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Abstract: Seismically isolated nuclear power plants (NPPs) can provide substantial benefits towards
reducing the failure probability of NPPs, especially for beyond design basis earthquake shaking.
One risk posed by seismic isolation is the potential for pounding to a stop or moat wall, with currently
little guidance provided by design standards on how to address this concern. In this paper, a structural
model of an isolated NPP based on the Advanced Power Reactor 1400 MW is enveloped with moat
walls and advanced bearing models. The bearing models account for large strain behavior through
failure based on full-scale experiments with lead rubber bearings (LRBs). Using these analytical
models and a measured ultimate property diagram from LRB failure tests, the range of clearance
to the stop considering the performance criteria for the NPP is investigated. Although the analysis
results are dependent on the particular models, ground motions, and criteria employed, this research
provides an overview of the seismic response and performance criteria of an isolated NPP considering
the clearance to the stop.

Keywords: lead rubber bearing (LRB); seismic isolation; nuclear power plant (NPP); performance
criteria; clearance to the stop (CS); ultimate property diagram (UPD)

1. Introduction

Seismic isolation systems represent a promising strategy to improve the seismic performance of
a structure under strong ground motions that reduces the vibration transferred to the structure by
inserting a flexible isolation layer at the base that can sustain large displacements [1]. Although there
are some remaining issues in the application of seismic isolation systems to nuclear power plants(NPPs),
such as the durability of the isolators and design- and construction-related issues, the use of seismic
isolation has increased gradually from the first seismically isolated NPP in Koeberg, South Africa in
the 1970s [2,3]. Research on various types of isolators including experimental investigations, numerical
modeling techniques, static and dynamic stability analysis, and aging has been conducted to address
the issues [4–9]. With stricter safety regulations than other structures, it is critical that NPPs maintain
their structural integrity against severe external hazards, including earthquakes. The application of
seismic isolation to NPPs can allow for designs to meet the requirements in high seismic zones or
increase the margin of safety for unexpected motions in regions with lower seismic risk.
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One important step in investigating the seismic performance of a base-isolated NPP is the modeling
of the structure and the isolation system. In this research, an NPP model was built based on the
APR1400 (Advanced Power Reactor 1400 MW) from the Republic of Korea with lead rubber bearings
(LRBs) used for the isolation system. The structural model was initially developed by KEPCO E & C
(Korea Electric Power Corporation Engineering and Construction Company, Gimcheon-si, Korea),
which is in charge of the APR1400 design, and later converted to OpenSees in collaboration with the
University of California, Berkeley [10]. The model was then modified for the current study as well
as related research to include moat walls [11] and advanced bearing models to capture the nonlinear
characteristics of the LRBs [12]. The bearing models focus on capturing experimental results at large
shear strain to better reflect strong ground motions. In the present work, the response of an isolated
NPP including the displacement of the isolation system and floor response spectra (FRS) is investigated
using the analytical model combining both structural and bearing models.

The displacement capacity of the isolation system is a critical parameter to consider in the
performance criteria of isolated NPPs. Displacements must be sustained by the isolation bearings
themselves as well as the umbilical lines crossing the isolation plane. The capacity of the isolators
designed for the APR1400 was tested by the Korea Atomic Energy Research Institute (KAERI) focusing
on their ultimate shear strength under the expected range of vertical loads [13,14]. With the experimental
results and an analytically obtained vertical load distribution in the isolation system, it has been
concluded that isolator shear strain failure can be quantified as a failure parameter. In this work,
a sufficient capacity of the umbilical lines that cross the isolation boundary was assumed for relative
displacement, and thus, the failure of the umbilical lines was not considered.

The key objective of this paper is to examine the performance criteria of seismically isolated NPPs,
particularly the clearance to the stop (CS), as suggested by NUREG [15] and ASCE [16]. A physical
stop is necessary for seismically isolated NPPs to ensure the mean annual frequency of failure of
the isolation system is very small [15]. The CS, which refers to the horizontal distance between the
superstructure of isolated NPP and the physical stop [16], is an important matter affecting the risk
assessment of isolated NPPs, but few studies have evaluated CS. Kumar [17] calculated CS considering
responses from various ground motions but the capacity of the isolation system was not considered.
In the current paper, both numerical simulations and the experimental results from the bearing test
program are considered in evaluating the range of CS. The lower and upper bounds of CS are suggested
from the analytical displacement response and the experimental capacity of the isolators, respectively.

2. Models for Numerical Analysis

2.1. Structural Model of the APR1400

The structural model of the APR1400 including a seismic isolation system consisting of 486 bearings
was initially developed in SAP2000 by KEPCO E & C. KEPCO, which is in charge of designing NPPs in
Korea, developed a simplified Archetype Nuclear Test (ANT) stick model, as shown in Figure 1 [18].
The superstructure is modeled as beam–stick elements with lumped masses and the base mat is
modeled using three dimensional solid elements. The reactor containment building (RCB) and the
auxiliary building (AB) are located at the center of the model. The isolators are attached at the bottom
of the base mat. The total weight of the nuclear island including base mat, reactor, RCB, and AB is
4732 MN. This SAP2000 model was then converted to an OpenSees format for hybrid simulations and
parametric analysis [10]. The model was checked to ensure successful conversion, as shown by the
modal frequencies of both models in Table 1 [18].
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5 3.572 3.546 RCB—Horizontal Translation 
6 6.998 7.023 AB **—Horizontal Translation 
7 7.484 7.521 AB—Horizontal Translation 

* RCB: Reactor Containment Building; ** AB: Auxiliary Building. 

An advanced bearing model was developed and adapted for the ANT model [19] based on full-
scale LRB experiments conducted by KAERI [14]. By focusing on the experimental results at shear 
strains of over 300%, the bearing model is considered applicable for beyond design basis earthquakes 
(BDBEs).  

2.2. Isolator Model 

KAERI conducted full-scale tests of LRBs designed for NPPs in 2014. As shown in the schematic 
in Figure 2, the diameters of the LRB and lead core were 1500 mm and 320 mm, respectively, with 32 
layers of 7 mm thick rubber stacked to give a total rubber height of 224 mm. Two LRBs were tested, 
where each specimen experienced various motions including sine wave motion, elliptical trace 
sinusoidal motion, and earthquake response motion. Shear strain up to 500% at three frequencies 
(0.01 Hz, 0.2 Hz, and 0.5 Hz) was tested at the design axial load, 22,000 kN. Detailed explanations of 
the experiments can be found in previous reports [13,14,20,21]; Figure 3 presents an example of 
experimental results obtained from the tests. 

Figure 1. ANT model.

Table 1. Comparison of modal frequencies between SAP2000 and OpenSees models.

Mode SAP2000
Frequency (Hz)

OpenSees
Frequency (Hz) Direction

1 0.477 0.477 Isolation—Horizontal Translation

2 0.477 0.477 Isolation—Horizontal Translation

3 0.710 0.711 Isolation—Vertical Rotation

4 3.546 3.539 RCB *—Horizontal Translation

5 3.572 3.546 RCB—Horizontal Translation

6 6.998 7.023 AB **—Horizontal Translation

7 7.484 7.521 AB—Horizontal Translation

* RCB: Reactor Containment Building; ** AB: Auxiliary Building.

An advanced bearing model was developed and adapted for the ANT model [19] based on
full-scale LRB experiments conducted by KAERI [14]. By focusing on the experimental results at
shear strains of over 300%, the bearing model is considered applicable for beyond design basis
earthquakes (BDBEs).

2.2. Isolator Model

KAERI conducted full-scale tests of LRBs designed for NPPs in 2014. As shown in the schematic in
Figure 2, the diameters of the LRB and lead core were 1500 mm and 320 mm, respectively, with 32 layers
of 7 mm thick rubber stacked to give a total rubber height of 224 mm. Two LRBs were tested, where each
specimen experienced various motions including sine wave motion, elliptical trace sinusoidal motion,
and earthquake response motion. Shear strain up to 500% at three frequencies (0.01 Hz, 0.2 Hz,
and 0.5 Hz) was tested at the design axial load, 22,000 kN. Detailed explanations of the experiments
can be found in previous reports [13,14,20,21]; Figure 3 presents an example of experimental results
obtained from the tests.
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Marquez, and Hughes [12,19]. The characteristic behaviors of the LRBs, such as a reduction in 
strength due to the heat of the lead and hardening at large strain, as shown in Figure 3, are modeled 
using three elements: an LRX element, a Bouc–Wen (hardening) element, and an HDR element, which 
are all separately available in OpenSees [22], as shown in Figure 4. 
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Figure 3. Strain-force curves in the unidirectional sinusoidal test [13]: (a) 300% Strain; (b) 400% Strain.

A parallel numerical model of an isolator representing an LRB was suggested by Mosqueda,
Marquez, and Hughes [12,19]. The characteristic behaviors of the LRBs, such as a reduction in strength
due to the heat of the lead and hardening at large strain, as shown in Figure 3, are modeled using
three elements: an LRX element, a Bouc–Wen (hardening) element, and an HDR element, which are all
separately available in OpenSees [22], as shown in Figure 4.
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The ratio of post-yield stiffness to initial stiffness α and the characteristic strength Qd are
calibrated using test data at moderate to large levels of shear strains, e.g., 100–300% shear strain [19].
The parameters for the Bouc–Wen element are calibrated from tests at higher strains, in the range
of 300–500% shear strain [19]. The HDR model is an element that consists of elastic and hysteretic
components [23]; this phenomenological model contains 10 parameters, three of which account for
the elastic component (a1 − a3), three for the hysteretic component (b1 − b3), and four for degradation
effects (c1 − c4) such as mullins and scragging.

The model parameters in these three elements are calibrated from the full-scale bearing tests.
The downhill simplex algorithm was used for the identification of the parameters by minimizing the
normalized root-mean-squared error of the difference between the experimentally measured force
and the numerical force determined numerically using OpenSees [12]. Table 2 summarizes the final
calibrated parameters for the LRB model, and Figure 5 plots a comparison between the calibrated
model and the experimental result [19].

Table 2. Final calibrated parameters for the (lead rubber bearings) LRB model.

LeadRubberX ElastomericBearingBoucWen HDR

Yield strength, Fy 995.3 kN Post-yield stiffness ratio of the linear
hardening component, α1

0.00001
a1 0.31

Post-yield stiffness ratio, α 0.01453
a2 −15.92

Post-yield stiffness ratio of the
non-linear hardening component, α2

0.0003
a3 0.82

Shear modulus, Gr 0.3467 MPa b1 5.53

Bulk modulus of the
rubber, Kbulk

2000 MPa
Exponent of the non-linear hardening

component, µ 9.0
b2 52.02

b3 2.86

Cavitation parameter, kc 20
Yielding exponent (sharpness of the

hysteresis loop corners), η 1
c1 5.5 × 10−5

c2 0.02

Damage parameter, φm 0.75
First hysteretic shape parameter, β 0.1 c3 1

Second hysteretic shape parameter, γ 0.9 c4 0
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Figure 5. LRB model calibration (500% shear strain test) [19].

The effects of axial load are also important, and there have been some documented evidence of
lateral-vertical coupling in the behavior of the bearings. Such effects have been captured through
hybrid simulations along with 3D testing of bearings [24]. However, the authors are not aware of a
reliable model to capture these effects. From the experiments, it was difficult in the present work to
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conduct a full-scale LRB test with various axial loads to propose an adequate model because of budget
and schedule constraints. Therefore, it is assumed herein that the experimental results conducted
at design axial load represent the general behavior of the LRBs on average for the numerical model
considering that some bearings will have increasing axial load while others will have a decreasing
axial load. Consideration of axial load variation in the numerical model requires further experiments
and research.

2.3. Ground Motions

The Pacific Earthquake Engineering Research Center (PEER) published a technical report [25]
as the outcome of a research project conducted in tandem with KEPCO. In this project, a set of
20 ground motions were selected from the PEER NGA-West1 database, such that they match the
mean and dispersion of a target response spectrum [25]. Using RSPMatch, each of the selected
dispersion-appropriate records was individually matched to a single target spectrum corresponding to
5% damping [25]. Table 3 shows the properties of the 20 ground motions used for this research, with the
mean spectrum matched to the 5% damped USNRC RG1.60 (U.S. Nuclear Regulatory Commission
Regulatory Guide 1.60) target spectrum as shown in Figure 6. USNRC RG1.60 specifies design response
spectra for the seismic design of NPPs [26]. For ground motion with various peak ground acceleration
(PGA) levels, an amplification factor is applied to the motions in Figure 6.

Table 3. Properties of the 20 motions [25].

Rec.# NGA# Earthquake
(EQ) Station Mag. Dist.

(km)
Vs30
(m/s) SF NPTS dt (s) Duration

(s)

1 68 San Fernando LA-Hollywood Stor
FF 6.6 22.8 316 3.7 2800 0.1 28

2 93 San Fernando Whittier Narrows
Dam 6.6 39.5 299 7.5 7997 0.005 39.985

3 186 Imperial
Valley-06 Niland Fire Station 6.5 36.9 207 7.8 7997 0.005 39.985

4 285 Irpinia, Italy-01 Bagnoli Irpinio 6.9 8.2 1000 4.0 12712 0.0029 36.8648

5 718 Superstition
Hills-01

Wildlife Liquef.
Array 6.2 17.6 207 5.2 5961 0.005 29.805

6 730 Spitak, Armenia Gukasian 6.8 36.2 275 4.4 1990 0.01 19.9

7 748 Loma Prieta Belmont-Envirotech 6.9 44.1 628 6.9 7989 0.005 39.945

8 855 Landers Fort Irwin 7.3 63.0 345 6.8 2000 0.02 40

9 862 Landers Indio-Coachella
Canal 7.3 54.3 345 6.5 3000 0.02 60

10 882 Landers North Palm Springs 7.3 26.8 345 4.8 14,000 0.005 70

11 1165 Kocaeli, Turkey Izmit 7.5 7.2 811 3.3 6000 0.005 30

12 1487 Chi-Chi, Taiwan TCU047 7.6 35.0 520 2.1 18,000 0.005 90

13 1491 Chi-Chi, Taiwan TCU051 7.6 7.7 273 3.0 18,000 0.005 90

14 1602 Duzce, Turkey Bolu 7.1 12.0 326 1.3 5590 0.01 55.9

15 1605 Duzce, Turkey Duzce 7.1 6.6 276 1.4 5177 0.005 25.885

16 1611 Duzce, Turkey Lamont 1058 7.1 0.2 425 7.7 3901 0.01 39.01

17 1762 Hector Mine Amboy 7.1 43.1 271 3.5 3000 0.02 60

18 2113 Denali, Alaska TAPS Pump Station
#09 7.9 54.8 383 8.0 32,895 0.005 164.475

19 2744 Chi-Chi,
Taiwan-04 CHY088 6.2 48.4 273 7.4 12,800 0.005 64

20 3264 Chi-Chi,
Taiwan-06 CHY024 6.3 31.1 428 5.0 13,204 0.005 66.02



Energies 2020, 13, 6156 7 of 19

Energies 2020, 13, x FOR PEER REVIEW 7 of 19 

 

 
Figure 6. Acceleration response spectra for 20 motions (PGA = 0.5 g). 

3. Response of an Isolated Nuclear Power Plant 

3.1. Displacement of the Isolation System and Upper Structures 

Figure 7 shows the acceleration time history of one of the ground motions in Table 3, earthquake 
#1 from San Fernando. Figure 8 shows the displacement time histories and the maximum 
displacement of the isolation system and upper structures subjected to the ground motion shown in 
Figure 7. The plots show the analytical responses from the bottom of the pedestal at 11.3 m (37 ft) to 
the top of the reactor containment building (RCB) at 101.7 m (333.5 ft). Similarly, Figure 9 shows the 
acceleration time histories and the maximum acceleration for the ground motion in Figure 7. 

 
Figure 7. Input ground motion (EQ #1, PGA = 1 g). 

Figure 6. Acceleration response spectra for 20 motions (PGA = 0.5 g).

3. Response of an Isolated Nuclear Power Plant

Displacement of the Isolation System and Upper Structures

Figure 7 shows the acceleration time history of one of the ground motions in Table 3, earthquake #1
from San Fernando. Figure 8 shows the displacement time histories and the maximum displacement of
the isolation system and upper structures subjected to the ground motion shown in Figure 7. The plots
show the analytical responses from the bottom of the pedestal at 11.3 m (37 ft) to the top of the reactor
containment building (RCB) at 101.7 m (333.5 ft). Similarly, Figure 9 shows the acceleration time
histories and the maximum acceleration for the ground motion in Figure 7.
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Figure 9. Acceleration response of NPP: (a) time histories and (b) maximum acceleration for the ground
motion in Figure 7.

The top of the LRB and the bottom of the base mat meet at a height of 13.7 m (45 ft). As shown in
Figures 8 and 9, the responses above 13.7 m (45 ft) differ from those below 13.7 m (45 ft), meaning
that the responses of the isolation layer and the upper structures are different. These results support
the statement above that the isolation system reduces acceleration by allowing lateral displacement.
Additionally, the displacement response in Figure 8 can be used as an input motion to assess the
failure probability of the interfacing components, such as the umbilical lines between isolated and
non-isolated structures.

Figure 10 shows the force-displacement relation of an LRB (LRB #1) subjected to the same ground
motion in Figure 7 but at various PGA levels. This bearing, as depicted in Figure 1, is located at the
corner of the base mat. According to Figure 10, the bearing model shows increased nonlinearity as the
ground motion strengthens, similar to experimental observations, and thus it can be concluded that
the bearing model is suitable for beyond design basis applications.
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Figure 10. Hysteresis of LRB #1.3.2. Floor Response Spectra of an Isolated NPP.

The floor response spectra (FRS) is another essential aspect in the analysis of the seismic fragility of
equipment as well as risk assessment, as discussed in previous reports [27]. Figures 11 and 12 exhibits
the mean FRS of the 20 motions in Table 3; more specifically, Figure 11 shows the FRS of a non-isolated
NPP at 30.5 m (100 ft), 47.5 m (156 ft), 67.7 m (222 ft), and 101.7 m (333.5 ft) of the RCB, and Figure 12
shows the FRS of a base-isolated NPP using the bearing model based on the experiments described in
Section 2.2. As shown in Figure 12, the peaks at the isolation system frequency (about 0.5 Hz) become
notable as the ground motion becomes stronger. Additionally, the responses are amplified depending
on the elevation at the frequency of the RCB (about 3.5 Hz).
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Figure 13 shows a comparison of the FRS from both base-isolated and non-isolated RCBs.
The isolation system reduces the overall responses of the structure, with the isolated RCB only slightly
exceeding the non-isolated RCB in the region near the natural frequency of the isolation system.
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Figure 13. Comparison of FRS at different PGA from isolated (solid lines) and non-isolated (dashed lines)
RCBs: (a) PGA = 0.5 g; (b) PGA = 1 g.

If there exists a stop (moat wall) in accordance with the evaluated CS, the FRS of the base-isolated
RCB can be amplified due to a collision between the wall and the base mat, especially for ground
motions exceeding BDBE ground motion response spectra (GMRS). Therefore, further research for the
modeling of the moat wall, backfill soil, and impact is necessary to evaluate FRS considering moat wall
impact at strong ground motions.

4. Capacity of the Isolation System

4.1. Experimental Setup

To obtain more data on the capacity of the LRBs, additional experiments were conducted on bearings
smaller in size than those presented earlier for the model development. The dimensions of the LRB
specimens are shown in Figure 14 [13,28,29]. The diameters of the LRB and lead core were 550 mm and
120 mm, respectively, and the total rubber thickness was 112 mm. Fifteen specimens, as listed in Table 4,
were tested until failure. It should be noted that these specimens had experienced horizontal loading
prior to the failed test and could have been slightly damaged; the LRBs were therefore classified as low
damage (LD), moderate damage (MD), and high damage (HD) for previously experienced shear strain
levels of 100%, 300%, and 400%, respectively [18]. The fourth column in Table 4 lists the experimental
variable P/Pd, which is the ratio of the axial load to the design axial load, ranging from 0 to 6. Each test
was performed by horizontal displacement control loading under these axial loading conditions.
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Table 4. Specimens for the ultimate property test.

Test
Sequence Specimen Tag P/Pd

Vert. Load
(kN)

Buckling
Load (kN)

Failure Load
(kN)

Failure Disp.
(mm)

Failure Disp.
(%)

#1 UCSD300%(1) MD-P1.0 1.0 2942 683 457 408

#2 UCSD300%(5) MD-P1.0 1.0 2942 762 462 412

#3 UCSD Non(1) LD-P1.0 1.0 2942 460 389 348

#4 UCSD400%(1) HD-P1.0 1.0 2942 236 583 478 427

#5 SGS1.0Pd MD-P1.0 1.0 2942 777 470 419

#6 UCSD Non(2) LD-P6.0 6.0 17,649 245 67 60

#7 UCSD300%(3) MD-P2.0 2.0 5883 232 766 480 429

#8 UCSD300%(7) MD-P3.0 3.0 8825 311 666 476 425

#9 SGS1.5Pd MD-P1.5 1.5 4412 287 761 467 417

#10 UCSD300%(4) MD-P2.5 2.5 7354 214 614 457 408

#11 UCSD300%(8) MD-P4.0 4.0 11,766 180 594 460 410

#12 SGS2.0Pd MD-P5.0 5.0 14,708 126 666 483 431

#13 UCSD300%(2) MD-P0.0 0.0 500 782 463 413

#14 UCSD400%(2) HD-P0.0 0.0 500 597 477 426

#15 UCSD300%(6) MD-P0.5 0.5 1471 763 469 419

Test results are depicted in Figure 15. The MD specimens under 1.0 Pd (design axial force) show
consistent results, whereas the HD specimen shows decreased stiffness likely due to damage in previous
loading cycles (Figure 15a). Additionally, the LD specimen under 1.0 Pd fails at a lower shear strain,
which could be due to specimen variability. The results tested under axial loads up to 1.5 Pd Figure 15b)
are not much different than the 1.0 Pd results. When the axial load exceeded 2.0 Pd, the stability limit
was reached for several bearings followed by negative stiffness that caused a decrease in force and
displacement capacity (Figure 15c). The buckling load, failure load, and failure displacement can be
found in Table 4 [29]. While buckling can be considered a failure mode for a single isolator, it does not
necessarily indicate the failure of the entire isolation system consisting of 486 bearings. Additionally,
the bearings are able to regain stiffness at large strains that improve the overall dynamic stability of
the isolation system. Therefore, shear failure following the stability limit is considered as a failure to
investigate the upper bound of the CS in this study.
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4.2. Ultimate Property Diagram

The failure criteria of the LRBs can be represented by an ultimate property diagram (UPD) [30].
The vertical load on an LRB affects its failure mode and shear failure capacity; the UPD shows this
relationship, namely between the axial load and the shear load or strain of the limit state. In this
research, UPDs were predicted experimentally because of difficulties in numerical analysis.

Figure 16a,b show UPDs based on the failure load and failure strain, respectively, from the test
results in Table 4. As can be seen in the figure, the failure strains of the specimens are rather consistent
at about 420%, compared to the failure loads. Therefore, within a certain level of vertical load, the shear
strain can be a failure criteria parameter.
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5. Clearance to the Stop in Accordance with Performance Criteria

5.1. Performance Criteria in Codes

The performance criteria for seismically isolated nuclear structures has been suggested in standards
such as ASCE 4–16 [16] and NUREG/CR-7253 [15]. According to the standards, seismically isolated
NPPs should allow for sufficient displacement of the isolation layer to reduce the acceleration induced
by ground motions, while the failure probabilities of the superstructure, isolation systems, and umbilical
lines remain at low levels, as specified below.

NUREG/CR-7253 gives performance and design recommendations for seismically isolated NPPs
at two levels of ground motion: GMRS+ and BDBE GMRS. The first, GMRS+, covers RG1.208 GMRS
and the minimum foundation input motion, while the second, BDBE GMRS, covers the UHRS (uniform
hazard response spectrum) at a mean annual frequency of exceedance of 1 × 10−5 and 167% of GMRS+.
The criteria under BDBE GMRS loading are normally critical. Isolation systems need to have 90%
confidence of surviving without loss of gravity-load capacity, and the superstructure needs to have
less than a 10% probability of contacting with a hard stop (moat wall) under BDBE GMRS loading.
To satisfy these criteria, the CS has to be greater than the 90th percentile displacement of the structure
under BDBE GMRS loading, and the isolation system and umbilical lines need to be designed to have
90% confidence or higher for the CS. The capacity of the interfacing components such as the umbilical
lines is assumed in this work, and thus the failure of the umbilical lines is not considered at present.

5.2. Lower Bound of CS from Displacement Response

The RG1.60 design spectrum with PGA = 0.5 g can be regarded as the GMRS in the present work
because a specific target site was not designated, and therefore the 20 ground motions detailed in
Section 2.3 were selected for the analysis. An amplification factor AR was calculated to be about 2
because the ratio of the peak ground acceleration at an annual frequency of exceedance of 10−4 and
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10−5 is about 2 based on a related hazard analysis in Korea [31]. Therefore, the BDBE GMRS is assumed
as the RG1.60 design spectrum with PGA = 1.0 g.

Figure 17 shows a histogram of the maximum displacements of the AB at ground level
(height = 100 ft) subjected to 20 ground motions (Table 3) for BDBE GMRS loading (PGA = 1.0 g).
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 Figure 17. Displacement of the auxiliary building under BDBE ground motion response spectra (GMRS)
(PGA = 1.0 g).

As shown in Figure 17, the mean maximum displacement was about 0.77 m. If a normal distribution
is assumed, the 90th percentile of the displacement is about 0.86 m (2.81 ft). The superstructure has
less than a 10% probability of contact with a hard stop (moat wall) under BDBE GMRS loading, as the
codes suggested. In other words, the lower bound of the CS is about 0.86 m in this case.

5.3. Upper Bound of CS from UPD

In this research, a fragility curve for the LRBs was estimated from the maximum likelihood
method suggested by Shinozuka et al. [32]. The empirical fragility curve of the LRBs is assumed as a
cumulative distribution function of the lognormal distribution, as shown in Equation (1),

F(e) = Φ
[

ln(e/em)

βc

]
(1)

where e and em are the shear strain (%) and the median value of the strain, respectively, βc is the
log-standard deviation, and Φ[·] is the cumulative standard normal distribution function.

The likelihood function for the estimation can be defined as Equation (2) [32],

L =
N∏

i=1

[F(ei)]
xi [1− F(ei)]

1−xi (2)

where ei is the shear strain (%) to which the ith LRB is subjected, xi = 1 or 0 depending on whether the
LRB failed or not, and N is the total number of tested LRBs.

Two parameters, em and βc, are estimated from Equation (3), which finds the parameters to
maximize the likelihood function L.

d ln L
dem

=
d ln L
dβc

= 0 (3)
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The median shear failure strain and log-standard deviations were about 413% and 0.051, respectively.
Figure 18 shows the empirical fragility curve. The test results in Figure 16 with the highest axial load
(Test #6) was not included in this failure probability estimation because it exceeded the range of interest.Energies 2020, 13, x FOR PEER REVIEW 16 of 19 
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Figure 18. Probability of shear failure.

The failure probability of a prototype LRB in an isolated NPP is assumed to be the same as the
small-scale LRBs despite size effects, considering the practical difficulty to conduct ultimate property
tests of prototype LRBs. This assumption is considered to be acceptable based on the fact that the shear
failure of the full-scale LRB specimen occurred at approximately 515% shear strain level [14]. From the
fragility curve, the 10th percentile of the failure strain is about 387% or 0.87 m for a full-scale LRB with
0.224 m rubber thickness. Thus, 0.87 m can be the upper bound of the CS to satisfy the performance
criteria that the isolation system should have 90% confidence of surviving without loss of gravity-load
capacity. This condition is reasonable when the axial load remains within about 3 times the design
value, as shown in Figure 16.

The design axial force is about 22,000 kN for the full-scale isolator of an NPP [14]. Figure 19
shows the initial dead load distribution on the 486 LRBs from the ANT model. The vertical load differs
depending on the location, and it is about 10,000 kN or half of the design axial load, as shown in
Figure 19.
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Figure 19. Initial vertical load on the isolators.
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Figure 20 shows the axial load distribution of the 486 isolators when the PGA of the ground
motions was 1.0 g (BDBE GMRS level). Here, the axial load increased from the initial vertical load
but remained within the design axial load, 22,000 kN. In case of ground motions with PGA = 1.25 g,
the axial load reached 1.5 times the design load. Therefore, for the ground motions in this analysis,
the failure probability in Figure 18 is considered acceptable.Energies 2020, 13, x FOR PEER REVIEW 17 of 19 
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Figure 20. Vertical load distribution on the 486 isolators under 20 ground motions (PGA = 1.0 g).

As a result of the analysis, the range of the CS is about 0.86 m to 0.87 m (384% to 387% shear
strain) in this research, with the expectation that the numerical models, experimental results, and all
assumptions were reasonably generated to reflect realistic seismic behavior of the structures and
isolators under consideration.

6. Conclusions

In this paper, we integrated NPP and LRB structural models to investigate the response, capacity,
and clearance to the stop of an isolated NPP based on given performance criteria. From the experimental
results and analysis, the following conclusions are drawn.

(1) The RG1.60 design spectrum with PGA = 0.5 g and PGA = 1 g were used for the GMRS and BDBE
GMRS because a target site was not designated. An amplification factor for the BDBE GMRS was
determined to be about 2 from the ratio of the PGA at an annual frequency of exceedance 10−4

and 10−5 based on a hazard analysis in Korea.
(2) Assuming a normal distribution for the resulting maximum displacement under BDBE GMRS

loading, the 90th percentile of the displacement was about 0.86 m. In this case, CS should be
greater than 0.86 m based on the performance criteria that the superstructure has less than a 10%
probability of contact with a hard stop (moat wall) under BDBE GMRS loading.

(3) The shear strain of the LRB can be a failure criteria within a certain level of vertical loading based
on the UPD, which represents the results of bearing capacity experiments. Failure probability
using the shear strain parameter can be calculated by maximum likelihood estimation. The median
failure strain was about 413%, and the 10th percentile was about 387% from the estimation.
The 387% shear strain equates to 0.87 m for a full-scale LRB, which can be the upper bound of the
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CS to satisfy the performance criteria that the isolation system should have 90% confidence of
surviving without loss of gravity-load capacity.

(4) Limitations of this study include insufficient numbers of experiments as well as analysis results that
are dependent on the particular models, ground motions, and criteria selected. Further research
is necessary to reflect more realistic behavior of an isolated NPP under seismic loading and to
suggest more reasonable ranges of clearance to the stop. Future work will address development
of a bearing model that considers axial load. Consideration of the impact loading that occurs
when the displacement of the NPP exceeds CS also needs further investigation.
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