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Abstract: The paper presents a new approach to predicting the 24-h electricity power demand in the
Polish Power System (PPS, or Krajowy System Elektroenergetyczny—KSE) using the deep learning
approach. The prediction system uses a deep multilayer autoencoder to generate diagnostic features
and an ensemble of two neural networks: multilayer perceptron and radial basis function network
and support vector machine in regression model, for final 24-h forecast one-week advance. The period
of the data that is the subject of the experiments is 2014–2019, which has been divided into two
parts: Learning data (2014–2018), and test data (2019). The numerical experiments have shown the
advantage of deep learning over classical approaches of neural networks for the problem of power
demand prediction.
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1. Introduction

The stability of the electric power system is the most important factor in power delivery. It is
guaranteed by the balance between electric load and supply. With the help of accurate electric load
forecasting, electric power operators can adjust the electric supply according to real-time forecasted
load and maintain the normal operation of electric power systems. An accurate 24-h forecast for
the next few days is very important for the operation of national power grids, both technically and
economically [1–4].

This problem has drawn attention from many researchers in different fields, and many forecasting
methods have been developed in the past [4–7]. The most important problem is to propose the optimal
set of diagnostic features that are used as the input attributes in the final regression network [8].
The development of artificial intelligence methods and machine learning has accelerated the progress
in designing systems, which better reflect the nonlinear features of electric loads. Multilayer perceptron
(MLP), radial basis function network (RBF), support vector machine in regression model (SVR), and
random forest (RF) have been widely used in the process of prediction of the changes of electric
loads [4,5].

Huang et al. [8] proposed an RF-based feature selection method, and then an improved RF
regression model was trained using features selected by a sequential backward search method. Moon et
al. [4] have proposed a prediction system by combining an RF model and MLP model to predict the
daily electric loads. A strategy for short-term load forecasting by using SVR in regression model has
been proposed in [1].

The paper of Yang et al. [9] has studied the application of an ensemble of predictors to improve
the accuracy of short-term electricity demand forecasting. The combination of neural networks,
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neuro-fuzzy ANFIS, and differential SARIMA has been presented. The paper of Correia et al. [10] has
presented multi-model methodology for forecasting the sales of liquefied petroleum gas cylinders.
The problem of sensitivity and accuracy in the ensemble of predictors has been considered in the paper
of Fernandez et al. [11]

In recent years deep learning techniques have attracted great interest in many branches of
engineering applications, including short time series prediction [12–17]. Unlike traditional machine
learning, the deep learning approach extracts features directly from data without the manual
intervention of the human operator. The deep neural networks include multiple hidden layers
between the input and the output. They are strictly responsible for the generation of a limited number
of diagnostic features, as well as characterizing the raw input data.

The paper of Liu et al. [6] has shown the application of stacked denoising autoencoder for
short-term load forecasting, taking into account such factors as historical loads, somatosensory
temperature, relative humidity, and daily average loads. Only the daily average power demand was of
interest in final forecasting tasks.

He [13] has integrated multiple types of input features by using appropriate neural network
components. The convolutional neural network components were used to extract features from the
historical load sequence, and the recurrent neural model was used to reconstruct the implicit dynamics
within these data.

Tian C et al. [7] and Kang et al. [17] have proposed long short-term memory (LSTM) and
convolutional neural network for short-term load forecasting, showing their superiority in time series
prediction problems. Deep learning has shown its superiority. The study of sensitivity versus accuracy
of the ensemble integrated by weighting methodologies, such as majority voting, simple averaging,
and winner takes all, have been presented.

Merkel et al. [16] compared the effectiveness of various forecasting methods in load forecasting of
natural gas, including a linear regression model, a shallow MLP, and two deep networks of different
sizes. It was found that, in general, the deep network outperforms other methods.

This paper also deals with applying deep learning to load forecasting in the power system.
However, we propose a significantly different approach to the forecasting problem. First, the 24-h
load data of the entire week form the basis of the input signals in the system. The input size of such
a vector is 170 (168 h and 2 bits indicating the season), and the autoencoder is then used to process
this vector to create the diagnostic features of reduced dimension, that can well characterize the load
for the entire week. The encoder application is a clever tool to compress the long input vector to its
efficient code of much shorter length. This reduces the complexity of the circuit, resulting in a better
generalization capability. The diagnostic features generated by the autoencoder represent the input
attributes for the ensemble of two neural networks: Multilayer perceptron and radial basis function
network, and support vector machine. The results predicted by these three nets are merged to produce
a final forecast for the next week (24-h forecasts for seven days). This is the most important difference
to most papers devoted to short term load forecasting, where only the next day 24-h load pattern is
predicted. The numerical experiments performed on the Polish Power System (PPS) data have shown
the improved performance of the proposed solution.

2. Database

The proposed prediction system will be tested on the database of the PPS of the last six years [18].
According to the PPS, the total capacity of power installed in the System, on 31 December 2019 was
46,799 MW. The national mean demand for power for 2019 was 23,451 MW, and the maximal demand
26,504 MW.

The 30-year changes in mean and maximal power demand are presented in Figure 1. Analyzing
the values only for the period of the last six years, it can be said that the mean power demand in 2019
was increased by 5.16% in comparison to 2014 and maximal power demand by 3.79% in this period.
The values from this mentioned six-year period, year to year, are presented in Table 1.
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Figure 1. Mean and maximal power demands in MW, for every year between 1989 and 2019 in the 
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Year Mean Power Demand (MW) Maximal Power Demand (MW) 
2014 22,301 25,535 
2015 22,529 25,101 
2016 22,832 25,546 
2017 23,357 26,231 
2018 23,750 26,448 
2019 23,451 26,504 

The hourly load data for the Polish power supply system used in numerical experiments were 
collected over six years: 2014–2019. The period covers 2191 days (52,584 hourly load data). The data 
were normalized by the maximum value. Their distribution is presented in Figure 2. 
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Figure 1. Mean and maximal power demands in MW, for every year between 1989 and 2019 in the
Polish Power System (PPS) [18].

Table 1. The mean and maximal power demands in MW for 2014–2019 in Polish Power System.

Year Mean Power Demand (MW) Maximal Power Demand (MW)

2014 22,301 25,535

2015 22,529 25,101

2016 22,832 25,546

2017 23,357 26,231

2018 23,750 26,448

2019 23,451 26,504

The hourly load data for the Polish power supply system used in numerical experiments were
collected over six years: 2014–2019. The period covers 2191 days (52,584 hourly load data). The data
were normalized by the maximum value. Their distribution is presented in Figure 2.
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The normalized data were divided into seven-day partitions, covering the whole weeks.
They started from the 1st January 2014. The number of partitions (weeks) is 313, where 261 weeks were
used in learning, and 52 weeks—for testing. Every partition contains 168 load data, representing hourly
loads. Two bits representing the season, coded in a binary way: Winter (11), spring (01), summer (00),
autumn (10), were added to each partition.

So that learning and testing vectors, serving as input attributes, contain 170 elements. These data
processed in the learning system contain redundant information and a significant portion of the noise.
Their direct application as the input signals to neural predictors will lead to a decrease in the accuracy
of forecast in testing mode. Therefore, there is a need to reduce the data dimension by extracting only
the representative diagnostic features.

Different approaches to feature selection have been proposed in the past: Application of genetic
algorithms, a random forest of decision trees, Fisher criterion, different statistical hypothesis methods,
stepwise fit selection, etc. [19,20]. These methods analyze the importance of particular elements of
the input attribute vector and pass them or stop as the diagnostic features. The other approach is
to formulate the weighted mixture of the original input attributes and reduce the number of such
mixtures to the proper size. The most typical methods of this type belong to principal component
analysis (PCA) or linear discriminant analysis (LDA) [19,21]. Both methods represent a linear approach
to the reduction problem of the data dimension.

In this work, we propose applying a deep autoencoder in the role of a diagnostic feature
generator [22]. Autoencoder may be treated as a multilayer nonlinear generalization of PCA. The data
processing is done layer by layer with a reduced number of neurons in the succeeding layers. In this
way, the system is forced to compress the input information, by representing it by the smaller and
smaller size vectors.

In contrary to the solutions, presented in many papers devoted to loading forecasting, we deal
with a 24-h prediction for the seven days of the week (one-week advance). The input information
delivered to the autoencoder covers the data of the whole week (168 load data and two bits of the
season). This vector of 170 elements will be reduced by an autoencoder to the size, which provides the
best results of the predicted load demands for the whole next-week days.

3. Autoencoder Based Forecasting System

Normalized hourly load demands and 2 bits representing seasons can be considered as original
input attributes, which are subject to reduction. The aim is to represent the original data by smaller
dimensions, however, well-representing load characteristics of the week power curve. Thanks to
such reduction, the complexity of the system is reduced, which results in better generalization ability.
This task was done in our work by autoencoder [21,22] (Figure 3).

Autoencoder is a neural solution that processes input data via hidden layers. The succeeding
hidden layers apply reduced dimensions concerning input data. In the learning process, the encoder
subnetwork projects input data into coded data represented by vector h = f (x) of reduced dimension.
The decoder part makes reverse mathematic operation trying to reconstruct the input data with
specified accuracy [22], where g represents the activation function vector chosen by the user.

The learning process in creating each of the hidden layers may be defined as an adaptation of its
weights, which leads to the minimization of the cost function E defined as follows

E =
1
p

N∑
n=1

p∑
k=1

[
x(k)n − g(k)n

(
h(k)n

(
x(k)

))]2
(1)

where x(k) represents the input signal vector, N is the size of this vector, and p is the number of
observations. For better generalization capacity of the network, the additional regularization is applied,
which takes into account minimization of weights, the sensitivity of hidden neurons to minor changes
in input signal values, as well as specialization of neurons in particular areas of input data [22]. This is
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an important advantage of autoencoder over other deep learning solutions, for example, CNN [17],
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Figure 3. The illustration of the learning process of the hidden layer of the autoencoder. The original
input vector x is coded into hidden layer signals forming vector h of reduced dimension by applying
the auto-association mode in learning. After finishing the learning procedure, the output layer is
eliminated, and vector x is represented by reduced size vector h.

After finishing the learning procedure, the reconstructing part of the autoencoder is eliminated
from the structure, and the hidden layer signals provide the input to the next stage of dimensionality
reduction. In this way, the autoencoder attempts to encode the input data by using fewer and fewer
hidden neurons whose weights are adjusted to allow an acceptable reconstruction of the input data.
It is an auto-associative way of learning.

The signals of the succeeding layers of the autoencoder represent the diagnostic features of
the analyzed data. The deeper the layer, the most reduced is its dimension. The last layer of the
autoencoder represents input attributes that will be used as the final set of the diagnostic features for
the real neural predictor.

Note that in contrast to the classical approach, where the characteristics of data are generated
using the expert-based method, the data characterization in this method is generated by an automatic
self-organizing process without human experience-based intervention. In our work, the learning
process of auto-coding was implemented in the programming environment of Matlab [21]. The different
number of hidden layers and neurons have been tried in experiments. The best generalization ability
of the system was achieved by using two hidden layers. The number of neurons in these layers was
selected by additional experiments.

The signals of the last hidden layer are treated as the diagnostic features, which are put to the
input of three networks: Multilayer perceptron, radial basis function network, and support vector
machine with Gaussian kernel, working in regression mode. These three units form the members of
the forecasting ensemble. The general structure of the whole system is presented in Figure 4.
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Figure 4. The autoencoder based ensemble system in forecasting the 24-h power demand for the seven
days of the next week. Input data is composed of 170-element vectors representing the data of the
previous week. The size of these vectors is reduced by an autoencoder to the value dictated by the size
of the last hidden layer of it. The output vectors of the autoencoder form the diagnostic features for
three solutions of predictors: Neural networks (MLP, RBF) and support vector machine in regression
mode, called SVR, which generate the final forecast representing predictions of load demand for the
seven days in the next week. The last block performs a fusion of the predicted loads for the particular
24 h of the days within this week.

The final decision of an ensemble is elaborated by weighted averaging the forecasts predicted by
its three members. To make the performance of ensemble members more independent, the learning
data of each individual members were generated randomly from the whole learning set by assuming
its population 90% of the learning set.

4. Results of Experiments

The experiments have been conducted using the data of the PPS of six years (2014–2019). The first
five years, 2014–2018, have been used in the learning stage, and 2019 was left for testing only.
The structure of different elements of the forecasting system should have been analyzed and researched.
The first task was to find the optimal autoencoder structure, especially the number of layers, as well as
the number and activation of neurons in individual layers, which provide the most accurate forecast
results. The experiments have shown that particular neural networks perform best for a varying
number of features.

In the next stage, the optimal structure and parameters of neural networks have to be defined.
They include the number of neurons in MLP, the number of centers in RBF, as well as the kernel
function type and parameters of the kernel function, and the regularization parameters in SVR. In the
last step, the results generated by individual neural networks of the ensemble are integrated into one
result for obtaining a final forecast, hopefully of better accuracy than individual predictors. The fusion
procedure was based on a weighted average of the results provided by these three predictors for a
particular 24 h of the seven days of the next week. The prediction of power demand for hth hour of the
particular day is estimated using the following formula,

p(h) =
M∑

i=1

wi(h)pi(h) (2)

where M = 3, wi(h) is the weight associated with ith predictor for hth hour, and pi(h) is the power
demand for hth hour forecasted by the ith predictor. The value of the weights wi(h) is estimated based
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on the accuracy of the prediction of the ith neural predictor in the learning stage. This value was
defined by considering the accuracy η of ith predictor for hth hour of the day,

wi(h) =
ηm

i (h)∑M
k=1 η

m
k (h)

(3)

The exponent m may take any value emphasizing the dominance of the most accurate unit of an
ensemble. We have applied value m = 244, which was found as the best one.

4.1. MLP Network

The conducted research has shown the remarkable dependence of forecast accuracy on the applied
autoencoder structure, especially the number of diagnostic features (the population of neurons in the
last hidden layer), the parameter choice of the network used for forecasting, etc. Different models
of autoencoders have been investigated. The best one was two hidden layer model with a linear
activation function. Table 2 presents the dependence of forecasting results of MLP cooperating with
the structure of autoencoder applying a different number of hidden neurons. The results are presented
as mean absolute percentage error (MAPE) [19,20] for all testing data (2019) not taking part in learning.

Analyzing the data from Table 2, it is evident that the most accurate results of MLP predictor
(1.96% of MAPE) have been obtained at 80 neurons in the first and 40 neurons in the second hidden
layer of an autoencoder and for 14 sigmoidal neurons in a hidden layer of MLP network of 168 output
neurons (the signals representing 24-h forecast for the seven days of the week).

Table 2. Mean MAPE errors for all the weeks of 2019, using MLP network as a predictor.

MAPE Testing Error of MLP for 2019

Autoencoder Structure
Number of Hidden Sigmoidal Neurons in MLP Network

12 14 16

170-60-30 2.46% 2.16% 2.12%

170-80-40 2.36% 1.96% 2.15%

170-100-50 2.26% 2.81% 2.16%

4.2. RBF Network

The second network applied in an ensemble was the RBF network. This solution uses
Gaussian activation functions, therefore, the network represents the local approximation character.
Its performance is strictly dependent on the number of hidden Gaussian neurons and their parameters
(center and width of function). The learning procedure was split into two phases: Determination of
centers by using K-means clusterization and singular value decomposition (SVD) applied in output
weights adaptation. The introductory experiments have been performed to find the best structure of
the whole system.

The results of these experiments in the form of MAPE on testing data for some chosen numbers of
Gaussian neurons and predefined structure of autoencoder are shown in Table 3. The best accuracy
was obtained using 100 and 50 neurons in hidden layers of an autoencoder and 50 Gaussian neurons in
the RBF network. The applied width of the Gaussian function was σ = 0.7. The best MAPE testing
error, in this case, was 1.47% for the whole of 2019.
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Table 3. Mean MAPE errors for all the weeks of 2019, using the RBF network as a predictor.

MAPE Testing Error of RBF for 2019

Autoencoder Structure
Number of Hidden Radial Neurons in RBF Network

30 50 70

170-60-30 1.88% 1.71% 2.08%

170-80-40 1.79% 1.73% 2.11%

170-100-50 1.69% 1.47% 1.58%

The best results were obtained using 100 and 50 neurons in the autoencoder and 50 centers of the
RBF network. The use of a smaller number of centers, e.g., 30, has decreased accuracy.

4.3. Support Vector Machine

The last member of the ensemble was a support vector machine in regression mode. This network
differs from the previous two by a completely different learning procedure. Thanks to a special
form of nonlinear mapping (here Gaussian kernel) of the input data into multidimensional space,
it is possible to transform the regression task to the classification problem solved by quadratic
programming. The important hyper-parameters that should be adjusted before the learning phase are
parameter γ of the Gaussian kernel K(x, xi) = e−γ‖x−xi‖

2
, regularization constant C, and tolerance value

ε. These parameters have been adjusted in the introductory phase of experiments, shown in Table 4.
The table presents some testing results for a different choice of these predefined parameters.

The most accurate results have been obtained now for autoencoder structure, which was the same
as for RBF 170-100-50. However, the MAPE achieved was higher compared with the RBF network.

Table 4. Mean MAPE errors for all the weeks of 2019, using SVR network as the predictor.

MAPE Testing Error of Gaussian SVR for 2019
γ = 0.05, C = 3000

Autoencoder Structure
Tolerance ε

0.003 0.006 0.015

170-60-30 3.24% 3.21% 3.13%

170-80-40 2.61% 2.61% 2.68%

170-100-50 2.45% 2.44% 2.50%

4.4. Ensemble of Neural Networks

The last stage of the forecasting procedure is fusing the results of particular individual predictors
into the final forecast. This was done by applying the weighted average procedure described in the
previous section. The important is the choice of exponent m in definition (3). A high value of this
exponent prefers the strongest team unit when establishing the final forecast. A small value leads to a
more even influence of the individual predictors. Table 5 illustrates this phenomenon using different
values of m in the calculation of weights. The higher value of the exponent amplifies more accurate
forecasts to the less accurate. Assuming the MAPE errors for individually acting neural networks, as
shown in Tables 2–4, we get the appropriate accuracies ηi as follows: ηRBF = 0.9853, ηMLP = 0.9804 and
ηSVR = 0.9756, and the weights wi presented in Table 5.
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Table 5. Weights were obtained based on a Formula (3) using different values of m.

m
Weights wi

RBF MLP SVR

1 0.3350 0.3333 0.3317

3 0.3383 0.3333 0.3284

10 0.3500 0.3330 0.3170

100 0.5052 0.3069 0.1879

300 0.7840 0.1757 0.0403

If the value m = 1 is chosen, all weights are very similar, and each predictor has a similar effect
on the final prognosis. If we choose m = 300, we get significantly different effects of the individual
members of the ensemble. In this case, the predictor that was the best in learning mode (here RBF
network) is dominant.

Table 6 presents the values of weights obtained based on average accuracy in learning for 24-h
out of 5 years (2014, 2015, 2016, 2017, 2018). They are given for all three neural networks forming the
ensemble. Due to the highest accuracy of RBF, the weights corresponding to this predictor dominate
for all 24 h. However, the second-highest weight differs for different hours. For example, for hours
1–18 and 22–24, MLP is better, and for hours 19, 20, and 21, the SVR is more important.

Table 6. Weights obtained based on the Formula (3), for m = 244, based on learning error for average 24-h.

Hour
Weights wi(h) for m = 244

MLP RBF SVR

1 0.1676 0.7655 0.0669

2 0.1727 0.7629 0.0644

3 0.1748 0.7588 0.0665

4 0.1785 0.7531 0.0684

5 0.1042 0.8291 0.0667

6 0.1074 0.8142 0.0784

7 0.1946 0.7051 0.1003

8 0.2103 0.6957 0.0940

9 0.2103 0.7005 0.0892

10 0.2016 0.7214 0.0770

11 0.1745 0.7631 0.0623

12 0.1531 0.7931 0.0538

13 0.1418 0.8084 0.0498

14 0.1340 0.8193 0.0468

15 0.1254 0.8302 0.0444

16 0.0941 0.8695 0.0363

17 0.0438 0.9403 0.0159

18 0.0567 0.9177 0.0256

19 0.1070 0.7767 0.1163

20 0.1124 0.7563 0.1313
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Table 6. Cont.

Hour
Weights wi(h) for m = 244

MLP RBF SVR

21 0.0452 0.9052 0.0495

22 0.2337 0.6435 0.1228

23 0.1779 0.7453 0.0768

24 0.1744 0.7589 0.0667

Table 7 shows the effect of choosing different values of exponent m on the total MAPE error of the
ensemble. The best forecast accuracy results in the testing data (2019) were obtained at the application
of m = 244. The mean MAPE error for 2019 was then reduced to the value of 1.428% from the best 1.47%
obtained by the RBF predictor. As it is seen, the choice of the value of m is very significant. The not
proper choice may lead to a reduction of accuracy of the ensemble to the best individual member.

Table 7. Mean MAPE errors for all the weeks of 2019, using the ensemble of neural networks using
different values of m.

m 1 10 40 160 244 300

MAPE ± std (%) 1.701 ± 0.021 1.680 ± 0.020 1.613 ± 0.020 1.448 ± 0.021 1.428 ± 0.022 1.433 ± 0.022

Table 8 presents the MAPE testing error for all 52 weeks of 2019. The best forecast was obtained
for the 22nd week (29th May–4th June with MAPE = 0.64%) and the worst for the 52nd week (25th–31st
December with MAPE = 8.36%), which covers 25th, 26th (Christmas), and 31st of December (New
Year’s Eve) with the very uncommon shape of power curve compared to the typical days of the week.

Table 8. Mean MAPE errors for every week of 2019, using an ensemble of neural networks at the
application of m = 244.

Week MAPE (%) Week MAPE (%) Week MAPE (%) Week MAPE (%)

1 2.58 14 0.96 27 1.00 40 1.17

2 1.09 15 0.97 28 0.85 41 1.00

3 1.44 16 1.46 29 0.66 42 0.91

4 1.06 17 0.93 30 0.96 43 1.24

5 0.89 18 2.98 31 0.88 44 2.67

6 1.06 19 0.89 32 1.07 45 1.94

7 1.26 20 0.87 33 2.66 46 0.89

8 1.08 21 0.65 34 0.84 47 1.02

9 1.28 22 0.64 35 1.03 48 0.94

10 1.34 23 1.48 36 0.89 49 1.14

11 1.34 24 1.38 37 1.02 50 1.13

12 1.47 25 2.48 38 0.88 51 3.32

13 1.10 26 1.44 39 0.70 52 8.36

Figure 5 presents the average hourly testing errors ε(h) = (di(h) − yi(h)) for one randomly
selected week (3–9 April) of 2019 at the application of exponent m = 244. In most hours, the result
of the ensemble follows the best predictor (RBF). This happens when the polarity of errors of the
predictors is the same. However, for some hours, different polarity of actual errors committed by



Energies 2020, 13, 6154 11 of 13

the ensemble members can be observed. This provides the field for compensation of error values.
These two tendencies: Compensation of different polarity errors and preference of the best predictor,
have resulted in a very high value of exponent m.Energies 2020, 13, x FOR PEER REVIEW 11 of 14 
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Figure 6. The distribution of the normalized 24-h power demand for 3rd April 2019, at m = 244.
The solid black line represents the real power, and the solid magenta line the forecast made by
the ensemble.
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The largest discrepancies between the curves are observed for MLP (from 10 to 19 h) and for SVR
(from 1 to 10 and from 20 to 22 h).

5. Conclusions

The paper presented the application of deep learning and the ensemble of predictors in predicting
the hourly electricity demand in the Polish electricity system. The autoencoder is used as the main
tool in developing diagnostic features, serving as input attributes for the three networks: MLP, RBF,
and SVR, which are arranged in an ensemble. In contrast to other approaches to load forecasting, the
proposed method is based on a weekly perspective. The system generates the hourly power demand
for the entire next week (and not for the next day, as in typical classical systems).

The numerical experiments carried out have shown that the sophisticated system of feature
generation makes it possible to increase the accuracy of the individual predictors in the one-week
forecasts of energy demand. The accuracy achieved with the applied individual predictions was further
enhanced by the integrated ensemble based on the weighted average. The improvement was possible
by compensating errors committed by individual predictors. The correct value of the exponent used in
the weighting coefficients made it possible to obtain better results than the best ensemble member.
The final prediction generated by the ensemble takes into account the accuracy of the system in the
learning stage, estimated for each hour individually. The experiments have shown that the average
MAPE prediction error for all of 2019 has been reduced to a very low value of 1.428%.

It is rather difficult to compare our results to the other presented in the scientific papers. First,
the existing approaches are usually limited to the one day ahead forecast for 24 h, while our method is
operated on a seven days horizon. Since our system can forecast a 24-h load pattern one week ahead,
it solves more complex problems. Furthermore, comparing the results that correspond to the load
patterns of different countries is not fair. It is well known that the predictions depend heavily on the
complexity of the patterns, which changes considerably for different countries.

The results of our approach may only be objectively compared with the forecast for the PPS (the
same complexity of load pattern). For example, the best results (MAPE = 1.73%) were reported for the
ensemble predicting the 24-h load pattern on the Polish power grid one day in advance for 2009 [20].
Our best result for the more complex task (seven days in advance) was 1.43%.

It should be noted, that the accuracy of the proposed system is at a level acceptable to the experts
working in the electricity markets of our country. Therefore, the method has a certain perspective for
practical application.

Future work will focus on applying other deep structures in the time series prediction system
and the extension of the ensemble models by using a larger number of different units implementing
different prediction mechanisms.
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Abbreviations

The following abbreviations are used in this manuscript.

KSE Krajowy System Elektroenergetyczny (Polish Power System)
MLP Multilayer perceptron
RBF Radial basis function
SVR Support vector machine in the regression model
MAPE Mean absolute percentage error



Energies 2020, 13, 6154 13 of 13

References

1. Ceperic, E.; Ceperic, V.; Baric, A. A strategy for short-term load forecasting by Support Vector Regression
Machines. IEEE Trans. Power Syst. 2013, 11, 4356–4364. [CrossRef]

2. Ding, N.; Benoit, C.; Foggia, G.; Bésanger, Y.; Wurtz, F. Neural network-based model design for short-term
load forecast in distribution systems. IEEE Trans. Power Syst. 2016, 31, 72–81. [CrossRef]

3. Khoshrou, A.; Pauwels, E.J. Short-term scenario-based probabilistic load forecasting: A data-driven approach.
Appl. Energy 2019, 238, 1258–1268. [CrossRef]

4. Moon, J.; Kim, Y.; Son, M.; Hwang, E. Hybrid short-term load forecasting scheme using random forest and
multilayer perceptron. Energies 2018, 11, 3283. [CrossRef]

5. Ciechulski, T.; Osowski, S. Prognozowanie zapotrzebowania na moc w KSE z zastosowaniem grupowania
rozmytego. Prz. Elektrotech. 2019, 10, 185–189. [CrossRef]

6. Liu, P.; Zheng, P.; Chen, Z. Deep learning with stacked denoising auto-encoder for short-term electric load
forecasting. Energies 2019, 12, 2445. [CrossRef]

7. Tian, C.; Ma, J.; Zhang, C.; Zhan, P. A deep neural network model for short-term load forecast based on long
short-term memory network and convolutional neural network. Energies 2018, 11, 3493. [CrossRef]

8. Huang, N.; Lu, G.; Xu, D. A permutation importance-based feature selection method for short-term electricity
load forecasting using random forest. Energies 2016, 9, 767. [CrossRef]

9. Yang, Y.; Chen, Y.; Wang, Y.; Li, C.; Li, L. Modelling a combined method based on ANFIS and neural network
improved by de algorithm: A case study for short-term electricity demand forecasting. Appl. Soft Comput.
2016, 49, 663–675. [CrossRef]

10. Correia, A.; Lopes, C.; Silva, E.C.S.; Monteiro, M.; Lopes, R.B. A multi-model methodology for forecasting
sales and returns of liquefied petroleum gas cylinders. Neural Comput. Appl. 2020, 32, 1–27. [CrossRef]

11. Fernandez, J.C.; Cruz-Ramırez, M.; Hervas-Martınez, C. Sensitivity versus accuracy in ensemble models
of artificial neural networks from multi-objective evolutionary algorithms. Neural Comput. Appl. 2018, 30,
289–305. [CrossRef]

12. Hossen, T.; Plathottam, S.J.; Angamuthu, R.K.; Ranganathan, P.; Salehfar, H. Short-term load forecasting
using deep neural networks (DNN). In Proceedings of the 2017 North American Power Symposium (NAPS),
Morgantown, WV, USA, 17–19 September 2017; pp. 1–6.

13. He, W. Load forecasting via deep neural networks. Procedia Comput. Sci. 2017, 122, 308–314. [CrossRef]
14. Bedi, J.; Toshniwal, D. Deep learning framework to forecast electricity demand. Appl. Energy 2019, 238,

1312–1326. [CrossRef]
15. Din, G.M.U.; Marnerides, A.K. Short term power load forecasting using deep neural networks. In Proceedings

of the 2017 International Conference on Computing, Networking and Communications (ICNC), Silicon
Valley, CA, USA, 26–29 January 2017; pp. 594–598.

16. Merkel, G.D.; Povinelli, R.J.; Brown, R.H. Short-term load forecasting of natural gas with deep neural network
regression. Energies 2018, 11, 2008. [CrossRef]

17. Kang, T.; Lim, D.Y.; Tayara, H.; Chong, K.T. Forecasting of power demands using deep learning. Appl. Sci.
2020, 20, 7241. [CrossRef]

18. Polish Power System Reports. 2020. Available online: https://www.pse.pl/mapa-raportow (accessed on 4
January 2020).

19. Tan, P.N.; Steinbach, M.; Kumar, V. Introduction to Data Mining; Pearson Education Inc.: Boston, MA,
USA, 2014.

20. Siwek, K.; Osowski, S.; Szupiluk, R. Neural network approach for accurate load forecasting in a power
system. Appl. Math. Comput. Sci. 2009, 19, 303–315. [CrossRef]

21. Matlab Manual User’s Guide; MathWorks: Natick, MA, USA, 2019.
22. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPWRS.2013.2269803
http://dx.doi.org/10.1109/TPWRS.2015.2390132
http://dx.doi.org/10.1016/j.apenergy.2019.01.155
http://dx.doi.org/10.3390/en11123283
http://dx.doi.org/10.15199/48.2019.10.42
http://dx.doi.org/10.3390/en12122445
http://dx.doi.org/10.3390/en11123493
http://dx.doi.org/10.3390/en9100767
http://dx.doi.org/10.1016/j.asoc.2016.07.053
http://dx.doi.org/10.1007/s00521-020-04713-0
http://dx.doi.org/10.1007/s00521-016-2781-y
http://dx.doi.org/10.1016/j.procs.2017.11.374
http://dx.doi.org/10.1016/j.apenergy.2019.01.113
http://dx.doi.org/10.3390/en11082008
http://dx.doi.org/10.3390/app10207241
https://www.pse.pl/mapa-raportow
http://dx.doi.org/10.2478/v10006-009-0026-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Database 
	Autoencoder Based Forecasting System 
	Results of Experiments 
	MLP Network 
	RBF Network 
	Support Vector Machine 
	Ensemble of Neural Networks 

	Conclusions 
	References

