
energies

Article

Real-Time Pricing Scheme in Smart Grid Considering
Time Preference: Game Theoretic Approach

Ri Piao 1, Deok-Joo Lee 1 and Taegu Kim 2,*
1 Department of Industrial Engineering, Seoul National University, Seoul 08826, Korea;

piaori0317@snu.ac.kr (R.P.); leedj@snu.ac.kr (D.-J.L.)
2 Department of Industrial and Management Engineering, Hanbat National University, Daejeon 34158, Korea
* Correspondence: taegu.kim@hanbat.ac.kr; Tel.: +82-42-821-1226

Received: 11 October 2020; Accepted: 20 November 2020; Published: 23 November 2020 ����������
�������

Abstract: Unbalanced power demand across time slots causes overload in a specific time zone.
Various studies have proved that this can be mitigated through smart grid and price policy, but research
on time preference is insufficient. This study proposed a real-time pricing model on a smart grid
through a two-stage Stackelberg game model based on a utility function that reflects the user’s time
preference. In the first step, the suppliers determine the profit-maximizing price, and then, the users
decide the electricity usage schedule according to the given price. Nash equilibrium and comparative
analysis of the proposed game explain the relationship between time preference, price, and usage.
Additionally, a Monte Carlo simulation demonstrated the effect of the change in time preference
distribution. The experimental results confirmed that the proposed real-time pricing method lowers
peak-to-average ratio (PAR) and increases overall social welfare. This study is meaningful in that it
presents a pricing method that considers both users’ and suppliers’ strategies with time preference.
It is expected that the proposed method would contribute to a reduction in the need for additional
power generation facilities through efficient operation of the smart grid.

Keywords: smart grid; Stackelberg game; game theory; time preference; pricing policy; real-time pricing;
optimal usage scheduling

1. Introduction

With global warming caused by greenhouse gases, countries around the world have long been
contemplating policies to develop new and renewable energy and increase energy efficiency [1–4].
One of the most representative and favorable approaches is the smart grid. A smart grid is a
next-generation network that improves energy efficiency by adding information and communication
technology (ICT) to an existing power grid to exchange power generation and consumption information
in both directions and in real time. In other words, the smart grid is a service that enables more effective
electricity supply management by providing electricity user information to electricity providers
and producers through smart meters [5,6]. It is known to provide high-quality power services and
maximize energy use efficiency by intellectualizing and upgrading a power grid using electricity
and information and communication technologies. In 2003 and 2006, ‘Grid 2030′ [7] and ‘Smart Grid
Vision and Strategy’ [8] were proposed in the US and the EU, respectively, and promoted energy grid
modernization and smart meter-spread business. After that, Japan, China, and Korea also made huge
investments in building smart grids [9–11].

Keeping pace with the spread and development of smart grids, measures to efficiently design and
operate them have also been a major research topic [3,5]. One of the representative research subjects is
an attempt to solve the imbalance in power generation and consumption through transmission between
grids. These studies try to connect the information of distributed power providers and consumers
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through smart meters and settle problems through the flow of information and power. According to
their target problems, these studies aim to reduce the costs of suppliers [12], solve the decision-making
problem of consumers [13,14], or improve overall welfare [15]. Moreover, recent studies linked the
smart grid problem to renewable energy. Considering the high variability in power production due
to the nature of the energy source, studies are being conducted to transmit excessive power to other
grids or to find optimal curtailment measures that take into account the utility of participants as much
as possible [3,5,16].

However, the oldest and most fundamental research field among smart grid-related research is
efficient operation through price network [17]. This goal is accomplished through the supplier’s price
policy and the consumer’s reaction accordingly [5]. Power load control through price is a long-standing
research topic that began in the 1980s [5,18]. Particularly, it has been found that more effects can be
obtained through dynamic pricing combined with smart grids [19]. A smart grid contributes to the
efficient operation of a power network [17]. Based on the power demand information of individual
users, suppliers are guided to determine an appropriate price. After that, the determined price policy
induces individual users to adjust their power usage across time slots again. Through this process,
the smart grid helps to prevent an overload phenomenon in which the power consumption of the
entire grid is concentrated at a specific time period.

The process covered by these studies is as follows. Under a single price, users’ power demand
is concentrated in a specific time period. Concentrated demand requires high power production,
and since power production costs are a concave function of production, excessive costs are incurred for
suppliers. In addition, in that the initial investment cost of a power generation facility is very large
and the construction takes a long time, it is difficult to increase the amount of power generation itself.
Therefore, in terms of grid operation, a balanced power demand for each time period is a very important
issue. The smart grid and pricing policy solve this problem as follows. First, the supplier decides
a price considering the power demand based on the consumers’ information. Then, the consumers
respond to the price and adjust their amount of power consumption by time. As a result, the overload
and peak-to-average ratio (PAR) are lowered.

In this context, pricing or demand scheduling has become the most important research topic in
the field of smart grids. Previous studies can be classified broadly into three categories. The first
classification is research dealing with the most basic optimization problem and it is about the demand
schedule that maximizes the utility of users. Chen [20] considered energy prices as a given value
and found the users’ optimal energy consumptions to maximize their utilities. The second category
concerns the maximization of social welfare. Social welfare is a concept that integrates the utility of
both sides in the grid system, the supplier and the user, and generally includes the operation profit of
the supplier and the welfare or payoff of individual users.

Samadi et al. [21] solved the problem of finding energy prices to maximize social welfare. In this
study, they used a distributed algorithm to obtain optimal electricity usage to maximize social welfare,
which is defined as the difference in users’ utility and the power supply costs. However, the time
preferences of users were randomly designed and the analysis result could not give much information
on the impact of user characteristics on social welfare. Deng et al. [20] derived an optimal power usage
schedule with a given energy price. This study also introduced a minimum energy demand for users
and investigated its impact on the optimal price and consequent social welfare. They proposed a
pricing algorithm that does not reduce social welfare while electricity consumption is more evenly
distributed. Unlike the above two studies, Chavali et al. [22] derived a usage schedule of various pieces
of electronic equipment to minimize user payment. In this study, the user’s cost function was defined
as the sum of the electricity bill, the utility obtained from using electricity, and the inconvenience cost
felt by delaying the use of electricity. It was shown that the proposed two algorithms have the effect of
reducing the cost of users by properly distributing the electricity usage time.

The final classification is studies on the game model between the supplier and the users. In this
game, the power supplier wants to maximize their profits and users want to maximize utility.



Energies 2020, 13, 6138 3 of 19

Meng and Zeng [23] and Yu and Hong [24] created real-time pricing models that respond to energy
use, which have resulted in real-time pricing that can reduce consumers’ payments and smoothen
the imbalance energy supply over time. Meng and Zeng [23] divided electronic products into three
categories according to the possibility of delay in use and the need for constant use. In this study,
users determine electricity usage strategies to minimize their bills, and the supplier determines
real-time prices to maximize profits. Yu and Hong [24] proposed a two-phase model. In the first phase,
the electricity supplier minimizes fluctuations in power supply, and in phase II, users maximize the
difference between utility and bill. It demonstrated the existence of the Nash equilibrium and the
effects of reducing the likelihood of power overloading with the model and increasing user utility
through simulation.

Chen et al. [25] conducted a study on a real-time pricing model that reflects the uncertainty
in the electricity supply. They designed a more realistic cost function by reflecting the uncertainty.
In addition, each user individually maximizes their utility by including user characteristics in the
utility function. The effects of real-time pricing were verified by simulation with equilibrium energy
prices and energy consumption. Samadi et al. [26] proposed a model that maximizes the overall user
utility and minimizes the power supply cost. Through the proposed Vickrey–Clarke–Groves (VCG)
mechanism, they confirmed the effect of the smart grid for users to avoid peak times. Qian et al. [27]
also proposed a two-stage Stackelberg game model and used an iterative algorithm through which
users find their optimal usage and the supplier controls the price. Bu and Yu [28] expanded the existing
two-stage game model. They produced more rigorous results by adding two more stages to determine
the amount of electricity supplied and the actual electricity usage. Yang et al. [29] compared the results
in two situations using a cooperative and non-cooperative game-based approach. Yoon et al. [30]
introduced an electric vehicle charging scenario to calculate the optimal electricity usage time, while
Yu and Hong [31] defined electronic products as game players and prioritized them to reflect in the
utility function for each electronic device. On the other hand, there are also studies that attempted
to model the Stackelberg game with multiple electricity suppliers. In a study by Mondal et al. [32],
several energy suppliers determine energy prices and minimum energy supplies in Phase 1 and energy
users determine the optimal energy schedule in Phase 2. This mechanism resulted in an additional 55%
margin for energy suppliers and an approximately 30.79% increase in energy usage for energy users.

Although a number of studies have been conducted in which game theory has been applied
to the smart grid, there is still a gap in the research in terms of time preference. Most studies did
not reflect time preference, and studies that considered preference also set preference as a constant
value. However, in reality, users have different preferences to use electricity for each time period,
and electricity consumption is determined accordingly. Therefore, this study aims to propose a
two-stage Stackelberg game model that reflects the time preference of electricity use. Through this
model, we want to determine the electricity usage schedule and rate policy that maximizes the utility
of users and profits of the supplier. The effectiveness of the proposed real-time pricing (RTP) model is
quantitatively verified by comparing it with the results of a system that does not adjust prices in real
time. It varies the distribution of consumers’ time preferences and examines the impact on the balance
of power demand, power supply cost, usage fee, and social welfare.

This study is novel in directly considering time preference to the utility function and induces
a real-time pricing model through a Stackelberg game model. The optimal price and consumption
schedule through the Nash equilibrium are derived in the form of a function with respect to the
preference, so that the relationship can be directly examined. In addition, this paper attempts to attain
a practical contribution in that it examines how the responses of consumers and suppliers differ by
performing a simulation by changing time preferences.

2. System Model

We proposed a two-stage Stackelberg game model between an energy supplier and users in this
paper. The game consists of one leader (supplier) and a number of followers (users), and each stage
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of the game corresponds to the optimal consumption scheduling and the optimal pricing problem.
The overall structure of the game model is shown in Figure 1. In the first stage, the energy supplier
determines the optimal energy price for each time slot to maximize one’s total profit. Following that,
energy users determine the optimal energy consumption in each time slot.
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2.1. Real-Time Pricing Model

A real-time pricing model between an energy supplier and multiple users is proposed as a
two-stage Stackelberg game model in this paper. In the first stage, the energy supplier, who acts as a
leader, decides the optimal real-time price for each time slot which maximizes profit by supplying
energy. Then, in the second stage, each user decides the optimal energy consumption which maximize
ones’ payoff reflecting users’ time preference. The notations used in this paper are as listed in Table 1.

Table 1. Notations.

Parameter Description

pt Energy price at time t
xi Maximum daily requirement of user i
αt

i Time preference (weight) for user i at time t
T Number of time slots
N Number of users
yt

i Actual consumption of user i at time t
y Matrix of users’ energy consumption schedule
p Vector of supplier’s energy supplement schedule
Yt Total amount of energy consumption at time t
Π Profit obtained by the energy supplier during time period [1, T]
Ct Cost function of energy generation
dt

i Coefficients of cost function (i = 1, 2, 3)
K Production capacity for each time slot
ut

i Utility of user i at time t
Wi Payoff of user i for using energy

2.1.1. Supplier-Side Model

In the first stage, the supplier determines the price of electricity to maximize profits. A supplier’s
profit is the difference between the sum of electricity bills paid by users and the cost to generate
electricity. The production cost is calculated for each time period, and the cost function (C(Yt))

is defined as a function of the total amount of electricity consumption for the time period (Yt =
N∑

i=1
yt

i),

and should have the following properties.
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Property 1. Energy generation cost (C(Yt)) is increasing as Yt, i.e.,∂C(Yt)
∂Yt > 0, ∀t ∈ [1, T].

Property 2. The cost function is strictly convex. I.e., ∂
2C(Yt)

∂(Yt)2 > 0, ∀t ∈ [1, T].

Property 3. There exists a differentiable, convex, non-decreasing function pk(q) ≥ 0 over q ≥ 0 for each k ∈ κ
with pk(q) ≥ 0 and pk(q)→∞ as q→∞ , such that for q ≥ 0, Ck(q) =

∫ q
0 pk(z)dz.

Following the cost function proposed in many previous studies, we adopted the quadratic form
for the energy generation function, Ct(Yt) = dt

1(Y
t)

2
+ dt

2Yt + dt
3, (dt

1 > 0, dt
2 ≥ 0, dt

3 ≥ 0).
Since the revenue can be expressed as the sum of products of energy price and consumption at each

time slot (pt
(

N∑
i=1

yt
i

)
), the supplier’s profit at time t is defined as pt

(
N∑

i=1
yt

i

)
−Ct

(
N∑

i=1
yt

i

)
. Thus, the decision

problem for supplier is as follows.

maxΠ(p) =
T∑

t=1
pt
(

N∑
i=1

yt
i

)
−

T∑
t=1

Ct
(

N∑
i=1

yt
i

)
s.t.

N∑
i=1

yt
i ≤ K, ∀i ∈ [1, N]

(1)

2.1.2. User-Side Model

Given the optimized prices decided by energy supplier in the first stage, users decide their energy
consumption schedule in the second stage. We define the payoff of the users as the difference between
utility and payment for energy usage. The user utility function is defined over the amount of used
energy for a given time slot and includes time preference property. Generally, a utility function satisfies
following Properties 4–6.

Property 4. The utility function is non-decreasing with respect to the energy consumption (yt
i).

I.e.,
∂ut

i
∂yt

i
≥ 0, ∀i ∈ [1, N], ∀t ∈ [1, T].

Property 5. The utility function is concave. I.e.,
∂2ut

i

∂yt2
i

≤ 0, ∀i ∈ [1, N], ∀t ∈ [1, T].

Property 6. When energy consumption is zero, the utility is zero, i.e., ut
i = 0, if yt

i = 0,∀i ∈ [1, N].

In this study, time preference was reflected in the utility function. Time preference is included in
the form of a coefficient value, and the value is designed to increase as the power consumption of the
time is preferred. The coefficient αt

i represents the time preference of user i to use electricity in the time
interval t. A bigger value of αt

i means the user wants to use more electricity.

Property 7. The utility function increases with respect to the time preference parameter (αt
i),

i.e.,
∂ut

i
∂αt

i
> 0, ∀i ∈ [1, N], ∀t ∈ [1, T].

In addition, the utility should stop increasing when the consumption exceeds one’s maximum
daily demand. With satisfying these properties, we will define the utility function as following
Equation (2), which is a modified quadratic utility function.

ut
i(yt

i , α
t
i) =

 − 1
2

(
yt

i
xi

)2
+ αt

i

(
yt

i
xi

)
, yt

i ≤ xi

αt
i −

1
2 , yt

i > xi

(2)
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The quadratic utility function is the most common form of function that describes a consumer’s
utility. We have modified the default form to incorporate the maximum daily demand. In the case of
the quadratic utility function, a range of input values that decrease utility may occur. To solve this
problem, we assume a form where the utility no longer increases before the peak of the quadratic
function. The maximum point will be in a situation that is difficult to reach in reality, so it is advisable
to set it to an extreme limit. Note that in a real power network, the user’s maximum utility can be
regarded as the case of using the maximum demand. Therefore, we assume that the maximum daily
electricity demand desired by the user is the limit input value of the utility function that is used at a
specific time period.

To satisfy the properties above, the time preference coefficient is defined as αt
i ≥ 1. The utility

function is shown in Figure 2.
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The proposed function satisfies the properties above as follows.

Proof of Property 4.
∂ut

i
∂yt

i
= 1

xi

(
−

yt
i

xi
+ αt

i

)
> 0 for yt

i < xi. It is obvious for αt
i ≥ 1. �

Proof for Property 5.
∂2ut

i

∂yt2
i

= − 1
(xi)

2 < 0. �

Proof for Property 6. ut
i

(
yt

i = 0
)
= − 1

2

(
0
xi

)2
+ αt

i
0
xi
= 0. �

Proof for Property 7.
∂ut

i
∂αt

i
=

yt
i

xi
> 0. �

Now, the payoff of the energy user i at time t is given by ut
i(yt

i) − ptyt
i , and the decision model for

the user i is defined as Equation (3).

maxWi(yi) =
T∑

t=1

[
−

1
2

(
yt

i
xi

)2
+ αt

i
yt

i
xi

]
−

T∑
t=1

ptyt
i

s.t.
T∑

t=1
yt

i ≤ xi, ∀i ∈ [1, N]

(3)

2.2. Non-Real-Time Pricing Model

To verify the effect of real-time pricing in a smart grid, we also made a non-real-time pricing
model. The non-real-time pricing model is almost the same as the real-time pricing model, except that
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the energy price is constant over time. Thus, the decision models on the supplier’s side and users’ side
are defined as follows.

maxΠ(p) = p
T∑

t=1

(
N∑

i=1
yt

i

)
−

T∑
t=1

Ct
(

N∑
i=1

yt
i

)
s.t.

N∑
i=1

yt
i ≤ K, ∀i ∈ [1, N]

(4)

maxWi(yi) =
T∑

t=1

[
−

1
2

(
yt

i
xi

)2
+ αt

i
yt

i
xi

]
− p

T∑
t=1

yt
i

s.t.
T∑

t=1
yt

i ≤ xi, ∀i ∈ [1, N]

(5)

3. Equilibrium

3.1. Equilibrium of Real-Time-Pricing Model

The method of Karush–Kuhn–Tucker (KKT) conditions was employed to solve the optimization
problems defined in the system model part. The equilibrium of the real-time pricing model is obtained
as Proposition 1. The detailed proof is described in Appendix A.

Proposition 1. (Equilibrium of real-time pricing model).

A. If
∑T

t=1

(
αt

i − ptxi
)
≤ 1, and

αt
i

xi
≥ pt:

i. If
∑N

i=1 yt
i < K, the optimal energy price and consumption are given by

pt∗ =

N∑
i=1

(
αt

ixi
)
+ dt

2

N∑
i=1

(xi)
2

2
N∑

i=1
(xi)

2
, yt∗

i = αt
ixi −

N∑
i=1

(
αt

ixi
)
+ dt

2

N∑
i=1

(xi)
2

2
N∑

i=1
(xi)

2
(xi)

2

ii. If
∑N

i=1 yt
i = K, the optimal energy price and consumption are given by

pt∗ =

N∑
i=1

(
αt

ixi
)
−K

2
N∑

i=1
(xi)

2
, yt∗

i = αt
ixi −

N∑
i=1

(
αt

ixi
)
−K

2
N∑

i=1
(xi)

2
(xi)

2

B. If
∑T

t=1

(
αt

i − ptxi
)
> 1, and

αt
i

xi
≥ pt, the optimal energy price and consumption are given by

∑T
t=1 yt∗

i = xi,
pt∗
→ +∞

C. If
αt

i
xi
< pt, the optimal energy price and consumption is given by pt∗ = 0, and yt∗ = 0.

The parts of B and C are boundary solutions and have little intuition, so we only consider the
solution given in part A.

3.2. Comparative Statics

Based on the equilibrium obtained above, we performed comparative statics to investigate the
relationships between the variables. The results are given by Propositions 2–5.

Proposition 2. Energy consumption for the user i at t increases as time preference (αt
i) increases, i.e.,

∂yt∗
i

∂αt
i
> 0.
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Proof.
∂yt∗

i
∂αt

i
= xi −

(xi)
3

2
N∑

i=1
(xi)

2
= xi

1− (xi)
2

2
N∑

i=1
(xi)

2

 > 0. �

Proposition 3. A higher time preference gives a higher energy price, i.e., ∂pt∗

∂
∑N

i=1 α
t
i
> 0.

Proof. ∂pt∗

∂
∑N

i=1 α
t
i
= xi

2
N∑

i=1
(xi)

2
> 0. �

Proposition 4. Energy consumption decreases as the price goes up, i.e.,
∂yt∗

i
∂pt < 0.

Proof.
∂yt∗

i
∂pt = −(xi)

2 < 0. �

Proposition 5. Energy price does not decrease as first-order coefficient of cost function (dt
2) increases, i.e., ∂pt∗

∂dt
2
≥ 0.

Proof. ∂pt∗

∂dt
2
=

N∑
i=1

(xi)
2

2
N∑

i=1
(xi)

2
= 1

2 > 0. �

The results of the comparative statics are intuitive. Thus, we will perform a numerical analysis
based on the equilibrium obtained above.

3.3. Equilibrium of Non-Real-Time Pricing Model

Similarly, the method of KKT conditions was employed to solve the non-real-time pricing
optimization problems defined in the system model part. The equilibrium of non-real-time-pricing
model is obtained as Proposition 2.

Proposition 6. (Equilibrium of non-real-time pricing model).

A. If
∑T

t=1

(
αt

i − pxi
)
≤ 1, and

αt
i

xi
≥ p:

i. If
∑N

i=1 yt
i < K, the optimal energy price and consumption are given by

p∗ =

T∑
t=1

N∑
i=1

(
αt

ixi
)
+

T∑
t=1

N∑
i=1

dt
2(xi)

2

2T
N∑

i=1
(xi)

2
, yt∗

i = αt
ixi −

T∑
t=1

N∑
i=1

(
αt

ixi
)
+

T∑
t=1

N∑
i=1

dt
2(xi)

2

2T
N∑

i=1
(xi)

2
(xi)

2

ii. If
∑N

i=1 yt
i = K, the optimal energy price and consumption are given by

p∗ =

N∑
i=1

(
αt

ixi
)
−K

N∑
i=1

(xi)
2

, yt∗
i = αt

ixi −

N∑
i=1

(
αt

ixi
)
−K

N∑
i=1

(xi)
2

(xi)
2

B. If
∑T

t=1

(
αt

i − pxi
)
> 1, and

αt
i

xi
≥ p, the optimal energy price and consumption are given by

∑T
t=1 yt∗

i = xi,
p∗ → +∞

C. If
αt

i
xi
< p, the optimal energy price and consumption are given by p∗ = 0, and yt∗ = 0.
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Furthermore, the parts of B and C are boundary solutions and have little intuition, so we only
consider the solution given in part A.

4. Numerical Analysis

In this section, a simulation experiment is demonstrated to verify the game model and its
equilibrium, proposed above. The target smart grid is designed with one supplier and 10 individual
users with different time preferences. Two time slots, non-peak and peak, are defined over the
experiment horizon of one day. The demonstration has two purposes. First, it is developed to show the
effect of real-time pricing (RTP) over non-real-time pricing (NRTP) by comparing the results from each
setting. Second, the impact of the changes in time preferences on the grid is qualitatively investigated.

For convenience, time preferences to non-peak time are fixed as 1, while the peak time preferences
increase from 1.2 to 1.6 as shown in Figure 3. Consequently, in total, 20 sets of experiment settings with
different peak time preferences were prepared.Energies 2020, 13, x FOR PEER REVIEW 10 of 20 
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Figure 3. Peak time preference distribution setting.

To give a little reality to the experiment, 100 Monte Carlo simulations were performed for each
setting. For each repetition, the user’s daily maximum power requirement and time preference values
for each time period were randomly generated. In the case of the maximum daily requirement, an error
of 5% was applied, and an error of 3% was applied to the preference values. As a result, 100 repeated
experiments were performed for each of the 20 settings, and the averaged values of the repeated results
were summarized as the result values.

4.1. User-Side Result

First of all, we looked at the change in the power consumption pattern of users. Figure 4 shows
how RTP and NRTP affect users as the preference gap, the difference (αpeak − αnonpeak) between the peak
time and the non-peak time preference, increases.
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Figure 4. Energy consumption graph.

Lines with points are the results of RTP, and lines without points are the results of NRTP. In addition,
the solid line represents the peak time and the dotted line represents the non-peak time. As expected,
RTP closes the power usage gap between peak and non-peak times. This is in contrast to the large
increase in the power usage gap in the NRTP results.

However, the total energy consumption in Figure 5 shows that there is little difference in the
results of the two methods. In other words, the introduction of RTP can be understood as shifting the
power consumption period rather than reducing the power consumption. Another fact that can be
seen from the graph is that the total power usage is steadily increasing. It seems that the usage that
maximizes payoff also increases as the utility increases due to the increase in time preference.
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Figure 5. Total energy consumption graph.

Peak-to-average ratio (PAR), which is defined as the ratio of energy consumption at peak time
and average energy consumption, is a measure of the load of the energy generator. A lower PAR value
means that the energy consumptions are distributed more evenly. Thus, the lower the PAR value is,
the less overload cases will occur.

Figure 6 shows the PAR values. Consistent with the consumption results, the PAR value of
RTP was significantly lower than that of NRTP. When the time preference gap was at the maximum,
the results of NRTP showed that more than 74% of the power consumption was concentrated on the
peak time, but when RTP was introduced, it was suppressed to 62%. This means that even when the
peak time preference of users becomes intensified, the risk of overload can be suppressed to a very low
level through the introduction of a smart grid and RTP.
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Figures 7 and 8 show the change in utility. A pattern similar to the result of previous consumption
is found. As the time preference coefficient value of the peak time increases, the overall utility value
increases steadily. The introduction of RTP rarely changes the overall utility but rather reduces it
very little. The introduction of RTP leads to a decrease in the utility of the peak time and an increase
in the utility of the non-peak time, but the balancing effect of the utility is small compared to that
of consumption.Energies 2020, 13, x FOR PEER REVIEW 12 of 20 
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Figures 9 and 10 are graphs of bill payments. Though the introduction of RTP reduced peak time
consumption, the bill payment was almost the same as that with NRTP because the supplier raised the
price. On the other hand, the RTP is higher for the non-peak time bill. This is because non-peak usage



Energies 2020, 13, 6138 12 of 19

increased significantly in the RTP results. As a result, the total bill payment for all consumers increases
slightly in RTP.
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Figure 10. Total bill payment graph.

Figure 11 shows the final payoff of the consumer. According to the results of the utility and billing
costs discussed above, RTP shows a relatively low payoff compared to NRTP. Overall, the introduction
of RTP induces users to shift energy consumption from peak time to non-peak time. As a result,
there is no significant change in overall utility, but payoff slightly decreases due to an increase in
payment cost. This result is thought to be due to a large increase in the peak time price of the supplier
due to the introduction of RTP. Analysis of the supplier’s results in the following section supports
this interpretation.
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4.2. Supplier-Side Result

The supplier’s response to changes in time preference is price adjustment. Figure 12 shows
the pattern in which RTP differentiates prices by time slots. As the time preference gap increases,
the single price under NRTP increases steadily. The average price from RTP also increases steadily,
but the non-peak time price hardly changes. Instead, the peak time price of RTP increases significantly,
inducing consumers to reduce peak time consumption. In the last setting experiment, RTP set a peak
time price more than 50% higher than the non-peak time price.Energies 2020, 13, x FOR PEER REVIEW 14 of 20 
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Figure 12. Supplier price graph.

Figures 13 and 14 show the supplier’s electricity production costs determined according to the
energy consumption in Figure 4. Same as the consumption pattern, it can be seen that the difference
between the peak time and non-peak time production cost of RTP is much smaller than that of
NRTP. However, the total sum result is different from consumption. The total amount of energy
consumption was the same for both RTP and NRTP, but there is a difference in power generation cost.
Figure 14 demonstrates that the introduction of RTP has the effect of reducing power production costs.
This is because the cost function is quadratic, so even if the sum is constant, the cost can be reduced
through balanced distribution.
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Figure 14. Total production cost graph.

The electricity bill paid by users becomes the supplier’s revenue. Therefore, the profit of the
supplier can be obtained by deducting the total consumer bill in Figure 10 and the production cost
in Figure 14. As previously shown, RTP increases the user’s electricity bill and lowers the supplier’s
electricity production costs. As a result, the profit gap depicted in Figure 15 occurs. When the time
preference gap increases, NRTP hardly changes the supplier’s profit. In other words, the production
cost increases as the income from electricity usage increases. On the other hand, RTP lowers the
increase in production cost compared to NRTP and improves the final profit by further increasing
consumption fee income. In fact, comparing the results of the first and last settings, the profit from
NRTP increased by only 10%, but the profit from RTP increased by 46%. In the final setting, the gap
between the two profits is 40% based on NRTP.
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4.3. Social Welfare

The direct effect that can be expected from the introduction of RTP is the alleviation of overload
caused by concentrated consumption in a specific time period. As discussed above, the proposed
methodology greatly improved the PAR. Through this, social costs, such as additional power
infrastructure construction costs, can be avoided or deferred.

Another effect confirmed through the simulation is the improvement of the welfare of the system
as a whole. Social welfare is defined as the sum of supplier profit and consumer payoff and is a measure
that considers all participants in the entire smart grid network.

Figure 16 shows the trend of social welfare changes. As the difference in time preference between
the two time zones increases, the overall welfare also increases. However, this increase is basically
due to an increase in utility resulting from an increase in the peak time preference coefficient and
an increase in the supplier’s income with the higher price. RTP shows clear welfare improvement
compared to NRTP. It can be seen that as the disparity between users’ preferences by time zone increases,
the introduction of RTP significantly improves the profits of suppliers particularly, thereby improving
overall social welfare. In other words, RTP led to a greater profit increase than the decrease in consumer
payoff. From the first setting, RTP consistently produced a higher welfare value than NRTP, and the
last setting showed a gap of 6%.
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It is clear that RTP benefits the entire power system by improving PAR and welfare. However, as can
be seen in the experiment, the benefits of users and consumers may vary according to the relative size
of the parameter value. Taking the results of our experiment as an example, the overall social welfare
improved, but the payoff of consumers did not. Therefore, it is believed that efforts to evenly distribute
the benefits of the entire system are necessary.

5. Conclusions

The introduction of the smart grid has the effect of distributing the power demand concentrated
in a specific hour to other time slots. This imbalanced demand is essentially due to users’ preferences
across time.

In this study, we proposed a real-time pricing method for a smart grid through a two-stage
Stackelberg game model based on a utility function that reflects the user’s time preference. In the
first stage, the supplier determines a price that maximizes profits, and in the next stage, users decide
on electricity usage according to the given price. The Nash equilibrium and comparative analysis of
the proposed model explain the relationship between time preference, price, and usage. In addition,
the changes according to the distribution of time preferences were demonstrated through a Monte
Carlo simulation experiment. The results confirmed that the proposed RTP method has the effect of
lowering PAR and increasing overall social welfare.
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This study is meaningful in that it presents a pricing model that considers both the strategies of
users and suppliers and is novel in reflecting users’ time preferences. The proposed model would
help to reduce the need for additional power generation facilities by lowering the maximum power
generation requirement through efficient operation of a smart grid.

However, the parameters used in the experiment are arbitrarily set, so there is a limit of reality.
To overcome this, it is necessary to use empirical data in future studies. In other words, it will be a
more valuable study if actual consumers’ power consumption and suppliers’ price trends are used to
analyze consumers’ time preference and price sensitivity and apply it to the experiment.
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Appendix A. Proof of Proposition 1

To find the equilibria of a two-stage Stackelberg game model, the best response function of energy
consumptions should be derived first. The Lagrangians of the users’ decision problems are as follows.
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The KKT conditions applied on this Lagrangian are listed as below.
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(
T∑

t=1
yt

i − xi

)
= 0,∀i ∈ [1, N]

4O µi ≥ 0,∀i ∈ [1, N]

Arranging the four KKT conditions, the following two kinds of cases are derived.

Case A:
N∑

i=1
µt

i = 0, yt∗
i =

(
αt

i −
pt

β xi

)
xi

Case B:
N∑

i=1
µt

i > 0,
T∑

t=1
yt

i = xi

Next, based on the calculation in the second stage, the equilibrium energy price is derived. In Case

A (
N∑

i=1
µt

i = 0), substituting the best response functions of users’ energy consumption to the supplier’s

profit function gives the profit function in the following form.

Π =
T∑

t=1


[(

pt
− ct

2

) N∑
i=1

(
αt

i −
pt

β xi

)
xi

]
− ct

1

[
N∑

i=1

(
αt

i −
pt

β xi

)
xi

]2

− ct
3


=

T∑
t=1

{[
N∑

i=1

(
αt

i −
pt

β xi

)
xi

][
pt
− ct

2 − ct
1

N∑
i=1

(
αt

i −
pt

β xi

)
xi

]
− ct

3

}
The Lagrangians of the supplier’s decision problem are as follows.

L(p,λ) =
T∑

t=1


 N∑

i=1

(
αt

i −
pt

β
xi

)
xi


pt
− ct

2 − ct
1

N∑
i=1

(
αt

i −
pt

β
xi

)
xi

− ct
3

− T∑
t=1

λt

 N∑
i=1

(
αt

i −
pt

β
xi

)
xi −K
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The KKT conditions applied on this Lagrangian are listed as below.

1O
Lpt(p,λ) =

[
−

1
β

N∑
i=1

(xi)
2
][

pt
− ct

2 − ct
1

N∑
i=1

(
αt

i −
pt

β xi

)
xi −

T∑
t=1

λt
]
+

[
N∑

i=1

(
αt

i −
pt

β xi

)
xi

][
1 +

ct
1
β

N∑
i=1

(xi)
2
]

=

[
−

1
β

N∑
i=1

(xi)
2
](

pt
− ct

2 −
T∑

t=1
λt

)
+

N∑
i=1

(
αt

i −
pt

β xi

)
xi = 0

2O
N∑

i=1
yt

i ≤ K,∀t ∈ [1, T]

3O λt
(

N∑
i=1

yt
i −K

)
= 0,∀t ∈ [1, T]

4O λt
≥ 0,∀t ∈ [1, T]

Arranging the four KKT conditions, the following two kinds of cases are derived.

1O If
T∑

t=1
λt = 0, equilibrium energy price and consumptions are

pt∗ =

β
N∑

i=1

(
αt

ixi
)
+ βdt

2

N∑
i=1

(xi)
2

2
N∑

i=1
(xi)

2
, yt∗

i = αt
ixi −

N∑
i=1

(
αt

ixi
)
+ dt

2

N∑
i=1

(xi)
2

2
N∑

i=1
(xi)

2
(xi)

2

2O If
T∑

t=1
λt > 0, equilibrium energy price and consumptions are

pt∗ =

β
N∑

i=1

(
αt

ixi
)
− βK

2
N∑

i=1
(xi)

2
, yt∗

i = αt
ixi −

N∑
i=1

(
αt

ixi
)
−K

2
N∑

i=1
(xi)

2
(xi)

2

In Case B(
N∑

i=1
µt

i > 0), the supplier’s profit function is in the following form.

Π =
T∑

t=1


pt

N∑
i=1

xi

− ct
1

 N∑
i=1

xi


2

+ ct
2

 N∑
i=1

xi

− ct
3

 =
T∑

t=1

(
pt
− ct

2

) N∑
i=1

xi −

T∑
t=1

ct
1


 N∑

i=1

xi


2

+ ct
3


The Lagrangian of the supplier’s decision problem is as follows.

L(p,λ) =
T∑

t=1

(
pt
− ct

2

) N∑
i=1

xi −

T∑
t=1

ct
1


 N∑

i=1

xi


2

+ ct
3

− λt(xi −K)

The KKT conditions applied on this Lagrangian are listed as below.

1O Lpt(p,λ) =
N∑

i=1
xi > 0

2O
N∑

i=1
yt

i ≤ K,∀t ∈ [1, T]

3O λt
(

N∑
i=1

yt
i −K

)
= 0,∀t ∈ [1, T]

4O λt
≥ 0,∀t ∈ [1, T]

Arranging the four KKT conditions, the equilibrium energy consumption converges to zero and
the equilibrium energy price diverges to infinite.
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