
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of prices and demand data, we expect that flexible semi-parametric models provide better forecasting
results than linear or pure time series models for the northern region, where larger volumes might
translate into higher benefits to account for the dynamic evolution of the conditional variance.
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3. The Semi-Parametric Heteroscedastic Additive Model
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Figure 1. Boxplot of price and demand for the northern zone (first column) and the southern zone

(second column), grouped by the hour of the day.
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n), be a random sample from the random variable Y}, defining the response
xp,t) be a vector of covariates drawn by the p-variate random variable X.

Covariates may or may not be exogenous. A heteroscedastic additive regression model assumes the

following specification of the dynamics of the response variable y;, conditional on the information

available at time ¢, x¢ (or, equivalently, Z; = {x;, s < t}):
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where the conditional mean and variance are specified by the following non-parametric
additive functions:

P
ue=p(xe) = Po+ ) fi(xj4) ©)
=1
9
logor =log o (x1) = 70+ Y hj (xj), (3)
j=1

fort =1,2,...,n, where z; is an independent and identically distributed (i.i.d.) random variable such
that, E(z;) = 0 and Var(z;) = 1.

Each function fj(x) for j = 1,..., p in Equation (2) describes the relation between the covariate
x; and the expectation of the response variable y; conditionally to the values assumed by all other
regressors. Likewise, each function j(x) for j = 1,2,..., ¢ in Equation (3) represents the relationship
between covariate x; and the logarithm of the variance of y;, conditional on all of the other other
variables. Functions f;(-) and ;(-) do not have a specific functional form, hence both linear and
non-linear specifications are allowed, but they are required to be smooth, i.e., continuous with their
first and second derivatives f; and f;’ (and similarly for &} and h). To avoid problems of model
identifiability, we assume that E ( f](x])) =0,forj=1,2,...,p). A classical way to non-parametrically
approximate the non-linear function f;(-) is to use spline functions [58]. In this work, in particular,
fj (similarly for h;) is approximated by using smoothing splines, i.e., a minimising function

zyt f/x] +)\/f] x] dx], 4)

where A; € R" is a smoothing parameter penalising the irregularity of function f;. It turns out that
smoothing splines are natural cubic splines with several knots equal to the number of (different)
observations. Function f; (similarly for £;) is estimated using the back-fitting algorithm originally
proposed by [59]. For a dummy variable, function f; reduces to the standard linear relationship.
It is worth noting that, in principle, alternative approximations could be used in place of the
smoothing spline approach considered here. For example, Refs. [54,60] in a recent generalised additive
model for location, scale and shape (GAMLSS) approach, considered penalised the B-splines of [58],
(see also [61]). In this context, where further flexibility is introduced into the variance function,
we opt for smoothing splines approximations that require a small number of parameters with respect
to P-splines, thereby reducing the computational burden. The smoothing parameter A; is usually
estimated using cross-validation methods.

For models (1)—(3) denoted by Z; = (x14p,-- -, xp,t,h) the information set up to time ¢, the point
prediction of y; is the conditional expectation E(y¢|Z;) = u(x;), given by expression (2). Of course,
for out-of-sample prediction only information up to time t — 1 can be used hence the conditioning set
must be Z;_1. The variance of y; conditionally to Z; is

Var(y:|Zt) = o(xt)* = o} = E[(yt - ﬂ(Xt)zlft} = E(&4|T1). )

As g; ), is assumed to have a zero mean, the conditional variance of y; coincides with the conditional
variance of ; ,, which can be estimated using a non-parametric regression of 2 on x;.

For our location-scale model, the estimation of the conditional variance allows obtaining
prediction intervals at the (1 — «) significance level, which can be written as follows:

[n(xt) +42(a/2) - () 5 pxe) +q2(1 = a/2) - o (xt)], (6)

where g, (a) is the a-quantile of innovation z;.
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It is well-known that the electricity market time series includes several components describing
long-term dynamics, yearly, weekly and daily periodicities and calendar effects, such as bank holidays.
Moreover, the time series of electricity prices might also depend on demand, on production from
renewable sources, on the price of other fuels, such as gas, as well as, on the quantity of energy imported
from abroad. To account for the previous features and following the approach of [62,63], we use the
previously described model to describe the hourly dynamics of electricity price, P;; (likewise for
demand, Dy ;). The term “additive” means that joint effects between the variables are not considered.
Referring to the variables described in Section 2, the specification of the model for the conditional
mean is as follows:

ey = Po+ fi(trend; ;) + fa(dayyear, ;) + f3(dayweek, ;) + fa(hour;y)
+ bank; + f5(Wind; ;) + f6(PVi ) + f7(Hydrog ;)
+ fs(Hydro.R; ) + fo(Therm; ;) + fio(Impy 1) + f11(Dy )
+ f12(PSVin) + fi3(Pi—1,n), 7)

forhour h = 1,...,24 of day t = 1,.... The additive model specified in Equation (7) accounts
for the long-run dynamics of electricity demand and prices by the non-parametric function of
the time fi(trend; ) but also considers several periodic components having different frequencies,
yearly f,(dayyear, ), weekly f3(dayweek; ) and hourly f4(hour; ) that usually characterise electricity
demand and price data (see, e.g., [9,47]). In general, the calendar effects included depend on the
market; here we consider only the bank holiday effect, which is accounted for by the inclusion of the
dummy variable bank; ;, which is assumed to linearly impact either electricity demand or prices. It is
worth noting that model (7) explicitly contains the variable hour; j, to account for the daily periodicity.
Another way to treat this component, often used in the literature, is to separately model the daily series
of each given hour of the day. This leads to a drop in the function f(hour; ) and the need to estimate
24 models, one for each load period. In the first part of the paper we use the former approach but later,
for out-of-sample prediction, the latter is used.

One of the main goals of the model specified in Equation (7) is to assess the impact of the production
of renewable energy sources and their uncertainty on point and interval forecasts of electricity prices and
demand. Therefore, Equation (7) includes the non-linear contribution of renewable sources such as wind
power (Wind; ), solar (PV,}), geothermal (Therm; ), hydro (Hydro;;) and hydro river (HydroR; ).
We also expect that the amount of electricity loaded from abroad (Imp; ;) might impact the conditional
mean of electricity prices, at least for the northern region of Italy. The last few covariates are electricity
load (Dy ), gas prices (PSV, ;) and the level of the electricity price the day before (P;_ ;) to account
for short-term dependencies among prices.

For the semi-parametric heteroscedastic additive model the specification of the conditional
variance is given by

Utz,h = exp {70 + h1(trend; ;) + hp(dayyear, ,) + h3(dayweek; ,) + hy(hour, )
+ bank; + h5(Wind; ;) + he(PVy ) + h7(Hydro, ;)
+ hg(Hydro.R; ;) + ho(Thermy ;) + h1g(Impy j,) + h11(Dy )
+h12(PSVi) + h1a(Pr-1) } ®)
forhourh=1,2,...,240fdayt =1,2,....
In this work, the model for the conditional mean is always the same but different models and

specifications are considered for the conditional variance Var(Pt,h |It) (likewise for D; j,). In particular,
the conditional variance is modelled by assuming;:

(i)  the homoscedasticity of the error term that assumes Var(P; ,|Z;) = 02, for each (t, h);
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(ii)  a parametric dynamic evolution. Within this approach we assume that the error term ¢, j, in
Equation (1) follows the GARCH process (see, e.g., [64,65])

Var(Py;|Zi) = Var(e},|Te) = 0fy = w +aef_y + oj_y ©)

with the usual assumptions on the parameters w > 0, &, > 0 as well as the condition
« + B < 1 that preserves the existence of a weakly stationary solution. Since this approach
is fully parametric, two different probability distributions of innovation z; are considered:
the Gaussian and the Student-t. The GARCH parameters were estimated by means of the
maximum likelihood method, (see, e.g., [65]).

(iij)  the non-parametric model (8). In this case, to assure the positivity of the conditional variance,
function h; was estimated using a non-parametric regression of log(s%,h) on suitable covariates,
where the additional non-parametric function h14(log (€2, ,)) of past log-squared errors was
introduced to account for a possible serial dependence in the time series. Within this class,
we consider a model whose conditional variance depends on all of the available variables,
called the Full-GAM model, and a model whose conditional variance exploits only the calendar
variables. We call the latter Calendar-GAM model. In the non-parametric case, we do not make
any distributional assumptions on z;, thus, to estimate quantile g,(«) we use the empirical
quantile of the variable Z; = (y; — ji¢) /0t. This make our approach fully non-parametric.

It is clear that not all of the variables in Equations (7) and (8) will be statistically significant: some
are always not significant while others are significant only for some Load Periods. Moreover, in the
following analysis, the sentence “the variable is non-significant” will be used with the meaning that
the contribution given by the spline of that variable to the reduction of the residual deviance of the
model is too small, in the sense of an ANOVA test.

4. The Output of the Model

This section is devoted to describing the output produced by the model and its interpretation when
applied to zonal Italian electricity price and demand data. For this purpose, we consider the variables of
the dataset described in Section 2, at an hourly frequency, for the period 1 January 2015-31 December 2018
and we compare the output for the northern and southern zones. These two zones differ with respect to
sizes and renewable energy source’ penetration (see Table 1) and are therefore suitable for analysis the
different impacts of variables on price and demand.

At this stage, the goal is not to specify the best predictive model considering all of the
contemporary variables independent of their significance. However, price P;) defined in the the
day-ahead market is the result of the buying/bidding activity of market operators at time t — 1.
Thus, one could wonder why, for example, PV production at time f, which is unknown at time
t —1, should impact P; ;. The rationale behind our approach is that, in their buying/bidding activity,
operators make an implicit, and sometimes explicit, prediction regarding levels of market variables
at time f. In terms of our model, this means considering some predictions of the variables at time ¢,
which are available at time ¢ — 1, for example, lagged variables or other predictors.

In this section, however, to show the output interpretation, we use the actual values of the
regressors. This leads to a clearer interpretation of the results because it is independent of the choice
of the predictor. Clearly, in a genuine prediction framework, this approach is no longer possible and,
indeed, in Section 5, where forecasting ability of the models will be analysed, lagged variables will be
used. In addition, to simplify presentation, we describe the output of the models for the hourly price
and demand time series, but, when out-of-sample predictions are involved, the daily time series of each
specific hour will be modelled. All of the models were estimated by means of a two-step procedure
using the R library GAM [66]. This is basically equivalent to estimating a GAMLS (with just one “s”)
using the library gamlss. The differences between our approach and gamlss are that: (i) we perform a
two-step procedure; (ii) we do not consider the shape parameter (the second “s”); (iii) we use smoothing
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splines while gamlss uses P-splines; (iv) we estimate the model using a back-fitting algorithm within
a quasi-maximum likelihood framework, while gamliss refers to a penalized likelihood framework.
Smoothing parameter A; was estimated using cross-validation methods. Initially, they were allowed to
change in each load period, but we found no advantage in keeping them fixed over the load period
and therefore the latter approach was followed.

4.1. Price Analysis

In this subsection we estimate models for the dynamics of electricity prices for the two zones.
Figures 2—4 show the estimated functional relationships, i.e., functions fj, between the conditional
expectation of price and each regressor variable. The bands around the estimated functions are
point-wise variability bands at the 95% confidence level. According to the back-fitting algorithm
(see Section 3), they were obtained by bootstrapping the partial residuals of each function f; (h;) and
represent the variability of the estimate of the j-th component at the 95% confidence level.

Figures 5-7 do the same with respect to the conditional variance. An appealing feature of the
model specified in Equations (1)—(3) is that the functional shape of the existing relationships between
the dependent variables and the covariates is suggested by the data themselves, without any a priori
motivation. One of the main purposes of this work is to understand how the uncertainty surrounding
electricity generation from renewable sources, as well as other control covariates, spreads over interval
forecasts of electricity prices and loads. Thus, we consider each covariate separately and analyse its
effect in the northern and southern zones.

We begin by examining the effects of calendar variables: Figure 2a,b illustrate that, in both
zones, a slightly parabolic trend is present which trends upwards in the second part of the series.
The graphs related to the yearly periodic component (Figure 2c,d) show that prices decrease at the
beginning of the year, reaching a minimum around April in the southern zone and around May-June
in the northern zone and then, begin to increase again. However, while in the northern zone, they
increase roughly monotonically, in the southern zone, a new local minimum around September can
be observed. As expected, the shape of the weekly profile (Figure 2e,f) is very similar for the two
zones, with lower prices on Saturdays and Sundays and higher levels during working days. The main
difference is the differential between the maximum and minimum price which is around 5.5 euros
for the southern zone and around 9 euros for the northern zone. The effect of the different Load
Periods is described in the last two panels of Figure 2. As expected, prices are higher during working
hours and lower at night. They decrease up to Load Period 4 and, then, begin increasing again.
However, their effect is negative through Load Period 8. After that, the effect remains positive, up to
Load Periods 22-23 and, then, becomes negative again. In both zones, during the positive period,
two bumps are present—mid-morning and late afternoon. In the southern zone, the two bumps are
more pronounced, and the second bounce shifts by 2-3 h with respect to the northern zone. Functions
describing the effects of electricity demand and lagged prices of electricity (e.g., P;_1 ;) and gas (PSV; ,)
(Figure 3) are linear or almost linear, lagged electricity prices having a slightly greater impact in the
northern zone.

Differences between the northern and southern zones are more important when dealing with
the effects of renewable energy sources (Figure 4). The data suggest a positive relationship exists
between thermal energy production and prices for both zones, with a much more significant effect in
the northern zone. In addition, for the southern zone the curve describing the effect of the thermal
energy production tends to flatten after 5000 MWh. These results are consistent with the difference in
thermal production between the zones, with the southern zone producing (in 2019) around 40% of the
thermal production of the northern zone (see Table 1). Figure 4a,b show that an increment in wind
energy production leads to a price decrease that is small and tends to become irrelevant in the northern
zone but is clearly more significant in the southern zone. Wider intervals for large wind electricity
production levels are explained by the fact that we rarely observe such high levels of wind production.
Again, the huge difference in wind energy production between the two zones, reported in Table 1,
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explains this result. A similar inverse relationship exists also for the photovoltaic energy production
(PV). In both zones, an increase in PV production leads to a decrease in the price. Even if the level
of photovoltaic energy production is higher in the northern zone, in this case, the effect is slightly
stronger in the southern zone. Energy production from hydro river sources in the southern zone is
about 5% of that in the northern zone. As a consequence, while in the northern zone an increment
of this variable considerably reduces the electricity price, the same does not occur in the southern
zone, where the effect is negligible (Figure 4e,f). A large difference between the two zones can also be
observed with respect to hydropower from basin rivers (Figure 4g,h). In this case, however, a positive
variation in hydropower production leads to an increment in the price. This is mainly due to the fact
that hydro basin energy is easier to manage with respect to hydro rivers and can therefore be sold
when conditions are more favourable for producers. Although this relationship is significant for both
of the zones, in the southern one the impact is quite limited.

Table 1. Total demand and total energy production from renewable sources for the year 2019, in MWh.

Zone Demand  Photovoltaic Wind Thermal Hydro River = Hydro

norhtern 162,019,571 7,007,491 89,492 85,381,100 26,311,513 7,923,994
southern 24,017,804 4,332,782 10,799,343 34,722,967 1,307,827 282,050
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Figure 2. In-sample estimation results of the non-parametric additive model for the conditional mean
of electricity prices. For both zones, each panel plots the estimated function f;(-) for the calendar effects
and the overall trend.
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Figure 3. In-sample estimation results of the non-parametric additive model for the conditional mean
of electricity prices. For both zones, each panel plots the estimated function f;(-) for the prices, demand

and thermal production.
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Figure 4. In-sample estimation results of the non-parametric additive model for the conditional mean
of electricity prices. For both zones, each panel plots the estimated function f;(-) for the renewable
energy production variables.

The same kind of analysis can be conducted to assess the impact of variables onto the variability
(conditional variance) of prices, (see Figures 5-7). In the northern zone, a parabolic trend in the
evolution of price variability can be observed. As for the conditional mean, the trend is increasing in
the second part of the series. On the contrary, no trend appears in the southern zone, where variability
does not evolve with time. The effect of the seasons on variability is quite different in the two zones.
In the north, variability shows a “V” effect, with just one minimum around April-May and a large
difference between maximum and minimum variability. In the south, two minima are observed,
corresponding to around February and September, but the variability range (maximum-minimum) is
much less marked. In both zones, the variability is lower in the middle of the week and is higher on
Mondays, Saturdays and Sundays. As expected, variability is lower at night than during the day. In the
northern zone, two peaks corresponding to Load Periods 10 and 20 and a throat in Load Period 14 are
observed, while in the southern zone, three less well-defined peaks occur in the graph. An increase
in demand leads to an almost linear increase in variability in both zones. The relationship between
variability and returns in the gas price is directly proportional but barely significant. It is interesting to
analyse the effects of renewable energy productions on variability. Wind production is significant only
in the southern zone, where data suggest an inverse relation between variability and wind production
up to around 2000 MWh and a flattening after this level. An increase in the photovoltaic production
leads in both zones to decrease variability, but only up to a certain level of production. Regarding the
effect of hydro river production, the data highlight a significant inverse relationship with variability in
the northern zone and an almost flat, and insignificant relationship in the southern zone. The situation
is different for hydropower plants from river basins, for which the relationship is direct and significant
in both zones. Finally, the relationship between thermal production and variability shows a “V” form
that is barely significant in the northern zone and an inverse relationship in the southern zone.
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Figure 5. In-sample estimation results of the non-parametric additive model for the conditional
variance of electricity prices. For both zones, each panel plots the estimated function /;(-) for the
calendar effects and the overall trend.
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Figure 6. In-sample estimation results of the non-parametric additive model for the conditional

variance of electricity prices. For both zones, each panel plots the estimated function /;(-) for the prices,

demand and thermal production.
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Figure 7. in-sample estimation results of the non-parametric additive model for the conditional variance
of electricity prices. For both zones, each panel plots the estimated function /;(-) for the renewable
energy production variables.

4.2. Demand Analysis

In this section, the heteroscedastic additive model described in Section 3 is tailored to describe the
dynamics of demand. As for prices, we analyse the functional form of the relationship between demand
and several covariates. However, it is reasonable to assume that level of demand does not depend
on the energy production source. Thus, they are not considered. Figures 8 and 9 plot the estimated
non-parametric functions, fj, for the conditional mean, while Figures 10 and 11 show functions hj
included in the conditional variance.

As far as the results for the calendar effects in Figure 8, it is worth noting that there are some
differences between the effects of covariates between the two zones, especially concerning their
magnitude. The first difference is in the trend component (Figure 8a,b), which is slightly upward in
the northern zone and slightly downward in the southern zone, even if it appears to flatten in 2018.
This suggest that the two zonal markets have experienced different evolutions. Completely different
behaviour is observed in the two zones for yearly cycles, (see Figure 8c,d). In the northern zone,
the electricity demand displays three well pronounced peaks coinciding with January—February,
June and December. In the southern zone, we instead observe a major peak in about June-July,
followed by a sharp contraction throughout the end of October. As expected, the weekly patterns
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(Figure 8e,f) are almost identical in both zones, with higher energy demand levels on Tuesdays,
Wednesdays and Thursdays, with a clear decay on Fridays and during weekends. In both zones,
the daily cycle (Figure 8g,h) display two major peaks: the first at around Load Period 10 and the second
in late afternoon. The first peak, however, is much more important in the northern zone and demand
volumes is generally much higher in the northern zone. The estimated function for the remaining
covariates is plotted in Figure 9. The relationship between electricity demand D, ; and its lagged value,
D¢_1,, as well as between electricity demand and contemporary electricity price P, are basically
linear and monotonically increasing. The relationship with price seems to be counterintuitive but it
can be justified by the persistence over time of demand and prices and by the documented strong
correlation between demand and prices. Indeed, a high level of electricity demand tends to persist and
be associated with higher prices. Therefore, there is no causal relationship between higher prices and
demand levels. The same reasoning holds for the variable Import; ;. The upward shape of the estimated
functional regression of demand on imports is due to the fact that higher demand levels are often
satisfied by an increase in foreign supply. Regarding natural gas price returns (The logarithmic return
is defined as PSV .ret;, = log PSV .ret;;, — log PSV .ret, ,) (Figure 9e,f), we observe a mild downward
trend for the range of more frequent returns’ values in both zones. A possible explanation for this effect
relies on the relevance of electricity production from natural gas sources in Italy. Indeed, the average
electricity production from natural gas sources for 2015-2019 was about 22% of the total production
worldwide and about 39% in Italy. With more than one-third of total energy production consisting of
natural gas-fired generation, it is quite natural to have a downward demand curve as gas prices rise.

Figures 10 and 11 plot the estimated functions relating the covariates and the conditional
log-volatility. The estimated trend in Figure 10a,b is slightly downward for both zones over the
whole period. As for the conditional mean, the structural interpretation of the overall trend is relevant
for the analysis of the electricity market’s behaviour. Despite the increased electricity production
from renewable sources experienced over the last few decades, the exhibited downward trend for the
log-conditional volatility provides evidence of a tendency of demand uncertainty to decrease over
the long—run. Visual inspection of the daily, weekly and yearly cycles in Figure 10c-h provide further
important structural information about demand uncertainty. In both zones, the volatility reaches its
minimum around March and, then, increases again. However, the increase in the conditional volatility
during the spring and summer is much more pronounced for the northern region, perhaps due to
the less predictable weather conditions and their impact on renewable energy production. In the
southern zone, after a sharp decrease during the winter season, the conditional log-volatility remains
at an almost constant value for the remainder of the year, suggesting substantial stability in demand
volatility. The impact of the day of the week on variability for the two zones (Figure 10d,f) is similar,
with higher volatility being observed on Mondays, Saturdays and Sundays. As for the conditional
mean, the intra-daily cycles substantially differ for the North and South (see Figure 10c,h). In the
northern zone, there are two clear peaks around Load Period 10 and around mid-afternoon, while in
the southern zone, peak is observed in the late afternoon. The shape of the estimated function for the
remaining covariates is plotted in Figure 11a,g. As for more traditional heteroscedastic time-series
models, such as ARCH-type processes, the lagged log-squared residuals, log (5%71,;1) , have a strongly
positive and very similar impact on demand volatility in the two zones. The effect of lagged electricity
demand on current volatility (Figure 11a) is negligible, meaning that past demand does not impose a
strong autoregressive effect on current conditional log-volatility. The impact of PSV .ret, ), is instead
negligible in the southern zone and negative and significant in the northern zone. The downward
slope of the effect of PSV .ret; , on current northern demand volatility documents a contraction in the
demand uncertainty as contemporaneous natural gas log-returns increases. Finally, the importation of
energy in Figure 11g negatively impacts current demand volatility, but only for high positive values.
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Figure 8. in-sample estimation results of the non-parametric additive model for the conditional mean
of electricity demand. For both zones, each panel plots estimated function f;(-) for the calendar effects
and the overall trend. Moreover, the effect of Bank” leads to a demand reduction of about 1230 MWh
for the norhtern zone and about 400 MWh for the southern zone.
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Figure 10. In-sample estimation results of the non-parametric additive model for the conditional

variance of electricity demand. For both zones, each panel plots the estimated function £;(-) for the

calendar effects and the overall trend.
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Figure 11. In-sample estimation results of the non-parametric additive model for the conditional
variance of electricity demand. For both zones, each panel plots the estimated function f;(-) the lagged
demand (D;_ 3,), for the lagged squared residual (log (?%71 ,) ), the PSV returns (PSV, ;) and for the
Import variable (Import; ;) but only for the northern zone. ,

5. Out-of-Sample Forecasting

In this section we examine the forecasting performance of the previous models, both in terms of
point prediction and interval prediction, which is also known as probabilistic prediction in the energy
literature. To this end, data referring to the period between 1 January 2015 and 31 December 2018 are
used to identify and estimate the models, while data referring to the entire year of 2019 are used for
out-of-sample evaluation of forecasts.

The semi-parametric heteroscedastic additive models used are, basically, those defined in Section 3.
In this case, however, we separately model and forecast the daily time series of each load period of the
day. This leads to 24, possibly different, models, increases the flexibility and enable the omission of
the hour-of-the-day variables. The one-day-ahead forecasts of each load period are then combined to
obtain the hourly time series of one-day-ahead forecasts for the entire year of 2019. Moreover, since we
use models for out-of-sample forecasting, except for calendar variables, only lagged variables enter
the models. Another alternative, not pursued here, would have been to consider suitable forecasts
of covariates.

To select the significant (lagged) variables and identify the predictive models, an in-sample
analysis based on a stepwise procedure and data from 2015 to 2018, was performed for each of the
24 daily time series and for each zone, both for the conditional mean and the conditional variance.
Tables 2-5 provide a complete list of the specific variables used for out-of-sample prediction in each
load period.

At a daily frequency, the residual autocorrelation of these models changes with the hour of the day
but is, generally, very weak. In addition, when it is a bit stronger, it is hardly exploitable for prediction.
The residual ACF could be easily whitened by considering the variant of the model described in [63].
Since we focus on prediction, we do not pursue this approach. The residual intra-daily autocorrelation
is still clearly present because it has not been modelled.

The results are summarized in Tables 2—4 for prices and in Table 5 for demand. Please note
that for demand, we did not consider renewable energy productions. Five models were considered:
all of them have the same specification for the conditional mean but differ for their specifications of
conditional variance. For the latter, we considered a homoscedastic model, a Gaussian GARCH(1, 1)
model, a Student-t GARCH(1, 1) model, a Full-GAM model and a Calendar-GAM, i.e., a GAM model
with only calendar explicative variables.
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Furthermore, for the Full-GAM model and a Calendar-GAM, the non—parametric prediction
intervals are obtained according to expression (6), where quantile g, («) is the empirical quantile of the
in-sample standardised residuals z; = (y; — jit) /0.

Point forecasts and related models were evaluated in terms of Mean Absolute predictive Error
(MAE) and Mean Absolute Percentage predictive Error (MAPE). Interval forecasting was evaluated,
at the 80%, 90% and 95% confidence levels, in terms of the deviation of the observed coverage (OC)
from the nominal coverage (NC) as well as in terms of the forecasting intervals’ mean (MW).

Table 2. Selected variables for the predictive models for the conditional mean of price in the northern
and southern zones.

Variables Norhtern Zone—Load Periods Southern Zone—Load Periods
1-6 7-11 12 13-20 21 22-24 | 1-3 4-6 7-9 1020 21-24
trend; v v v v v v v v v v v
day.year, ), v v v v v v v v v v v
day.week; ; v v v v v v v v v v v
bank; j, v v v v v v - - v v -
P 1 v v v v v v v v v v v
Di 1y v v v v v v v v v v v
Wind;_q 5, - - v - - - v v v v v
PV 1 - v v v - - - - v v -
Hydro;_q v v v - - v - - - v v
Hydro.R,_1, | v v v v v v - - - v v
Therm;_q j, v v v v v v v - - v v
Import;_1 v v v v v v - - - - -
PSVi_14 v v v v v v v v v v v

Table 3. Selected variables for the predictive models for the conditional variance of price in the
northern zone.

Variables Norhtern Zone—Load Periods
1-3 46 7-8 9-10 11-13 14-16 17-19 20-22 23-24

trend, - - - - - - - - -
day.year; v v v v v v v v v
day.week; ; - v v v v v v v v
bank; j, - - - - - - - - -
log(s%illh) v v v v v v v v v
Di_1p - - - v v v v v v
Wind;_q , - - - v v v - - -
PVi_1n - - v v v v v - -
Hydro;_q p, v v v v - - v v v
Hydro.R;_1; | v v v v - v - - v
Therm;_q v v v v v v v v v
Import;_q - - - - - - - - -
PSV.rettz_Lh v v v - v v v - -
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Table 4. Selected variables for the predictive models for the conditional variance of price in the
southern zone.

Variables Southern Zone—Load Periods
1-3 4-10 11-13 14-15 16-17 18-22 23-24

trend, - - - - - - -
day.year; v v v v v v v
day.week; ; - v - v - v -
bank; j, - - - - - - -
log(sgil’h) v v v v v v v
Di_1p v v v v v v v
Wind;_1 j, - v v v v v -
PVi_1n - - v v v v v
Hydro;_q - - - - - - -
Hydro.R;_y - - - - - - -
Therm;_q - - v v v v v
PSViret; ,, | vV v - v v v

Table 5. Variables included in the predictive models for the conditional mean and conditional variance
of demand.

. Norhtern Zone—Load Periods Southern Zone—Load Periods
Variables

Condi. Mean Cond. Variance | Condi. Mean Cond. Variance
v v

trend;
day.year;
day.week;
bank;

AN
NN

1
log res; 1y

Di—1pn

SN N N RN

SSIEN

Dt—7n
Import.R;_1 j,
PSV.ret;_q
PSV.ret%_l,h - v - v

NN N YNNI

AN

5.1. Price Forecasting: Results

Table 2 lists, for each load period, the (significant) variables are included in the models for the
conditional mean prediction for the northern and southern zones. In both zones, the models can
be clustered according to the hour of the day. In the northern zone models have three different
specifications corresponding to night (Load Periods 1-6 and 22-24), morning (Load Periods 7-11)
and afternoon (Load Periods 13-20). Load periods 12 and 21 required individual specifications.
In addition in the southern zone there are five different models corresponding to Load Periods 1-3,
Load Periods 4-6, Load Periods 7-9, Load Periods 10-20 and Load Periods 21-24.

Calendar variables are always significant, except for the bank holidays dummy variables in some
Load Periods in the southern zone. Lagged price, demand, imports (only for the northern zone) and
PSV price are included in the model for all Load Periods. Most of the other variables are significant but,
as expected, the photovoltaic production is not during the night hours. Moreover, wind production
is barely significant in the northern zone, while is always highly significant in the southern zone.
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Variables Hydro and Hydro.river, although significant from 10 a.m. to 12 p.m. in the southern zone,
are less relevant in the northern zone. Thermal production is always included in the models for the
northern zone and in most hours for the southern zone.

Likewise, Tables 3 and 4 list the selected variables for the conditional variance models. In this case,
the log-squared residual of the conditional mean, log ?%7”1 was also considered. For the conditional
variance, the clusters of models are much more fragmented. Variables Trend;, Bank; and Import;_1 j,
were never significant. On the contrary dayyear;, dayweek;, loggf_l , and Therm;_; ;, were significant
for all Load Periods. ,

The predictive results for prices are summarised—for the whole out-of-sample period 2019—in
Table 6 for the northern zone, and in Table 7 for the southern zone.

Predictive results for the demand forecasting are summarised—for the entire year of 2019—in
Table 8 for the northern zone and in Table 9 for the southern zone.

Regarding the price’s point prediction of the conditional mean, the mean absolute errors over the
whole 2019 period were MAE = 4.36 euros for the northern zone and MAE = 6.40 euros for the southern
zone. The corresponding percentage errors were MAPE = 10.1% (North) and MAPE = 22.4% (South).
The MAPE for the southern zone is quite large, but that is mainly due to errors related to very small prices.
Indeed, if we exclude prices smaller than their 3% quantile, the MAPE has halved.

Table 6. Electricity prices for the northern zone. Out-of-sample predictive results for the year 2019.
For all models the MAE is equal to 4.36 and the MAPE is equal to 10.1%. Moreover, “observed cov.”
stands for nominal coverage, and “ av. width” is the mean interval forecasting width at the (1 — &) level.

Nominal Coverage 80% 90% 95%

Observed Cov. Av. Width Observed Cov. Av. Width Observed Cov. Av. Width
homoscedastic 77.6 13.1 90.8 189 96.6 25.8
GARCH(1,1)-N 83.3 15.1 91.5 194 95.5 23.1
GARCH(1, 1)—t 88.1 17.3 95.7 23.7 98.3 30.4
Calendar-GAM 777 13.3 89.6 18.3 95.5 24.0
Full-GAM 77.8 13.6 89.7 18.6 95.1 23.8

Table 7. Electricity prices for the southern zone. Out-of-sample predictive results for the year 2019.
For all models the MAE is equal to 6.40 and the MAPE is equal to 22.4%, while it is equal to 11.5% if we
condition to prices greater than their third empirical percentile. Moreover, “observed cov.” stands for
nominal coverage, and “av. width” is the mean interval forecasting width at the (1 — «) level.

Nominal Coverage 80% 90% 95%

Observed Cov. Av. Width Observed Cov. Av. Width Observed Cov. Av. Width
homoscedastic 71.10 15.40 84.60 22.70 92.00 31.70
GARCH(1,1)-N 81.80 20.90 89.20 26.80 93.40 31.90
GARCH(1,1)-t 87.80 25.50 94.90 35.60 97.90 46.50
Calendar-GAM 71.40 16.40 83.30 22.90 91.00 30.30
Full-GAM 75.4 18.50 87.20 25.20 92.89 33.30

For interval forecasting, we have five models for each zone. For the northern zone, apart from the
GARCH(1, 1)-t, whose observed coverage is systematically larger than the nominal one, all remaining
models seem to provide satisfactory results. However, Figure 12a,b showing the hourly and monthly
mean interval prediction widths (nominal coverage 90%), points out that the homoscedastic model is
unable to describe both the daily and seasonal dynamic variability, represented by the mean interval
forecasting width. In addition, Figure 13, showing the differences between the hourly observed
and nominal coverage, points out that the homoscedastic model provides the poorest results and
suggests that its apparently good performance is the consequence of a compensation effect among
hourly coverages. For brevity, the hourly and monthly mean interval forecasting widths are shown
only for the northern zone’s price, but a similar behaviour occurs also for demand and for the
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southern zone. Among the remaining models, both the Full-GAM and the GARCH(1, 1)-N model
provide satisfactory results in terms of coverage and are competitive between them. Nevertheless,
on average, the Full-GAM model leads to narrower prediction intervals and is, therefore preferable.
Similar considerations can be made for the southern zone but, in this case, the situation reverses,
with the GARCH(1, 1)-N model giving the best results.

Table 8. Electricity demand for the northern zone. Out-of-sample predictive results for the year of
2019. For all of the models the MAE is equal to 500.8 MWh and MAPE is equal to 2.8%. Moreover,
“observed cov.” stands for nominal coverage, and “av. width” is the mean interval forecasting width at
the (1 — ) level.

Nominal Coverage 80% 90% 95%

Observed Cov. Av. Width Observed Cov. Av. Width Observed Cov. Av. Width
homoscedastic 81.8 1510.1 90.9 2250.4 95.3 32229
GARCH(1,1)-N 87.9 1894.7 93.8 2431.8 96.1 2897.6
GARCH(1, 1)—t 92.8 2293.5 97.0 3214.7 98.3 4225.5
Calendar-GAM 82.1 1525.1 90.8 2081.7 95.6 2750.8
Full-GAM 80.2 1527.3 89.2 2033.9 94.2 2533.4

Table 9. Electricity demand for the southern zone. Out-of-sample predictive results for the year of 2019.
For all of the models the MAE is equal to 65.25 MWh and MAPE is equal to 2.4%. Moreover, “observed

cov.” stands for nominal coverage, and “av. width” is the mean interval forecasting width at the

(1— a) level.
Nominal Coverage 80% 90% 95%

Observed Cov. Av. Width Observed Cov. Av. Width Observed Cov. Av. Width

homoscedastic 90.5 291.5 97.4 440.3 99.0 601.3
GARCH(1,1)-N 86.0 241.5 91.9 309.9 95.1 369.3
GARCH(1,1)-t 89.7 278.9 95.4 382.5 98.0 490.5
Calendar-GAM 88.6 268.1 96.5 393.1 98.7 525.5
Full-GAM 85.1 235.8 93.4 325.7 97.0 421.3

24
1

20
1

Mean prediction interval width
18

Mean prediction interval width

16
1

Hour Month

(a) hour (b) month

Figure 12. Average width of the prediction intervals for each hour of the day is shown in (a) and each
month of the year is shown in (b). In both panels, the (red) line denotes the average widths of the
homoscedastic model, the (blue) line of the GARCH(1, 1)-N model and the (black) and (magenta) lines
for the Calendar-GAM and Full-GAM, respectively.
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Figure 13. Differences between the nominal and observed coverage for each hour of the day for:
the homoscedastic (red), the GARCH(1,1)-N (blue), the Calendar-GAM (black) and the Full-GAM
(magenta) models.

5.2. Demand Forecasting: Results

For demand forecasting, we moved in the same way as for prices. The model specification
is simpler because it is known that energy demand is inelastic to production from renewable
sources. Thus, in our forecasting demand exercise, we do not include them in the set of possible
regressors, which include calendar variables, lagged demand, (lagged) imports, prices and PSV returns.
Moreover, for demand, the specification was the same for all Load Periods for both the northern and
southern zones. Table 5 lists, for both zones, the variables included in the model for the conditional
mean and variance specification.

Regarding the price’s point prediction of the conditional mean, the mean absolute errors for
the two zones are quite similar: MAE = 500.8 MWh for the northern zone, corresponding to
MAPE = 2.8%, for the northern zone and MAE = 65.25, corresponding to the MAPE = 2.4% for
the southern zone. When considering the interval forecasting, the results are qualitatively similar
to those for prices. In the northern zone, the best results are clearly obtained using the Full GAM
model, which leads to very good coverages and to the smallest mean width of the forecasting intervals.
The second best models are the homoscedastic model, with the limits already described for prices,
and the Calendar GAM model. The GARCH(1,1)-N model is in the fourth position.

When we examine the southern zone, all of the models show observed coverages larger than the
nominal ones. Globally, however, the two models giving the best results are, again, the Full-GAM and
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the GARCH(1, 1)-N, with the former working better for NC = 80% and the latter for NC = 90% and
NC = 95%.

6. Conclusions and Discussion

In this study, a semi-parametric additive heteroscedastic regression model was proposed and
applied to time series of zonal prices and demand data for the Italian electricity market to obtain
point and interval forecasts. The main novelty of this approach consists of modelling both the
conditional mean and the conditional variance as non-parametric functions of several covariates.
Covariates describes the long-term dynamic of the series, several different kinds of periodicity as well
as the impact of renewable energy sources and other market variables. The structural interpretability
of the output of the model is one of the distinguishing features of our proposal. For prices, in particular,
this enables us to examine the impact of renewable energy sources on the variability of prices.

Focusing on interval prediction, rather than on point prediction, allows us to understand how
the available covariates impact the overall variability of price and demand and their variance and
provides important probabilistic information to market operators for making decisions.

Out-of-sample predictions of zonal prices and demand were performed for the whole year of
2019 for the northern and southern zones of the Italian electricity markets. The performance of point
predictions was assessed in term of mean absolute (percentage) prediction error. Forecasting intervals,
instead, were evaluated with respect to coverage (e.g., observed versus nominal coverage) and average
interval” width.

While point predictions were always produced using the same semi-parametric model, forecasting
intervals were obtained by using different models for the conditional variance. We considered
a homoscedastic semi-parametric model, two GARCH models with Gaussian (GARCH-N) and
Student-t (GARCH-T) innovation, the Calendar-GAM model, including only calendar variables,
and the Full-GAM specification including all of the available information.

Both the Full-GAM and the GARCH-N model gave good results, with the Full-GAM model
providing the best results in the northern zone and the GARCH-N model working better in the
southern zone. These empirical findings can be explained by the different size and structure of
the two zonal markets. In large, well-structured and more volatile markets, such as the northern
zone, the Full-GAM model is able to exploit the relationships between the variables leading to better
results than the other models. Conversely, for smaller markets, which are less structured and more
affected by the actions of very large operators, the dependence on covariates is weaker. In this case,
pure heteroscedastic time series models such as the GARCH models, provide slightly better results,
although at the cost of loosing any structural interpretability.

Even if our models yielded satisfactorily results, they might be improved in several ways.
We chose an additive model, meaning that the interactions between the variables were not considered.
Following the approach of [44], one could investigate if they are relevant in a future study.
The covariates of our model were selected in-sample for each hour of the day and were always
the same for the out-of-sample period. An alternative method could be to dynamically and
automatically select them by means of a LASSO procedure, as in [67]. In addition, the spline” degrees
of freedom could be allowed to vary according to the period of the year to account for differences in
variability. Finally, another interesting issue for further exploration is the possibility of using predicted
covariates instead of lagged variables. Of course, this would require a specific model designed for
covariate prediction.
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