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Abstract: In recent decades, the energy market around the world has been reshaped to accommodate
the high penetration of renewable energy resources. Although renewable energy sources have brought
various benefits, including low operation cost of wind and solar PV power plants, and reducing the
environmental risks associated with the conventional power resources, they have imposed a wide
range of difficulties in power system planning and operation. Naturally, classical optimal power flow
(OPF) is a nonlinear problem. Integrating renewable energy resources with conventional thermal
power generators escalates the difficulty of the OPF problem due to the uncertain and intermittent
nature of these resources. To address the complexity associated with the process of the integration of
renewable energy resources into the classical electric power systems, two probability distribution
functions (Weibull and lognormal) are used to forecast the voltaic power output of wind and solar
photovoltaic, respectively. Optimal power flow, including renewable energy, is formulated as a
single-objective and multi-objective problem in which many objective functions are considered,
such as minimizing the fuel cost, emission, real power loss, and voltage deviation. Real power
generation, bus voltage, load tap changers ratios, and shunt compensators values are optimized
under various power systems’ constraints. This paper aims to solve the OPF problem and examines
the effect of renewable energy resources on the above-mentioned objective functions. A combined
model of wind integrated IEEE 30-bus system, solar PV integrated IEEE 30-bus system, and hybrid
wind and solar PV integrated IEEE 30-bus system is performed using the equilibrium optimizer
technique (EO) and other five heuristic search methods. A comparison of simulation and statistical
results of EO with other optimization techniques showed that EO is more effective and superior
and provides the lowest optimization value in term of electric power generation, real power loss,
emission index and voltage deviation.

Keywords: active power loss; generation cost; emission index; optimal power flow; equilibrium
optimizer algorithim; solar PV and wind system; hybrid energy system

1. Introduction

1.1. Background

The urgent need for reducing the fuel cost of the conventional power generation units and
minimizing the greenhouse gases emitted from the thermal power generators have led various electric
power companies to go toward utilizing renewable energy resources. Furthermore, the advanced
technologies of renewable energy resources have contributed significantly to them becoming the most
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inexpensive and environmentally friendly resources. Integrating wind and solar PV in proper locations
and appropriate settings of the variables of the conventional power networks may have a significant
impact on the performance of power system control and operation.

To make the modeling of wind and solar PV more accurate and realistic, the Weibull probability
distribution function was used to forecast the wind speed [1,2], whereas lognormal probability
distribution function was used to mimic the intermittent nature of solar irradiance in [3,4].

1.2. Literature Review

Numerous publications in the literature studied the optimal power flow (OPF) problem
for systems consisting of conventional power generation and renewable energy power plants.
Deterministic, stochastic or hybrid optimization methods are used extensively to address the issues
associated with increased penetration of non-dispatchable renewable energy, advanced controls such
as FACTS devices and deregulated electricity markets.

Various conventional optimization techniques are used to solve the OPF problem. For instance,
continuous nonlinear programming (NLP) was proposed [5]. The main advantage of NLP is that
it is easily applied for solving large-scale power systems but it does not consider all of the system
components. An extended conic quadratic format [6] is presented to solve the economic dispatch
and decrease real power loss. Besides, the predictor-corrector interior point algorithm (PCIP) is
proposed to fit the OPF for solving nonlinear programming problems [7]. Quadratic programming
(QP) is used to derive a loss formula based on the incremental power flow. QP’s main advantages
are that it does not require the calculation of the gradient steps, it is more accurate than linear and
non-linear programming, and QB is also applicable in ill-conditions problem [8]. Sequential quadratic
programming (SQP) is used to address large scale OPF; it also depends on transforming the original
problem to a sequence of a linearly constrained sub-problem by applying an augmented Lagrangian [9].
Mixed integer linear programming (MILP) are adapted to minimize transmission losses and reactive
generator outputs. MILP can provide the most accurate way to represent power system with a discrete
control parameter. However, the main drawback of MILP is the presence of a strong trade-off between
the accuracy of the system and the tractability of the problem [10]. Although these methods have
excellent convergence characteristics, they have various drawbacks, including failing to find the
global solution because of non-convexity and facing difficulty while handling the problems with
non-differentiable and discontinuous objective functions.

Recently, metaheuristic optimization algorithms have been gaining much attention due to flexibility,
free of derivation, and local optima avoidance. Thus, single and multi-objective optimization methods
overcome the shortcomings attributed to classical techniques. A gravitational search algorithm (GSA) to
find the optimal solution for OPF and IEEE 30-bus and 57-bus systems are examined. One of the most
significant merits of GSA is the gravitational constant which has the ability to adjust the accuracy of the
search to speed up the solution process. Another advantage, GSA is a memory-less method but it can
work effectively similarly to algorithms with memory [11]. The basic fuel cost, voltage profile, voltage
stability, and non-smooth quadratic cost are minimized and optimized using a differential evolution
algorithm (DE). This approach has various benefits, including simple encoding, integer discrete
handling, fast convergence and optimal solution identification [12]. The black hole-based optimization
method is used to address the OPF problem for IEEE 30-bus and Algerian 59-bus power systems;
simplicity and the parameter-free aspect are the main two benefits of this method over well-known
optimization techniques [13]. Constrained OPF problem for IEEE 30-bus, 57-bus, and 118-bus is
optimized using a moth swarm algorithm [14]. A multi-objective OPF to minimize the generation cost
and environmental pollution using a fuzzy membership function to choose a compromise solution from
the Pareto optimal solutions is discussed [15]. The fuel cost, voltage deviation, and real power loss are
minimized as a multi-objective OPF problem using a gravitational search algorithm [16]. A modified
teaching learning-based optimization algorithm (MTLBO) added a self-adapting wavelet mutation
strategy and a fuzzy clustering. MTLBO provides a self-adaptive wavelet to improve the search
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capability, diversity and convergence speed. Moreover, a fuzzy decision making method is applied
to sort the solution according to their significance. Finally, a smart population selection is included
to select the population of the next iterations of the algorithms [17]. A hybrid of fuzzy evolutionary
and swarm optimization is proposed to minimize the cost of active power generation and real power
losses [18].

A fuzzy-based modified bee colony (MABC) is presented to solve discrete OPF using
multi-objective mixed integer nonlinear. Furthermore, it is proven that MABC is more effective
in finding the global search exploration than original bee colony and it also does not degrade while
solving the higher dimension power systems [19]. Emission, real power losses, and voltage deviation
are all minimized as a multi-objective OPF using a multi-objective modified imperialist competitive
algorithm. This new technique is strong, effective and fast in comparison with the original imperialist
competitive algorithm [20]. The particle swarm optimization and the shuffled frog leaping algorithm
are hybridized to solve OPF using the generator’s constraints, such as prohibited zones and valve
point effect.This method can successfully increase the diversity of generating population by adding
four dominant strategies to move each individual of the existing swarm [21]. A chaotic invasive weed
optimization algorithm is proposed to solve the OPF problem with non-smooth and non-convex fuel
cost curves. The difficulties that the original invasive weed optimization algorithm faces in order to
reach a better optimal solution were addressed. Additionally, this method is more stable and suitable
for non-linear OPF [22]. Brain storming optimization (BSO) and teaching-learning optimization(TLBO)
are hybridized to minimize the fuel cost of thermal generation units; this method outperforms TLBO
and BSO, owing to a self evolving principle which is applied to the control parameter and a higher
memory capability during its intermediate stages [23]. A hybrid optimization algorithm is based
on sequential quadratic programming (SQP) to generate an initial population. Then, a differential
evolution(DE) took that population to find the optimal solution more effectively and it was used to
minimize the fuel cost with valve point and the transmission line real losses, the unfavorable results of
DE which include stagnation and premature convergence can be avoided through benefiting from the
impressive role of SQP in relaxing the discrete variables of the system [24].

A growing and considerable effort have been made in recent years to solve and model the OPF
problem, including renewable energy sources. The OPF problem with taking into account uncertainties
in the wind, solar, and load forecast and optimized using a genetic algorithm and two-point estimate
method is presented in [25]. A hybrid method called moth swarm algorithm and gravitational search
algorithm is used to solve the problem of OPF, including wind power [26]. A modified two-point
estimation method is used to solve probabilistic OPF incorporating wind and solar photovoltaic
power [27]. Hybrid wind photovoltaic power systems are optimized using the unscented transformation
method, which can carry out probabilistic OPF with high accuracy and less computational time [28].
The OPF, including wind, is optimized using a fuzzy-based particle swarm optimization. A fuzzy set
modeled the forecast load demand and wind speed [29].

Besides, OPF incorporating wind power energy is optimized by a hybrid algorithm called a
hybrid dragonfly with aging particle swarm optimization [30]. Adaptive differential evolution with
proper constraint handling method is addressed OPF, including wind and solar. The forecast wind
and solar photovoltaic are modeled using Weibull and lognormal probability distribution functions [4].
An optimal reactive power dispatch with solar photovoltaic power and its impact on minimizing
real power losses is addressed using the Jaya algorithm to solve this issue [31]. A constrained
multi-objective population external optimization method in [32] is presented to minimize the fuel cost
and emission in the presence of renewable energy sources. A grey wolf optimization algorithm (GWO)
in [33] was proposed to tune the parameters of a thyristor controlled series compensator and address
OPF, including wind and solar power. A best guided artificial bee colony optimization in [1] was to
find the optimal setting of conventional and renewable power generation.
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1.3. Contribution and Paper Organization

In the present work, an equilibrium optimizer [34], which is a novel optimization method
inspired by controlling the volume mass balance model for estimating both equilibrium and dynamic
states, is used to prove its performance in solving the OPF problem. It is implemented on (i) IEEE
30-bus system, (ii) wind integrated IEEE 30-bus system, (iii) solar PV integrated IEEE 30-bus system,
and (iv) hybrid wind and solar PV integrated IEEE 30-bus system. Real power loss minimizations,
total cost minimization of generating units and emission index minimization are considered to be the
objective functions of the OPF problem. Weibull and lognormal probability distribution functions are
used to model the wind speed and solar irradiance to forecast the output power of wind and solar
PV systems. Furthermore, aiming to fill the gap in the literature, this paper investigates the impact
of the presence of only wind or only solar PV or both of them on enhancing the objective functions
of the OPF problem. In addition, a comprehensive statistical analysis for the equilibrium optimizer
technique (EO) and other optimization techniques are used.

The rest of this paper is organized as follows: the formulation of OPF problem is described in
Section 2. Then, a mathematical model of wind and solar PV plants is introduced in Section 3. Section 4
presents the equilibrium optimizer technique (EO) and its implementation to solve the OPF problem.
Section 5 presents the test systems and the input parameters of the test systems and the optimization
methods. Simulation results are explained in Section 6. Finally, Section 7 draws the conclusion of
this work.

2. Problem Formulation of OPF

2.1. General Structure of OPF

Generally, OPF aims to minimizes some objective functions. fo is the objective function to be
minimized, and h and g are the equality and inequality constraints in the power system network;
OPF can be expressed as [14,35]:

Minimize fo(x, u)
subject to g(x, u) ≤ 0

h(x, u) = 0
(1)

x is a state vector of dependent variables including the real power of swing generator (PG1),
(VLi ) is the voltage magnitude of load buses, (QGi ) is the reactive power of generator at ith bus and (Sli )
is the loading of the ith transmission line. x can be expressed as follows [14,35]:

x = [PG1 , VL1 , . . . , VLnpq , QG1, . . . , QGNG , Sl1 , . . . , Slnl
]T (2)

where npq and nl are the number of PQ buses and transmission lines. Sl and nl are the loading of
transmission lines and the number of transmission lines, respectively.

u is a vector consisting of control variables, (PGi ) is the real power of all generators excluding
swing generator, (VGi ) is the voltage magnitude of generators, (TS) is the branch transformer tap,
and (QC) is the shunt capacitor. u can be expressed as follows [14,35]:

u = [PG2 , . . . , PGNG , VG1 , . . . , VGNG , QC1, . . . , QCNc , TS1, . . . , TSNT ]
T (3)

where, NG, Nc and NT are the number of generators, shunt VAR compensator and
transformers, respectively.

2.2. Objective Functions of OPF

Here, the first four cases dealt with solving single objective OPF and the last one addressed the
multi-objective OPF.
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• Case 1: real power loss minimization
Due to the presence of the inherent resistance for the transmission lines, the aim of this function is
to minimize the active power losses and it is expressed as [14,35]:

fo(x, u) = Ploss =
nl

∑
q=1

Gq(ij)(V
2
i + V2

j − 2ViVj cos (δij)) (4)

where Gq(ij) is the conductance of qth transmission line, and Vi and Vj are the voltage magnitude
of terminal buses of transmission line.

• Case 2: emission index minimization
In the present case, the target is to reduce the harmful gases emission from the thermal generation
units, and the coefficients of the gas emission of the thermal power generators are given in Table 1.
Emission in tons per hour (t/h) can be described by [14,35]:

fo(x, u) = E =
NG

∑
i=1

[(αi + βiPGi + γiP2
Gi
) ∗ 0.01 + ωie(

µiPGi )] (5)

where α, β, γ, ω and µ are the emission coefficients and G1,G2,G3,G4,G5, and G6 represent
thermal power generators at buses 1, 2, 5, 8, 11, and 13, respectively, as given in Table 1.

Table 1. Emission coefficients of thermal power generating units [14,35].

Generator Bus α β γ ω µ

G1 1 4.091 −5.554 6.49 0.0002 2.857
G2 2 2.543 −6.047 5.638 0.0005 3.333
G3 5 4.258 −5.094 4.586 0.000001 8
G4 8 5.326 −3.55 3.38 0.002 2
G5 11 4.258 −5.094 4.586 0.000001 8
G6 13 6.131 −5.555 5.151 0.00001 6.667

• Case 3: Basic fuel cost minimization
The relationship between fuel cost ($/h) and the power generated from the thermal generating
units can be approximately given by the quadratic relationship and it is expressed as [14,35]:

fo(x, u) = FC =
NG

∑
i=1

ai + biPGi + ciP2
Gi

(6)

where ai, bi, ci are the cost coefficient of the thermal generators and these coefficients are provided
in Table 2.

Table 2. Cost coefficients of the thermal power generators [14,35].

Generator Bus a b c

G1 1 0 2 0.00375
G2 2 0 1.75 0.0175
G3 5 0 1 0.0625
G4 8 0 3.25 0.00834
G5 11 0 3 0.025
G6 13 0 3 0.025

• Case 4: Voltage deviation minimization
The voltage deviation index is the cumulative deviation of all load buses from nominal value of
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unity. It also plays a significant role in keeping the voltage quality and security of the electrical
power network.This case is expressed as [14,35]:

fo(x, u) = VD =

(
NL

∑
p=1
|VLp − 1|

)
(7)

• Case 5: Minimization of basic the fuel cost, emission index, voltage deviation and the real
power losses.

The aim of this case is to reduce quadratic fuel cost, active power transmission losses,
environmental emission index and voltage deviation index simultaneously. It can be defined as
follows [14,35]:

fo(x, u) = FC + λp × Ploss + λVD ×VD + λE × E (8)

where λp, λVD and λE are weight factors and they are assumed to be 22, 21 and 19, respectively
as in [14].

2.3. Constraints

The constraints of OPF are usually categorized into [14,35]:

1. Equality constraints
The equality constraints of OPF are usually represented by the load flow equations:

PGi − PDi = Vi

NB

∑
k=1

Vk(Gik cos θik + Bik sin θik) (9)

QGi −QDi = Vi

NB

∑
k=1

Vk(Gik sin θik − Bik cos θik) (10)

where PDi , QDi , NB, and θik are the active and reactive load demand, the number of buses
and the angle difference between bus i and k, respectively. Gik and Bik are the transfer and
susceptance conductance.

2. Inequality constraints

It can be defined by operating limits on the equipment of the power system, transmission loading
and voltage of load buses.

(a) Constraints of thermal and renewable energy generating units

VGi,min ≤ VGi ≤ VGi,max i = 1, . . . , N (11)

PGi,min ≤ PGi ≤ PGi,max i = 1, . . . , N (12)

QGi,min ≤ QGi ≤ QGi,max i = 1, . . . , N (13)

(b) Constraints of the transformer tap setting

TSk,min ≤ TSk ≤ TSk,maxk = 1, . . . , NT (14)

(c) constraints of the shunt compensator

QC,j,min ≤ QC ≤ QC,j,max j = 1, . . . , NC (15)

(d) Constraints of the voltages at load buses

VLr,min ≤ VLr ≤ VLr,maxr = 1, . . . , NL (16)
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(e) Constraints of the transmission line loading

Slv ≤ Slv,maxv = 1, . . . , nl (17)

2.4. Constraint Handling

In order to decline the infeasible solutions of OPF and keep the dependent variables within the
allowable ranges, a penalty function was modeled and added to the objective functions defined in
Section 2.2 [14,35].

penalty = Kp(PG1 − PLim
G1 )2 + KQ

NG

∑
i=1

(QGi −QLim
Gi )2 + KV

NL

∑
i=1

(VLi −VLim
Li )2 + KS

nl

∑
i=1

(Sli − SLim
Li )2 (18)

where KQ, Kp, KV and KS are the values of penalty factors associated with generation reactive power,
generation real power of the swing generator, load bus voltages and line flow of transmission lines.
They are assumed to be 100, 100, 100, and 100,000, respectively [14,36], and xLim is the value of
the violated limit of dependent variables(x). It is equal to xmax in case of x > xmax or xmin in case
of x < xmin.

3. Mathematical Models of the Wind and Solar Power Generating Units

3.1. Wind Power Units

3.1.1. Uncertain and Power Model of Wind Turbines

The wind speed of the wind turbines follows the Weibull probability distribution function.
The characteristic of the output power generated by the wind turbine is a random variable depending
on wind speed. The Weibull probability distribution function with dimensionless shape factor (k)
and scale factor (c) is used to model the wind speed fv(v). The wind speed ( fv(v)) can be expressed
mathematically as [1,2,37,38]:

fv(v) =
k
c

(v
c

)k−1
× e−(

v
c )

k
(19)

The electrical energy generated by a wind turbine is the result of converting the kinetic energy of
wind. The actual output power of wind turbines (Pw(v)) can be presented as [1,2,37,38]:

Pw(v) =


0 v < vin and v > vout

Pwr

(
v− vin
vr − vin

)
vin ≤ v ≤ vr

Pwr vr < v ≤ vout

(20)

where (Pwr), (vin), (vout) and (vr) are the rated power of the wind turbine, the cut-in wind speed of
the wind turbine, the cut-out wind speed and the rated wind speed, respectively.

3.1.2. Calculation of Direct, Underestimation and Overestimation Cost of Wind Power

The direct cost of wind power plant can be defined as [4,39–41]:

Cw,j(Pws,j) = gjPws,j (21)

where gj is the direct cost coefficient of wind plant.
The cost function is overestimated because the actual generated power from the wind turbine is

less than the estimated power by mathematical equations. The overestimation cost is used for reverse
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the requirements when the estimated output power of the wind turbine is more than actual output
power. Reserve cost for the jth wind turbine can be defined as [4,39–41]:

CRw,j(Pws,j − Pwav,j) = KRw,j(Pws,j − Pwav,j)

= KRw,j

∫ Pws,j

0
(Pws,j − Pw,j) fw(Pw,j)dPw,j

(22)

where KRw,j, Pwav,j, Pws,j and fw(Pw,j)
are the reserve cost coefficient pertaining to the jth wind turbine,

the actual available power from the same plant, the estimated power from the jth wind turbine and the
wind power probability density function for jth wind turbine.

Underestimation cost function of the wind turbine is due to not using the whole power which is
generated from the wind turbine. In other words, when the generated power from the wind turbine
is more than the estimated power, the underestimation cost function is applied as a penalty due to
wasting the surplus power. The penalty cost for the jth wind turbine can be defined as [4,39–41]:

CPw,j(Pwav,j − Pws,j) = KPw,j(Pwav,j − Pws,j)

= KPw,d

∫ Pwr,j

Pws,j

(Pw,j − Pws,j) fw(Pw,j)dPw,j
(23)

where KPw,j is a coefficient representing the penalty cost of the jth wind turbine and Pwr,j is the rated
output power which is generated from the jth wind turbine. As shown in Section 3.1.2, the total cost of
wind power turbines (CW

T ) can be described as follows:

CW
T =

Nw

∑
j=1

Cw,j(Pws,j) + CRw,j(Pws,j − Pwav,j) + CPw,j(Pwav,j − Pws,j) (24)

where Nw is the number of wind power turbines.

3.2. Solar Power Units

3.2.1. Uncertain and Power Model of Solar PV Plants

Solar irradiance can be modelled by lognormal probability distribution function due to its
uncertain and stochastic nature. The lognormal probability distribution is a function of solar irradiance
(G) with mean µ and standard deviation σ, it can be expressed mathematically as [3,4]:

fG(G) =
1

Gσ
√

2π
exp(

−(lnx− µ)2

2σ2 )G > 0 (25)

The main role of PV systems is to convert the solar irradiance to electrical energy. The output
power of PV system (Ps(G)) as a function of irradiance can be estimated as [4,39]:

Ps (G) =


Psr

G2

GstdRc
for 0 < G < Rc

Psr
G

Gstd
for G ≥ Rc

(26)

where Gstd represents the solar irradiance in standard environment,Rc is a certain irradiance point,
and Psr is the rated output power which is generated from the solar PV system.
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3.2.2. Calculation of Direct, Underestimation, and Overestimation Cost of Solar PV Power

The direct cost of solar power plant can be defined as [4,39]:

Cs,k(Pss,k) = hkPss,k (27)

where hk is a coefficient which represents the direct cost of the solar photovoltaic plant.
The same case as in the wind energy system, the solar energy system involves overestimation

and underestimation cost due to its uncertain output power. Reserve cost for the overestimation of kth

solar PV system is [4,39]:

CRs,k(Pss,k − Psav,k) = KRs,k(Pss,k − Psav,k)

= KRs,k ∗ fs(Psav,k < Pss,k)∗
[Pss,k − E(Psav,k < Pss,k)]

(28)

where KRs,k is a coefficient which represents the reserve cost pertaining to kth solar PV system, Psav,k is
the actual available power from the same plant, fs(Psav, k < Pss,k) is the probability of solar power
shortage occurrence than the scheduled power (Pss,k) and E(Psav,k < Pss,k) is the expectation of solar
PV power below Pss,k.

In the case of the underestimation of kth solar PV system, the penalty cost is given as [4,39]:

CPs,k(Psav,k − Pss,k) = KPs,k(Psav,k − Pss,k)

= KPs,k ∗ fs(Psav,k > Pss,k)∗
[E(Psav,k > Pss,k)− Pss,k]

(29)

where KPs,k is a coefficient represents the penalty cost pertaining to kth solar PV system, fs(Psav,k < Pss,k)

is the probability of solar power surplus than the scheduled power (Pss,k) and E(Psav,k < Pss,k) is the
expectation of solar PV power above Pss,k. As explained in Section 3.2.2, the total cost of solar PV
plants (CPV

T ) consists of three terms(direct, underestimation and overestimation cost) and it can be
given as follows [4,39]:

CPV
T =

NPV

∑
k=1

Cs,k(Pss,k) + CPs,k(Psav,k − Pss,k) + CRs,k(Pss,k − Psav,k) (30)

where NPV is the number of the solar PV plants.

4. Proposed EO

4.1. Inspiration and Mathematical Model

The main inspiration for this algorithm is the dynamic mass balance equation which describes the
conservation of mass that enters, leaves or generates in a control volume. This equation is a first-order
ordinary differential equation and it is described as the following [34]:

V
dC
dt

= QCeq −QC + G (31)

where V dC
dt is the rate of change of mass in volume, (V), C is the concentration inside the volume(V),

V is the control volume, Q is the volumetric flow rate into and out of the control volume, Ceq is the
concentration at an equilibrium state, and G is the mass generator rate inside the control volume.
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After reaching the steady equilibrium state of Equation (31) that is reformulated as a function of(
Q
V

)
, which is called turnover rate

(
λ = Q

V

)
. The following equations are derived from Equation (31)

to solve for (C) as a function of time (t) [34]:

dC
λCeq − λC + G

V
= dt (32)

∫ C

C0

dC
λCeq − λC + G

V
=
∫ t

t0

dt (33)

F = e−λ(t−t0) (34)

C = Ceq +
(
C0 − Ceq

)
F +

G
λV

(1− F) (35)

where F is an exponential term to assist EO having a balance between exploitation and exploration,
t0 is the initial start time, and C0 is the initial concentration.

The Equation (35) introduces three rules for updating the concentration of each particle.
The equilibrium concentration is the first term which is described as one of the best-so-far solutions
randomly chosen from the equilibrium pool. The difference between a concentration of a particle and
the equilibrium state is the second term which helps particles to globally explore the domain. The final
term is called the generation rate which mainly acts as an exploiter or solution refiner [34].

4.2. The Interaction between Each Term and the Search Pattern and the Definition of the EO’s Terms

4.2.1. Initialization and Function Evaluation

Firstly, the optimization process starts with the initial population. The Equation (36) describes
the initial concentration process which depends on the number of particles and dimensions that are
initialized in the search space in a uniform random manner [34].

Cinitial
i = Cmin + randi (Cmax − Cmin) (36)

where Cinitial
i is the initial concentration vector of the ith particle, Cmin is the minimum value for the

dimensions, Cmax is the maximum value for the dimensions and randi is a random vector ranging
between zero and one. After that, the fitness function of the particles are evaluated and then solved to
determine the equilibrium conditions.

4.2.2. Equilibrium Pool and Candidates (CEq)

The global optimum of EO is represented by the equilibrium state. At the beginning,
no information about the equilibrium state exists, but equilibrium candidates are identified to provide a
search domain for the particles. There are five equilibrium candidates as given in Equation (37). Four of
them are the best-so-far particles determined during the optimization process and the last one is the
arithmetic mean of the previous-mentioned four particles. The main goal of the first four candidates is
to improve the exploration capability, whereas the fifth candidate enhances the exploitation [34]

Cavg = (
−→
C eq (1) +

−→
C eq (2) +

−→
C eq (3) +

−→
C eq (4))/4 (37)

Ceq,pool =
{−→

C eq (1) ,
−→
C eq (2) ,

−→
C eq (3) ,

−→
C eq (4) ,

−→
C (ave)

}
(38)
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4.2.3. Exponential Term (F)

The exponential term (F) helps EO to have an acceptable balance between exploration and
exploitation. Referring back to Equation (34), the time (t) in Equation (34) depends on the iteration
(Iter) and it is described as follows [34]:

t =
(

1− Iter
Maxiter

)(a2
Iter

Maxiter

)
(39)

For the purpose of convergence, t0 in Equation (10) is proposed to slow down the search speed as
well as enhancing the exploration and exploitation ability of EO [34].

t0 =
1
−→
λ

ln
(
−a1sign(−→r − 0.5)[1− e−

−→
λ t]
)

(40)

where a1 and a2 are constant values for controlling exploration and exploitation ability, sign(−→r − 0.5)
is a factor that determines the direction of exploration and exploitation and r is a random vector ranges
between zero and one.

4.2.4. The Generation Rate (G)

The generation rate aims to provide the exact solution by enhancing the exploitation ability of EO
and can be described as [34]:

−→
G =

−→
G0e−

−→
k (t−t0) (41)

After assumption that k = λ, the equation of generation rate was updated as follows [34]:

−→
G =

−→
G0
−→
F (42)

−→
G0 =

−−→
GCP

(−→
Ceq −

−→
λ
−→
C
)

(43)

−−→
GCP =

{
0.5r1, r2 ≥ GP

0, r2 ≥ GP
(44)

where r1 and r2 are a random number between zero and one, GCP is the generation rate
control parameter.

The generation rate control parameter (GCP) mainly depends on generation probability (GP)
which defines the number of particles of the generation term to update their states.

State of the art state that EO at GP = 0.5; EO can achieve a good balance between exploration and
exploitation. The updating rule of EO is given as:

−→
C =

−→
Ceq +

(−→
C −−→Ceq

)−→
F +

−→
G
−→
λ V

(
1−−→F

)
(45)

The second and third terms of Equation (45) can increase variation and thus help EO to better
explore in case of they have same signs or to decrease the variation and aiding EO in local searches in
case of having opposite signs [34].

4.2.5. Particle’s Memory Saving

This can help each particle track with its coordinates in the space. It aids EO in exploitation
capability and avoids getting trapped in local minima [34].
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4.3. Implementation of EO to Solve the OPF Problem

The proposed EO is applied to solve OPF problem including wind and solar PV generation units.
The following pseudo code and flowchart shown in Figure 1 explain the steps of the application of EO
for OPF problem.

1. Define the control and dependent variables and their limits, as well as the target objective function
defined in Section 2.2 [34].

2. Collect and read the input data of the power system under test, such as data of transmission lines,
transformers, shunt VAR compensator, loads and generation units.

3. Calculate the estimated output power of solar PV and wind power generation units, as defined
and explained in Section 3 [34].

4. Initialize the particle’s populations [34].
5. Assign a large number to the fitness of equilibrium candidates and let a1 = 2; a2 = 1; GP = 0.5 [34].
6. Do the main while loop as the following [34]:

(a) While (current iteration (Iter) <maximum number of iteration (Max-iter))
(b) For i=1: particles’ number (n)
(c) Find the fitness value of the ith particle

i. If fitness (Ci) <fitness (Ceq1) then
Substitute (Ceq1) with (Ci) and fitness (Ceq1)
with fitness (Ci)

ii. Else if fitness (Ci) >fitness (Ceq1) & fitness (Ci) <fitness (Ceq2) then
Substitute (Ceq2) with (Ci) and fitness (Ceq2)
with fitness (Ci)

iii. Else if fitness (Ci) >fitness (Ceq1) & fitness (Ci)
>fitness (Ceq2) & fitness (Ci) <fitness (Ceq3) then
Substitute (Ceq3) with (Ci) and fitness (Ceq3)
with fitness (Ci)

iv. Else if fitness (Ci) >fitness (Ceq1) & fitness (Ci) >fitness (Ceq2) & fitness (Ci) >fitness
(Ceq3) & fitness (Ci) <fitness (Ceq4) then
Substitute (Ceq4) with (Ci) and fitness (Ceq4) with fitness (Ci)

(d) End (if )
(e) End(for)

7. Find the
−−→
Cavg according to Equation (37).

8. Construct the equilibrium pool according to Equation (38) [34].
9. In case of the current iteration >1, accomplish memory saving [34].

10. Assign t according to Equation (39).
11. Do the second for loop as following:

For i=1: particles’ number

(a) Select one candidate from the equilibrium pool randomly.
(b) Create the two random vector (λ and r).
(c) Construct F, GCP, G0 and G according to the Equations (34) and (42)–(44), respectively [34].
(d) Update the concentration C according to Equation (45)

End the second for loop.
12. Increase the current iteration by one.
13. End the main while loop.
14. Extract and analyse of the results.
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Start

Define	the	control,	dependent	variables,	their	limit	and	the	target	objective	function

Calculate	the	estimated	output	power	of	solar	PV	and	wind	power	generation	units	

Assign	a	large	number	to	the	fitness	of	equilibrium	candidates	and	let	a1=2;	a2=1;	GP=0.5

T=1

Initialize	the	particle’s	populations

If	the	control	variables	of	power	system	are
within	the	limits

Carry	out	the	power	flow

Check	the	equality	constraint	and	the	dependent	variables	of	the	power	system	

Evaluate	the	fitness	function

Collect	and	read	the	input	data	of	the	power	system	under	test	such	as	data	of	transmission	lines,		transformers,	shunt	VAR	compensator,
loads	and	generation	units

Check	the	T<Tmax	

Extract	the	equilibrium	pool		and	update	F	and	G

Update	the	control	variable	of	the	power	system

Evaluate	the	objective	function

T=T+1Replace	violated	values	with	new	values	selected
from	the	allowed	range

Yes

No

Yes

No

Figure 1. Flowchart of implementation of EO to solve OPF problem.

5. Test Systems and Control Parameters of Optimization Methods

5.1. Description of the Test Power Systems

• Test system 1: IEEE 30-bus system
The IEEE 30-bus system consists of six thermal power generators, as presented in Figure 2.
The data about transmission lines, tap changing transformers, AVR compensators, limitations on
generators and load voltages, active and reactive power demand are given in [42–44]. The general
specifications of this system are described in Table 3.
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Table 3. The general specification of all test power systems.

Values and Details

Characteristics Test System 1 [42–44] Test System 2 Test System 3 Test System 4

Buses 30 30 30 30

Transmission Lines 41 41 41 41

Limitation on generator voltage [0.9–1.1] [0.9–1.1] [0.9–1.1] [0.9–1.1]

Limitation on load voltage [0.95–1.1] [0.95–1.1] [0.95–1.1] [0.95–1.1]

Thermal power generators 6 3 3 3

Wind power plants 0 2 0 5

Solar power plants 0 3 5 0

Shunt VAR compensation 9 9 9 9

Transformer with tap ratio 4 4 4 4

Control Variables 24 28 28 28

Active and Reactive power demand 283.4 MW, 126.2 Mvar 283.4 MW, 126.2 Mvar 283.4 MW, 126.2 Mvar 283.4 MW, 126.2 Mvar

Figure 2. scenario 1: IEEE 30-bus system.

• Test system 2: Hybrid wind and solar PV integrated IEEE 30-bus system
This modified test power system is simulated to show its behavior in the presence of both wind



Energies 2020, 13, 6066 15 of 35

and solar PV power generating units, as depicted in Figure 3. The IEEE 30-bus system has been
modified by replacing the thermal power generating units at buses 5, 11, and 13 with wind
generator at bus 11 and solar PV at buses 5 and 13. In addition, the new solar PV and wind power
generators are constructed at bus 24, and 30, respectively. The objective functions defined in
Section 2.2 are modified by adding the output power of solar PV plants (Ps(G)) and the output
power of wind plants (Pw(v)) given in Section 3. Case 3 and case 5 described in Section 2.2 are
modified by adding the total cost of solar PV plants (CPV

T ) and the total cost of wind plants (Cw
T )

defined in Section 3. The specification of this hybrid power system is given in Table 3. The data of
wind and solar PV plants are described in Tables 4 and 5, respectively.

Table 4. Data of wind power plant for Test system 2.

Unit Bus No. of Turbines Pwr [MW] k c gi [$/MWH] KRw,i [$/MWH] KPw,i [$/MWH] vin [m/s] vout [m/s] vr [m/s]

1 11 12 2 2 9 1.7 2.8 1.7 4 25 13

2 30 12 2 2 10 1.7 2.8 1.7 4 25 13

Table 5. Data of solar power plant for Test system 2.

Unit Bus Psr [MW] Gstd [W/m2] Rc [W/m2] µ σ hk [$/MWh] KPs,k [$/MWh] KRs,k [$/MWh]

1 5 24 800 170 6 0.6 1.55 3.2 1.30

2 13 30 800 170 6 0.6 1.45 3.1 1.45

3 30 30 800 200 6 0.6 1.60 3.0 1.30

Figure 3. Hybrid wind and solar PV integrated IEEE 30-bus system.
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• Test system 3: Solar PV integrated IEEE 30-bus system
This system is modified by locating solar PV generators at buses 5, 11, and 13 instead of the
thermal power generators. Furthermore, two new solar power generation units are installed
at buses 24, and 30, as shown in Figure 4. The objective funtions defined in Section 2.2 are
modified by adding the output power of solar PV plants (Ps(G)) given in Section 3. Case 3
and case 5 described in Section 2.2 are modified by adding the total cost of solar PV plants
(CPV

T ) defined in Section 3. The general data of this system and solar PV plants are presented in
Tables 3 and 6, respectively.

Table 6. Data of solar power plant for Test system 3.

Unit Bus Psr [MW] Gstd [W/m2] Rc [W/m2] µ σ hk [$/MWh] KPs,k [$/MWh] KRs,k [$/MWh]

1 5 24 800 170 6 0.6 1.55 3.2 1.30

2 11 24 800 200 6 0.6 1.45 2.8 1.30

3 13 24 800 170 6 0.6 1.60 3.1 1.45

4 24 30 800 170 6 0.6 1.60 3.0 1.30

5 30 30 800 200 6 0.6 1.60 3.0 1.30

Figure 4. Solar PV integrated IEEE 30-bus system.
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• Test system 4: wind integrated IEEE 30-bus system
In this system, the IEEE 30-bus system is modified by replacing the thermal power generating
units at buses 5, 11, and 13 with wind power generators. Moreover, two new wind generators
have been added at buses 24, and 30, as seen in Figure 5. The objective functions defined in
Section 2.2 is modified by adding the output power of wind plants (Pw(v)) given in Section 3.
Case 3 and case 5 described in Section 2.2 are modified by adding the total cost of wind plants
(Cw

T ) defined in Section 3. The general specifications of this system and the data of wind power
plants are given in Tables 3 and 7, respectively.

Table 7. Data of wind power plant for Test system 4.

Unit Bus No. of Turbines Pwr [MW] k c gi [$/MWH] KRw,i [$/MWH] KPw,i [$/MWH] vin [m/s] vout [m/s] vr [m/s]

1 5 12 2 2 9 1.65 2.6 1.5 4 25 13

2 11 12 2 2 10 1.60 2.6 1.5 4 25 13

3 13 12 2 2 9 1.60 2.6 1.5 4 25 13

4 24 15 2 2 10 1.65 2.6 1.5 4 25 13

5 30 15 2 2 9 1.70 2.6 1.5 4 25 13

Figure 5. Wind integrated IEEE 30-bus system.
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5.2. Control Parameters of Optimization Methods

The number of iterations, population size, testing ranges and other parameters of the optimization
methods are given in Table 8.

Table 8. Control parameters values for optimization methods.

Algorithm Parameters Values

MPSO [45]

Inertia coefficient (w) decreasing linearly from 0.9 to 0.4
Number of search agents 50

Maximum number of iteration 100
Udapting factor (C1,C2) Described in [45]

Acceleration coefficient (c1,c2) c1 = 1, c2 = 2

TLBO [46]
Teaching factor Selected randomly [1,2]
Population size 50

Maximum number of iteration 100

TACPSO [45]

Inertia coefficient (w) decreasing linearly from 0.9 to 0.4
Number of search agents 50

Maximum number of iteration 100
Udapting factor (C1,C2) Described in [45]

Acceleration coefficient (c1,c2) c1 = 1, c2 = 2

MFO [47]
Population size 50

Maximum number of iteration 100
Shape constant (b) 1

AGPSO 1 [45]

Inertia coefficient (w) decreasing linearly from 0.9 to 0.4
Number of search agents 50

Maximum number of iteration 100
Udapting factor (C1,C2) Described in [45]

Acceleration coefficient (c1,c2) c1 = 1, c2 = 2

EO [34]

Constant values for controlling exploration (a1) 2
Constant values for controlling exploitation (a2) 1

Number of search particles 50
Maximum number of iteration 100

Generation probability 0.5

6. Results and Discussion

The performance and effectiveness of the EO are verified for solving OPF problem by carrying
out 20 independent test trial runs for all cases discussed in Section 2.2. The EO [34] and other
five metaheuristic optimization techniques: MFO [47], TACPSO [45], AGPSO1 [45], TLBO [46] and
MPSO [45] have been tested on four power test systems given in Section 5.1. All these optimization
techniques are implemented on 2.8-GHz i7 PC with 16 GB of RAM using MATLAB 2017.

6.1. Discussion and Analysis of the Objective Functions of OPF

6.1.1. Minimization of Real Power Loss

The EO [34], TLBO [46], MPSO [45], MFO [47], AGPSO1 [45], and TACPSO [45] algorithms are
implemented on the test system 1, test system 2, test system 3, and test system 4 for the minimization
of the real power loss as defined in Section 2.2. Figure 6a shows the convergence characteristics
of real power loss yielded by the best solution of the EO and other optimization methods for test
system 1. It observed that the better convergence characteristic is yielded by the EO. Furthermore,
Figure 6b,c display voltage and loading profiles of test system 1 for case 1. It is clear that the EO and
other optimization methods obey the voltage limits of buses and loading limits of transmission lines.
The results of EO and other techniques for test system 1 are displayed in Table 9. It can be observed
that EO achieves the minimum real power loss, but other optimization techniques such as TLBO and
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MFO have less fuel cost at 967.24 $/h and 967.44 $/h, respectively. Furthermore, other techniques have
less voltage deviations at minimization this objective function. However, it is clear that the loading of
transmission lines for EO is healthy and less than other methods.

Table 9. Results of EO and other methods of case 1 for Test system 1.

MFO TACPSO AGPSO1 TLBO EO MPSO

VD (p.u.) 0.867649 0.898003 0.898362 0.87350728 0.917249 0.679794
FC ($/h) 967.4482 967.6206 967.6485 967.2492825 967.5865 967.7676

Ploss (MW) 3.124412 3.100891 3.094156 3.108417583 3.087342 3.144079
E (ton/h) 0.207299 0.207259 0.207266 0.207286164 0.207268 0.207273

fo 3.124412 3.100891 3.094156 3.108417583 3.087342 3.144079

Improvement(%) 1.18 0.43 0.22 0.68 - 1.81

(a) Comparative convergence curves. (b) Voltage profile.

(c) Loading profile.

Figure 6. Comparative convergence, voltage and loading profiles for case 1 for all test systems.

The loss and loading profiles using EO for all test systems are given in Figure 7. The optimal
(best) results yielded by the EO method for the test system 1, test system 2, test system 3, and test
system 4 are tabulated in Table 10. From Figure 7 and Table 10, it is seen that the losses of test system 2,
test system 3, and test system 4 reduced by 23.6%, 31.52%, and 33.32%, respectively, compared to
test system 1. Additionally, it can be seen that the contribution of power generation of Test system
2 from wind, solar PV and thermal power generation are 15.05%, 33.01%, and 51.93%, respectively.
With respect to Test system 3, the contribution of power generation from solar PV and thermal power
are 53.33% and 46.66%, respectively. Besides, the wind power plants of Test system 4 contributes
52.35% of the total power generation.



Energies 2020, 13, 6066 20 of 35

Table 10. Optimal settings of dependent and control variables for case 1 for all test systems using EO.

Parameters Min Max Test System 1 Test System 2 Test System 3 Test System 4

PG2 (MW) 20 80 79.9983006 72.14028714 48.22886744 51.07651611
PG5 (MW) 15 50 49.9982627 49.99945385 49.97347066 49.98470056
PG8 (MW) 10 35 34.99453958 26.20234283 34.77838714 34.92764479
PG11 (MW) 10 30 29.99984469 29.42347144 29.97517159 29.67713532
PG13 (MW) 10 40 39.99027741 25.72695297 29.69711674 39.69895071
PG24 (MW) 10 30 18.61010237 27.4148297 15.73782289
PG30 (MW) 10 40 13.58641689 15.23102984 14.35575851

V1 (p.u.) 0.95 1.1 1.061430345 1.033582214 1.037749499 1.056224426
V2 (p.u.) 0.95 1.1 1.057379791 1.027683624 1.032739079 1.051241045
V5 (p.u.) 0.95 1.1 1.037622078 1.003632229 1.013755431 1.032812731
V8 (p.u.) 0.95 1.1 1.044007621 1.015022765 1.02707043 1.045463882

V11 (p.u.) 0.95 1.1 1.073279794 1.063216144 0.999050197 1.042867188
V13 (p.u.) 0.95 1.1 1.051619936 1.034701938 1.044856898 1.020563172
V24 (p.u.) 0.95 1.1 1.024480465 1.009002895 1.020352939
V30 (p.u.) 0.95 1.1 1.022453184 1.018925985 1.040981535

QC10 (MVAr) 0 5 4.287709826 4.782286758 2.62406261 3.612693403
QC12 (MVAr) 0 5 2.093601675 0.000803534 0.986423834 2.416935212
QC15 (MVAr) 0 5 3.996488379 1.898614523 0.206692775 3.600783886
QC17 (MVAr) 0 5 4.136235738 4.356883849 2.716911629 0.342465282
QC20 (MVAr) 0 5 4.495134896 3.354513668 4.692404829 3.296807199
QC21 (MVAr) 0 5 5.000000000 0.046094293 2.038284465 0.872744865
QC23 (MVAr) 0 5 3.197386977 4.967912056 4.957773966 4.740324068
QC24 (MVAr) 0 5 4.806462479 4.536993047 3.79952116 3.698494945
QC29 (MVAr) 0 5 2.461175597 0.21865228 4.63994E−05 3.927880442

T11 (p.u.) 0.9 1.1 1.055740955 1.015687471 1.020034326 1.0962353
T12 (p.u.) 0.9 1.1 0.924042761 0.951998195 0.957069803 0.900424717
T15 (p.u.) 0.9 1.1 0.988530694 0.989254661 1.094558386 0.991494831
T36 (p.u.) 0.9 1.1 0.975749345 0.977273155 1.010207101 1.010623787
PG1 (MW) 50 200 51.50611659 50.08572807 50.22954768 50.01396753

QG1 (MVAr) −20 150 −5.485983591 −1.712627012 −9.408754457 −4.363894439
QG2 (MVAr) −20 60 7.574416698 7.129014137 3.920290677 9.504062082
QG5 (MVAr) −15 62.5 21.13271229 17.01446382 19.68757038 20.6489489
QG8 (MVAr) −15 48 26.41312254 26.16274206 28.52016815 33.06577869

QG11 (MVAr) −10 40 19.21231862 19.38101083 0.13383456 18.93870787
QG13 (MVAr) −15 44 2.247530335 8.029799729 33.49981989 −2.320248965
QG24 (MVAr) −15 44 3.105401958 3.720374455 2.56415683
QG 30 (MVAr) −15 44 0.296246809 2.993820748 1.368798025

VD (p.u.) 0.917249187 0.367181831 0.252949566 0.482190403

FC ($/h) 967.5864625 417.7815499 358.1435956 368.1354088

Ploss (MW) 3.087341565 2.374755583 2.128420834 2.072496662

E (ton/h) 0.20726839 0.09655031 0.09111361 0.091202895

TC ($/h) 863.2203104 823.476285 867.8385329

CW
T ($/h) 141.4837171 499.7031241

CPV
T ($/h) 303.9550435 465.3326895

fo (MW) 3.087341565 2.374755583 2.128420834 2.072496662
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(a) Loss profile. (b) Loading profile.

Figure 7. Loss and loading Profiles of case 1 for all test systems using EO.

The statistical results (the best, the worst, the mean, and the standard deviation) of the real
power loss for the EO and other optimization techniques are given in Table 11. As shown in Table 11,
the minimum best, standard deviation, and mean are resulted from the EO.

Table 11. Summary of the statistical analysis of case 1 for Test system 1.

Best Worst Mean Std dev

MFO 3.124412 3.469255 3.313791 0.115148
TACPSO 3.100891 3.495604 3.162984 0.119564
AGPSO1 3.094156 3.558659 3.136808 0.175963

TLBO 3.108418 3.271804 3.200392 0.057571
EO 3.087342 3.131426 3.089549 0.013218

MPSO 3.144079 3.417325 3.202598 0.080901

As expected, the addition and location of the renewable energy resources in the power system
have a significant impact on reducing the real power loss.

6.1.2. Emission Index Minimization

In this case, the emission index defined in Section 2.2 was minimized for all test systems.
Figure 8 demonstrates the convergence characteristics, loss profiles, and loading profiles for emission
minimization using EO and other methods. It can be noticed from Figure 8a that the EO has the
smoothest and speediest convergence curves in comparing with other techniques, as well as Figure 8b,c
showing that there is no violation in the voltage limits of buses and loading limits of transmission
lines. As we can see from Table 13 and Figure 8c that EO can achieve the lowest real power loss
and the lowest loading of the transmission lines while minimizing this objective function, but other
optimization methods can obtain less voltage deviations in comparison to EO.

The best (optimal) results obtained using the EO for all test systems for case 2 are shown in
Table 12. As we can see from Figure 9 and Table 12 that emission index reduced by 55.54% for test
system 2, test system 3, and test system 4 compared to test system 1. In this case, the contribution of
power generation from wind power plants for Test system 2 and Test system 4 are 12.25% and 54.12%
of the total generation, respectively. In addition, the contribution of power generation from solar PV
for Test system 2 and Test system 3 are 41.69% and 53.93% of the total generation, respectively.
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Table 12. Optimal settings of dependent and control variables for case 2 for all test systems using EO.

Parameters Min Max Test System 1 Test System 2 Test System 3 Test System 4

PG2 (MW) 20 80 67.52765352 47.15393481 46.93784062 46.74579811
PG5 (MW) 15 50 49.99976843 49.99997692 48.55695793 49.63943974
PG8 (MW) 10 35 34.99979715 34.99785564 35.00000000 34.99981323
PG11 (MW) 10 30 30.00000000 13.08937369 24.11263394 28.93951933
PG13 (MW) 10 40 39.99994042 39.97364116 38.90979918 31.15977654
PG24 (MW) 10 30 29.67649489 20.72363213 13.68967898
PG30 (MW) 10 40 22.06349364 22.1793691 32.00183302

V1 (p.u.) 0.95 1.1 1.061391900 1.035577033 1.017785294 1.007633877
V2 (p.u.) 0.95 1.1 1.055299891 1.03014784 1.009596473 0.99225379
V5 (p.u.) 0.95 1.1 1.036061646 0.975474909 0.982885915 0.966515297
V8 (p.u.) 0.95 1.1 1.042336524 0.994262522 0.996877809 0.970873143

V11 (p.u.) 0.95 1.1 1.056098162 0.99155371 1.066472978 1.018197794
V13 (p.u.) 0.95 1.1 1.061630874 1.045591502 1.053301428 0.990382535
V24 (p.u.) 0.95 1.1 0.994310052 1.023161602 1.006430427
V30 (p.u.) 0.95 1.1 0.976743321 0.962066536 0.995194145

QC10 (MVAr) 0 5 4.194820255 0.691891638 0.00000000 2.28917862
QC12 (MVAr) 0 5 0.527663733 3.89808945 4.781805725 0.003693677
QC15 (MVAr) 0 5 4.925786364 0.093781976 4.681393138 3.767863825
QC17 (MVAr) 0 5 4.982842903 2.766984513 4.998326488 4.887538377
QC20 (MVAr) 0 5 4.671024822 4.426843395 4.610963598 5.000000000
QC21 (MVAr) 0 5 4.976075346 1.329009086 4.940763823 2.759967479
QC23 (MVAr) 0 5 2.74762835 3.54838243 0.002439547 4.271161763
QC24 (MVAr) 0 5 4.992557282 0.606928317 0.970384621 2.50397663
QC29 (MVAr) 0 5 2.088379542 4.949034272 0.000438444 2.957731038

T11 (p.u.) 0.9 1.1 1.045594251 0.951879814 0.938502294 0.940072546
T12 (p.u.) 0.9 1.1 0.921878284 0.962206441 1.096587454 0.919312335
T15 (p.u.) 0.9 1.1 1.00248085 1.099174642 1.018026147 1.023627655
T36 (p.u.) 0.9 1.1 0.972355171 0.92579926 1.099689643 1.060629423
PG1 (MW) 50 200 64.09434175 50.00003511 50.00023516 50.00000501

QG1 (MVAr) −20 150 −5.544691231 0.054641352 −1.33241509 18.58616272
QG2 (MVAr) −20 60 6.45002148 47.44923402 4.202024706 1.97952536
QG5 (MVAr) −15 62.5 21.67156016 −1.442938766 13.43474762 19.83503047
QG8 (MVAr) −15 48 27.29675405 23.11453954 7.583267029 12.95707181

QG11 (MVAr) −10 40 11.72500454 −6.137543909 13.66528344 1.654000716
QG13 (MVAr) −15 44 9.840166661 39.23629311 21.68524583 6.151027816
QG24 (MVAr) −15 44 1.089772208 24.29742231 20.10756016
QG 30 (MVAr) −15 44 −13.49116551 0.162345045 0.721702425

VD (p.u.) 0.90040310 0.298468513 0.404641642 0.391340877

FC($/h) 944.2808599 354.7638857 354.038595 353.3864113

Ploss (MW) 3.22150126 3.554805885 3.020468191 3.775864192

E (ton/h) 0.204818699 0.091061921 0.091060623 0.091060048

TC ($/h) 877.5739313 865.4758094 867.8663197

CW
T ($/h) 108.3986993 514.4799085

CPV
T ($/h) 414.4113463 511.4372144

fo (ton/h) 0.204818699 0.091061921 0.091060623 0.091060048
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(a) Comparative convergence curves. (b) Voltage profile.

(c) Loading profile.

Figure 8. Comparative convergence, voltage and loading Profiles for case 2 for all test systems.

Figure 9. Total Emission index (ton/hr) of case 2 for all test systems using EO.
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Table 13 presents the results of the EO and other methods for test system 1 with the minimization
of emission index. For example, the objective function of case 2 for EO was 0.204819 ton/h compared
to 0.204862 ton/h and 0.204885 ton/h for MFO [47] and TLBO [46] algorithms, respectively.

Table 13. Results of EO and other methods of case 2 for Test system 1.

MFO TACPSO AGPSO1 TLBO EO MPSO

VD (p.u.) 0.702001 0.856848 0.921129 0.541768425 0.900403 0.661504
FC ($/h) 944.3434 944.6554 944.3977 944.6873755 944.2809 944.4382

Ploss (MW) 3.356033 3.286856 3.235581 3.336091467 3.221501 3.267419
E (ton/h) 0.204862 0.204839 0.204823 0.204854728 0.204819 0.204833

fo (ton/h) 0.204862 0.204839 0.204823 0.204854728 0.204819 0.204833

Table 14 summarizes the statistical results for the present case. It can be found from Table 14 that
the EO provides the smallest best, standard deviation, and median than other methods.

Table 14. Summary of the statistical analysis of case 2 for Test system 1.

Best Worst Mean Std Dev

MFO 0.204862 0.204997 0.20495 4.15 × 10−5

TACPSO 0.204839 0.205089 0.204943 9.14 × 10−5

AGPSO1 0.204823 0.204999 0.204921 5.14 × 10−5

TLBO 0.204855 0.204931 0.204892 2.43 × 10−5

EO 0.204819 0.204878 0.204834 1.78 × 10−5

MPSO 0.204833 0.20497 0.204934 5.44 × 10−5

6.1.3. Minimization of the Total Cost of Generating Units

The comparative convergence characteristics, loading profiles, and loss profiles for test system 1
for the EO and other optimization techniques are presented in Figure 10. As observed in Figure 10,
the voltage and loading profiles are kept within the acceptable ranges and the EO gives the best
convergence characteristics compared to other methods. The optimal results of the EO and other
techniques for test system 1 are summarized in Table 15. From Table 15, the EO leads to 800.4486 $/h
total cost of generators which is better than the total cost obtained by the other compared methods.
From Figure 10b,c, it can be found that even though EO can obtain the minimum value of the total cost
of power generation, the loading of the transmission lines is more than other methods and voltage
deviation of EO is higher than other optimization techniques.

Table 15. Results of EO and other methods of case 3 for Test system 1.

MFO TACPSO AGPSO1 TLBO EO MPSO

VD (p.u.) 0.740965 0.845878 0.761669 0.811019872 0.865075 0.877139
FC ($/h) 800.8283 800.5201 800.5595 800.616176 800.4486 800.5346

Ploss (MW) 9.134902 9.02898 9.040104 8.97569702 9.041464 9.059254
E (ton/h) 0.366492 0.366315 0.365967 0.363482104 0.367478 0.366949

fo ($/h) 800.8283 800.5201 800.5595 800.616176 800.4486 800.5346
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(a) Comparative convergence curves. (b) Voltage profile.

(c) Loading profile.

Figure 10. Comparative convergence, voltage and loading Profiles for case 3 for all test systems.

The statistical results yielded by the EO and other optimization techniques are given in Table 16.

Table 16. Summary of the statistical analysis of case 3 for Test system 1.

Best Worst Mean Std Dev

MFO 800.8283 802.8078 801.5102 0.72899
TACPSO 800.5201 804.0448 800.6766 1.305504
AGPSO1 800.5595 802.1145 800.7023 0.453581

TLBO 800.6162 802.225 800.8366 0.471362
EO 800.4486 800.646 800.4793 0.057894

MPSO 800.5346 804.6442 801.1155 1.810857

From Table 17 and Figure 11, it can be observed that the total cost of generating units for test system
2, test system 3, and test system 4 declined by 3.54%, 3.47%, and 2.91%, respectively, compared to test
system 1. In this case, as shown in Table 17; the contribution of power generation from wind power
plants for Test system 2 and Test system 4 are 9.58% and 35.68% of the total generation, respectively.
Moreover, the contribution of power generation from solar PV for Test system 2 and Test system 3 are
21.33% and 41.17% of the total generation, respectively.
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Table 17. Optimal settings of dependent and control variables for case 3 for all test systems using EO.

Parameters Min Max Test System 1 Test System 2 Test System 3 Test System 4

PG2 (MW) 20 80 48.74605575 45.18712121 21.21838812 38.17119779
PG5 (MW) 15 50 21.4315437 15.00195728 15.40668673 19.095538
PG8 (MW) 10 35 21.18353338 29.97018297 15.60913424 10.08641797
PG11 (MW) 10 30 11.52952165 13.07275916 29.402226 20.7452611
PG13 (MW) 10 40 12.0107829 19.71387022 30.51540057 17.9328134
PG24 (MW) 10 30 27.19702311 26.3304831 25.32965431
PG30 (MW) 10 40 14.74139467 17.72178713 20.28023584

V1 (p.u.) 0.95 1.1 1.081191705 1.022713246 1.02314065 1.059255936
V2 (p.u.) 0.95 1.1 1.063110135 1.006065736 1.008766945 1.043719467
V5 (p.u.) 0.95 1.1 1.032684857 0.956733982 0.961917138 1.009460201
V8 (p.u.) 0.95 1.1 1.036543249 0.994159517 0.985269141 1.02095678

V11 (p.u.) 0.95 1.1 1.097591909 1.012587735 1.049992902 1.0845661
V13 (p.u.) 0.95 1.1 1.051244633 1.054638289 1.011514979 1.046208927
V24 (p.u.) 0.95 1.1 1.035583887 1.011800496 1.043496784
V30 (p.u.) 0.95 1.1 0.950000000 0.996591531 1.048407181

QC10 (MVAr) 0 5 2.971616423 3.739491269 4.902790106 0.325756054
QC12 (MVAr) 0 5 0.655177618 4.809891924 1.662706176 3.06145818
QC15 (MVAr) 0 5 3.197516308 0.002648509 0.249875162 3.301750446
QC17 (MVAr) 0 5 4.723716655 3.279961844 1.827574807 1.707154585
QC20 (MVAr) 0 5 3.650622268 0.917150962 1.107119341 0.418013886
QC21 (MVAr) 0 5 5.000000000 4.948708899 2.08610321 4.893042007
QC23 (MVAr) 0 5 2.498554056 4.535914953 4.240774401 3.58924067
QC24 (MVAr) 0 5 4.985418463 5.000000000 0.00000000 1.169769378
QC29 (MVAr) 0 5 2.584313587 4.144114834 4.95463484 1.500067393

T11 (p.u.) 0.9 1.1 1.027284076 1.048412041 1.099843892 0.985023037
T12 (p.u.) 0.9 1.1 0.971275895 0.90000000 0.922169184 0.989956238
T15 (p.u.) 0.9 1.1 0.972373363 1.002944153 1.006664961 0.991751478
T36 (p.u.) 0.9 1.1 0.9815263 1.059841992 0.944073975 0.971316876
PG1 (MW) 50 200 177.5400261 125.374001 133.7249716 138.0708394

QG1 (MVAr) −20 150 −0.570024945 −0.833938199 −5.669301771 −1.647701957
QG2 (MVAr) −20 60 19.80925666 13.30674022 30.0465083 18.91158888
QG5 (MVAr) −15 62.5 25.58480054 6.160576051 11.07617293 21.00268292
QG8 (MVAr) −15 48 23.28431397 23.75265502 14.5584729 21.65678972

QG11 (MVAr) −10 40 25.55139519 8.157153402 35.09222447 19.52230631
QG13 (MVAr) −15 44 1.335643081 21.55072062 12.13070192 7.287213883
QG24 (MVAr) −15 44 22.34214251 15.27252587 8.101017671
QG 30 (MVAr) −15 44 −5.331414964 −8.278410983 −1.403218975

VD (p.u.) 0.865074691 0.312619858 0.288839815 0.653856503

FC ($/h) 800.4486031 529.3973749 432.2815387 473.5571537

Ploss (MW) 9.041463508 6.858309749 6.529077621 6.311958209

E (ton/h) 0.367478227 0.141650437 0.159248156 0.163097259

TC ($/h) 772.2465456 772.7810970 777.3121394

CW
T ($/h) 85.46692162 303.7549857

CPV
T ($/h) 157.3822491 340.4995583

fo ($/h) 800.4486031 772.2465456 772.7810970 777.3121394



Energies 2020, 13, 6066 27 of 35

Figure 11. Total cost of generating units of case 3 for all test systems using EO.

6.1.4. Voltage Deviation Minimization

Figure 12 demonstrates the voltage profiles for all test systems for this case using EO. The optimal
solution obtained by EO for test system 1, test system 2, test system 3, and test system 4 are tabulated in
Table 18. As shown in Figure 12 and Table 18, the presence of the renewable energy resources improves
the voltage profiles and reduced the voltage deviation for test system 2, test system 3, and test system 4
by 22.46%, 37.39%, and 29.61%, respectively, compared to test system 1. Besides, it can be observed that
the power generation contribution of Test system 2 from wind, solar PV and thermal power generation
are 17.57%, 17.87%, and 64.54%, respectively. With respect to Test system 3, the contribution of power
generation from solar PV and thermal power are 34.69% and 65.30%, respectively. Moreover, the wind
power plants of Test system 4 contribute 55.34% of the total power generation.

Figure 12. Voltage profiles of case 4 for all test systems using EO.
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Table 18. Optimal settings of dependent and control variables for case 4 for all test systems using EO.

Parameters Min Max Test System 1 Test System 2 Test System 3 Test System 4

PG2 (MW) 20 80 70.18121441 35.84850999 73.22346542 42.82238053
PG5 (MW) 15 50 25.52703119 20.27116158 33.56379457 47.02961201
PG8 (MW) 10 35 28.87890546 17.61889372 18.04097353 33.85695266
PG11 (MW) 10 30 29.30401557 24.63092203 10.13966121 14.67013887
PG13 (MW) 10 40 27.92172576 15.28698582 21.57955174 39.93831108
PG24 (MW) 10 30 16.34156919 10.07569951 28.44997135
PG30 (MW) 10 40 26.43024961 24.9797807 28.73744876

V1 (p.u.) 0.95 1.1 1.009811989 1.032801388 1.022207169 1.012647301
V2 (p.u.) 0.95 1.1 1.003153500 1.026505843 1.020581934 1.004121334
V5 (p.u.) 0.95 1.1 1.015213206 1.016105476 1.019877057 1.020275353
V8 (p.u.) 0.95 1.1 1.008124785 0.993094249 0.998231049 1.001227396

V11 (p.u.) 0.95 1.1 1.038640051 1.003641057 1.02134836 0.99563608
V13 (p.u.) 0.95 1.1 1.005894818 1.02703208 0.996453698 1.022325949
V24 (p.u.) 0.95 1.1 1.013528762 1.014235434 1.018656779
V30 (p.u.) 0.95 1.1 1.002929877 0.993533496 0.998414844

QC10 (MVAr) 0 5 4.999434200 1.057601365 4.449085771 1.224696754
QC12 (MVAr) 0 5 4.602398118 2.55410853 4.99999823 2.663316679
QC15 (MVAr) 0 5 4.960424711 4.999607248 1.610176653 3.415934203
QC17 (MVAr) 0 5 0.01181544 0.217347144 1.996228043 0.019033266
QC20 (MVAr) 0 5 4.996883927 4.92956648 4.978309396 4.994054795
QC21 (MVAr) 0 5 4.956429831 1.646590977 0.034134918 4.819904248
QC23 (MVAr) 0 5 4.972309922 0.427048793 1.956957345 1.039869954
QC24 (MVAr) 0 5 4.980435681 2.406207968 4.614781826 0.613094925
QC29 (MVAr) 0 5 2.520824595 1.71349761 3.890942901 3.740081954

T11 (p.u.) 0.9 1.1 1.056622635 1.012874303 1.035801681 1.002332018
T12 (p.u.) 0.9 1.1 0.901402975 0.900602964 0.902285005 0.901103808
T15 (p.u.) 0.9 1.1 0.981060937 1.013218403 0.960787866 0.998733169
T36 (p.u.) 0.9 1.1 0.966944023 0.987755959 0.989855906 0.98143194
PG1 (MW) 50 200 108.1160533 133.9296827 97.60688393 51.45175998

QG1 (MVAr) −20 150 −19.10239902 −19.59757178 −19.11821266 −0.518817877
QG2 (MVAr) −20 60 −14.85253038 31.85856685 18.90601653 −16.64972076
QG5 (MVAr) −15 62.5 57.49581183 49.60698522 51.42002978 56.50571855
QG8 (MVAr) −15 48 45.23093447 11.80532985 26.14354452 31.44056819

QG11 (MVAr) −10 40 20.12674964 2.380585374 10.62092072 −1.914317997
QG13 (MVAr) −15 44 −1.74441538 13.80317636 −8.465359993 10.55389137
QG24 (MVAr) −15 44 14.86630972 15.99035449 13.88576475
QG 30 (MVAr) −15 44 −4.888937122 −7.68659143 −7.960636408

VD (p.u.) 0.088397534 0.08005165 0.064632335 0.07266919

FC ($/h) 848.7795548 480.1984844 514.2584395 339.455916

Ploss (MW) 6.528945889 6.957974748 5.809810669 3.556575273

E (ton/h) 0.240505607 0.155665569 0.119726864 0.091393798

TC ($/h) 787.9483007 810.1863986 861.8303756

CW
T ($/h) 164.0403370 522.3744597

CPV
T ($/h) 143.7094792 295.9279591

fo (p.u.) 0.088397534 0.080051650 0.064632335 0.07266919

It is clear from Table 19; the minimum best, standard deviation, and median are obtained by
the EO.

From Figure 13, the voltage and loading profiles for this case for all optimization methods obey the
constraints of voltages at load buses and transmission line loading. It can also be observed that the EO
convergence characteristic outperforms the convergence characteristics of other methods. The results
of EO and other methods for test system 1 are given in Table 20. From Figure 13b,c and Table 20, it can
be seen that EO achieves the minimum emission index while minimizing the objective function of
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voltage deviation. In addition, EO and MFO can obtain the lowest real power loss at 6.528 MW and
5.965 MW, respectively. Nevertheless, MPSO, TLBO, TACPSO, and ACPSO1 obtain lower fuel cost in
comparison to EO.

Table 19. Summary of the statistical analysis of case 4 for Test system 1.

Best Worst Mean Std Dev

MFO 0.100862 0.137899 0.117452 0.011555
TACPSO 0.092725 0.177792 0.116202 0.025827
AGPSO1 0.102816 0.144276 0.131944 0.015650

TLBO 0.103244 0.152343 0.112717 0.015185
EO 0.088398 0.097568 0.092814 0.002809

MPSO 0.093414 0.202628 0.124612 0.038641

(a) Comparative convergence curves. (b) Voltage profile.

(c) Loading profile.

Figure 13. Comparative convergence, voltage and loading profiles for case 4 for all test systems.

Table 20. Results of EO and other methods of case 4 for Test system 1.

MFO TACPSO AGPSO1 TLBO EO MPSO

VD (p.u.) 0.100862 0.092725 0.102816 0.103243 0.088398 0.093414
FC ($/h) 901.7397 852.0642 834.1079 829.58791 848.7796 841.3429

Ploss (MW) 5.965677 9.980964 7.492151 8.391654 6.528946 7.564352
E (ton/h) 0.248497 0.359732 0.273799 0.337325 0.240506 0.275282

fo (p.u.) 0.100862 0.092725 0.102816 0.103243 0.088398 0.093414
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6.1.5. Case 5: Minimization of the Total Cost of the Generating Units, Voltage Deviation, Real Power
Loss, and Emission Index

It is clear from Figure 14 that the EO has the best convergence characteristics compared to the
other optimization algorithms and the voltage and loading profiles for all algorithm ranges within
the allowable limits. The results of EO and other methods for test system 1 of this case are shown
in Table 21. It is clear from Figure 14b,c and Table 21 that while EO achieves the minimum value of
voltage deviation and fuel cost in comparison to other methods, other optimization techniques obtain
lower values of emission index and real power loss than EO.

(a) Comparative convergence curves. (b) Voltage profile.

(c) Loading profile.

Figure 14. Comparative convergence, voltage and loading profiles for case 5 for all Test system 1.

Table 21. Results of EO and other methods of case 5 for Test system 1.

MFO TACPSO AGPSO1 TLBO EO MPSO

VD (p.u.) 0.312222 0.301092 0.2979 0.292001838 0.291525 0.315655
FC ($/h) 832.131 833.4427 831.8455 831.251448 829.9924 833.2358

Ploss (MW) 5.569804 5.471244 5.542919 5.575077257 5.604236 5.490564
E (ton/h) 0.250434 0.249973 0.251339 0.252691258 0.253454 0.249919

fo ($/h) 965.9816 964.8825 964.8211 964.8363202 964.2232 965.4054

The statistical analysis of the EO and other methods for test system 1 is given in Table 22. As shown
in the table, the EO gives the minimum best, median and standard deviation.
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Table 22. Summary of the statistical analysis of case 5 for Test system 1.

Best Worst Mean Std dev

MFO 965.9816 970.7178 968.0071 1.616872
TACPSO 964.8825 968.5757 965.8415 1.251791
AGPSO1 964.8211 967.8093 965.6185 0.874411

TLBO 964.8363 968.0825 966.0087 1.105687
EO 964.2232 966.3464 964.5618 0.655197

MPSO 965.4054 978.9642 966.4455 4.054598

It is clear from Figure 15 and Table 23 that the objective function for this case for test system 2,
test system 3, and test system 4 dropped by 3.90%, 7.77%, and 7.84%, respectively compared to test
system 1. It is found from Table 23 that the real power loss for test system 2, test system 3, and test
system 4 dropped by 30.94%, 20.75%, and 46.06%, respectively compared to test system 1. It can
be noted in Figure 15 that the contribution of power generation from wind for Test system 2 and
Test system 4 are 15.67% and 49.37% of the total power generation, respectively. While the solar PV
contributes 33.36% and 44.69% of the total power for test system 2 and test system 3, respectively.
Moreover, it is observed from Table 23 that emission index for test system 2, test system 3, and test
system 4 dropped by 61.24%, 54.91%, and 58.58%, respectively compared to test system 1.

(a) Loss profile. (b) Total cost of generating units.

(c) Total emission index. (d) Voltage profiles.

Figure 15. Total cost of generating units, total emission index, voltage and loss profiles of case 5 for all
test systems.
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Table 23. Optimal settings of dependent and control variables for case 5 for all test systems using EO.

Parameters Min Max Test System 1 Test System 2 Test System 3 Test System 4

PG2 (MW) 20 80 52.34900301 43.76198174 46.85392201 39.04580002
PG5 (MW) 15 50 31.41892625 25.13957863 41.57764325 49.63341394
PG8 (MW) 10 35 34.99720302 28.83722988 15.57308058 21.63539649
PG11 (MW) 10 30 26.95716205 27.72005416 28.54767347 26.5299306
PG13 (MW) 10 40 20.69034077 37.30220041 21.35593529 20.93782021
PG24 (MW) 10 30 33.41823981 19.87429698 27.03669094
PG30 (MW) 10 40 17.31391519 17.29441758 17.27175615

V1 (p.u.) 0.95 1.1 1.073302714 1.024270078 1.031881955 1.034535652
V2 (p.u.) 0.95 1.1 1.05933056 1.012773005 1.014838234 1.023955028
V5 (p.u.) 0.95 1.1 1.031867076 0.991186486 0.965629646 1.002922115
V8 (p.u.) 0.95 1.1 1.039079245 0.991138879 0.993005954 1.010973253

V11 (p.u.) 0.95 1.1 1.039336016 1.100000000 1.038730973 1.039568814
V13 (p.u.) 0.95 1.1 1.016224258 1.023619922 1.047631647 1.010922024
V24 (p.u.) 0.95 1.1 1.027240201 1.008908379 1.012804196
V30 (p.u.) 0.95 1.1 1.026258901 1.033487159 1.015369168

QC10 (MVAr) 0 5 1.42704702 0.24222794 5.00000000 3.367347878
QC12 (MVAr) 0 5 0.114983911 4.465905221 5.00000000 4.957438998
QC15 (MVAr) 0 5 2.71927269 0.00000000 1.436680682 3.38628092
QC17 (MVAr) 0 5 4.777257639 4.971408287 0.00000000 4.999449612
QC20 (MVAr) 0 5 4.891165116 4.864936873 5.00000000 4.836689278
QC21 (MVAr) 0 5 4.917867343 4.114355205 4.252301174 2.729537609
QC23 (MVAr) 0 5 4.944826897 4.912774176 0.00000000 1.224294666
QC24 (MVAr) 0 5 4.999139393 3.383242169 2.790571405 4.901232863
QC29 (MVAr) 0 5 2.36221935 0.622641699 5.00000000 0.478740405

T11 (p.u.) 0.9 1.1 1.098277898 1.041847001 0.996768732 1.070613035
T12 (p.u.) 0.9 1.1 0.937769396 0.906411875 1.061448786 0.920185016
T15 (p.u.) 0.9 1.1 1.02148431 0.939592837 0.983885511 0.995441894
T36 (p.u.) 0.9 1.1 1.002153866 0.991006369 0.904079564 0.993400466
PG1 (MW) 50 200 122.5915999 73.77703 96.76396309 84.33186618

QG1 (MVAr) −20 150 0.44760914 4.980415704 11.6826979 −1.350997342
QG2 (MVAr) −20 60 13.45186855 10.12960773 16.17020662 8.009356413
QG5 (MVAr) −15 62.5 22.96436543 30.2545861 −0.480850004 19.94798351
QG8 (MVAr) −15 48 25.09929462 4.325252485 25.37843413 24.0097914

QG11 (MVAr) −10 40 20.42841833 39.34377358 16.58858651 20.9433804
QG13 (MVAr) −15 44 4.484753294 −4.510415315 19.67801235 1.913484758
QG24 (MVAr) −15 44 −1.505790029 2.129992746 2.949992903
QG 30 (MVAr) −15 44 3.138390036 −7.584798837 0.645488754

VD (p.u.) 0.291524702 0.340717958 0.287869453 0.142747756

FC ($/h) 829.9923878 378.7198323 401.6872426 364.5623372

Ploss (MW) 5.604235892 3.870229887 4.440932453 3.022674546

E (ton/h) 0.253453881 0.098214148 0.114249163 0.104949647

TC ($/h) 832.9987095 783.9164460 817.6301115

CW
T ($/h) 144.7990782 453.0677743

CPV
T ($/h) 309.4797989 382.2292034

fo ($/h) 964.2232199 927.1649129 889.8329526 889.1206976

7. Conclusions

In this study, a novel proposed EO method has been successfully applied to solve single and
multi-objective OPF with integrated wind turbines and solar PV generators. Its performance and
effectiveness were evaluated on four power system, namely: IEEE 30-bus system, wind integrated IEEE
30-bus system, solar PV integrated IEEE 30-bus system, and hybrid wind and solar PV integrated IEEE
30-bus system. Realistic models for the wind turbines and solar PV systems have been proposed and



Energies 2020, 13, 6066 33 of 35

thus real power outputs of wind turbines and solar PV power plants have been accurately forecasted.
Therefore, a correct and efficient decision can be taken for inclusion the wind turbines and solar PV
power plants in the proper locations. The simulation and statistical results indicate and approve
that the EO [34] method outperforms other optimization techniques, namely: TLBO [46], MPSO [45],
MFO [47], AGPSO1 [45], and TACPSO [45]. Our research has highlighted the importance of the proper
locations of the renewable energy resources on improving the objective functions of OPF problem.
Furthermore, adding wind turbines and solar PV play an integral role in enhancing the performance
of the standard IEEE 30-bus system. For example, they significantly reduce the fuel cost and emission
of the conventional power generators, as well as minimize real power loss and voltage deviation.
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Abbreviations

OPF Optimal power flow
NLP Continuous nonlinear programming
PCIP Predictor-corrector interior point algorithm
PSO Particle swarm optimization
QP Quadratic programming
SQP Sequential quadratic programming
MILP Mixed-integer linear programming
TLBO Teaching–learning-based optimization
GSA Gravitational search algorithm
DE Differential evolution algorithm
MTLBO Modified teaching learning-based optimization algorithm
MABC Fuzzy-based modified bee colony
BSO Brain storming optimization
GWO Grey wolf optimization algorithm
EO Equilibrium optimizer algorithm
FACTS Flexible alternating current transmission system
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