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Abstract

:

In recent decades, the energy market around the world has been reshaped to accommodate the high penetration of renewable energy resources. Although renewable energy sources have brought various benefits, including low operation cost of wind and solar PV power plants, and reducing the environmental risks associated with the conventional power resources, they have imposed a wide range of difficulties in power system planning and operation. Naturally, classical optimal power flow (OPF) is a nonlinear problem. Integrating renewable energy resources with conventional thermal power generators escalates the difficulty of the OPF problem due to the uncertain and intermittent nature of these resources. To address the complexity associated with the process of the integration of renewable energy resources into the classical electric power systems, two probability distribution functions (Weibull and lognormal) are used to forecast the voltaic power output of wind and solar photovoltaic, respectively. Optimal power flow, including renewable energy, is formulated as a single-objective and multi-objective problem in which many objective functions are considered, such as minimizing the fuel cost, emission, real power loss, and voltage deviation. Real power generation, bus voltage, load tap changers ratios, and shunt compensators values are optimized under various power systems’ constraints. This paper aims to solve the OPF problem and examines the effect of renewable energy resources on the above-mentioned objective functions. A combined model of wind integrated IEEE 30-bus system, solar PV integrated IEEE 30-bus system, and hybrid wind and solar PV integrated IEEE 30-bus system is performed using the equilibrium optimizer technique (EO) and other five heuristic search methods. A comparison of simulation and statistical results of EO with other optimization techniques showed that EO is more effective and superior and provides the lowest optimization value in term of electric power generation, real power loss, emission index and voltage deviation.
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1. Introduction


1.1. Background


The urgent need for reducing the fuel cost of the conventional power generation units and minimizing the greenhouse gases emitted from the thermal power generators have led various electric power companies to go toward utilizing renewable energy resources. Furthermore, the advanced technologies of renewable energy resources have contributed significantly to them becoming the most inexpensive and environmentally friendly resources. Integrating wind and solar PV in proper locations and appropriate settings of the variables of the conventional power networks may have a significant impact on the performance of power system control and operation.



To make the modeling of wind and solar PV more accurate and realistic, the Weibull probability distribution function was used to forecast the wind speed [1,2], whereas lognormal probability distribution function was used to mimic the intermittent nature of solar irradiance in [3,4].




1.2. Literature Review


Numerous publications in the literature studied the optimal power flow (OPF) problem for systems consisting of conventional power generation and renewable energy power plants. Deterministic, stochastic or hybrid optimization methods are used extensively to address the issues associated with increased penetration of non-dispatchable renewable energy, advanced controls such as FACTS devices and deregulated electricity markets.



Various conventional optimization techniques are used to solve the OPF problem. For instance, continuous nonlinear programming (NLP) was proposed [5]. The main advantage of NLP is that it is easily applied for solving large-scale power systems but it does not consider all of the system components. An extended conic quadratic format [6] is presented to solve the economic dispatch and decrease real power loss. Besides, the predictor-corrector interior point algorithm (PCIP) is proposed to fit the OPF for solving nonlinear programming problems [7]. Quadratic programming (QP) is used to derive a loss formula based on the incremental power flow. QP’s main advantages are that it does not require the calculation of the gradient steps, it is more accurate than linear and non-linear programming, and QB is also applicable in ill-conditions problem [8]. Sequential quadratic programming (SQP) is used to address large scale OPF; it also depends on transforming the original problem to a sequence of a linearly constrained sub-problem by applying an augmented Lagrangian [9]. Mixed integer linear programming (MILP) are adapted to minimize transmission losses and reactive generator outputs. MILP can provide the most accurate way to represent power system with a discrete control parameter. However, the main drawback of MILP is the presence of a strong trade-off between the accuracy of the system and the tractability of the problem [10]. Although these methods have excellent convergence characteristics, they have various drawbacks, including failing to find the global solution because of non-convexity and facing difficulty while handling the problems with non-differentiable and discontinuous objective functions.



Recently, metaheuristic optimization algorithms have been gaining much attention due to flexibility, free of derivation, and local optima avoidance. Thus, single and multi-objective optimization methods overcome the shortcomings attributed to classical techniques. A gravitational search algorithm (GSA) to find the optimal solution for OPF and IEEE 30-bus and 57-bus systems are examined. One of the most significant merits of GSA is the gravitational constant which has the ability to adjust the accuracy of the search to speed up the solution process. Another advantage, GSA is a memory-less method but it can work effectively similarly to algorithms with memory [11]. The basic fuel cost, voltage profile, voltage stability, and non-smooth quadratic cost are minimized and optimized using a differential evolution algorithm (DE). This approach has various benefits, including simple encoding, integer discrete handling, fast convergence and optimal solution identification [12]. The black hole-based optimization method is used to address the OPF problem for IEEE 30-bus and Algerian 59-bus power systems; simplicity and the parameter-free aspect are the main two benefits of this method over well-known optimization techniques [13]. Constrained OPF problem for IEEE 30-bus, 57-bus, and 118-bus is optimized using a moth swarm algorithm [14]. A multi-objective OPF to minimize the generation cost and environmental pollution using a fuzzy membership function to choose a compromise solution from the Pareto optimal solutions is discussed [15]. The fuel cost, voltage deviation, and real power loss are minimized as a multi-objective OPF problem using a gravitational search algorithm [16]. A modified teaching learning-based optimization algorithm (MTLBO) added a self-adapting wavelet mutation strategy and a fuzzy clustering. MTLBO provides a self-adaptive wavelet to improve the search capability, diversity and convergence speed. Moreover, a fuzzy decision making method is applied to sort the solution according to their significance. Finally, a smart population selection is included to select the population of the next iterations of the algorithms [17]. A hybrid of fuzzy evolutionary and swarm optimization is proposed to minimize the cost of active power generation and real power losses [18].



A fuzzy-based modified bee colony (MABC) is presented to solve discrete OPF using multi-objective mixed integer nonlinear. Furthermore, it is proven that MABC is more effective in finding the global search exploration than original bee colony and it also does not degrade while solving the higher dimension power systems [19]. Emission, real power losses, and voltage deviation are all minimized as a multi-objective OPF using a multi-objective modified imperialist competitive algorithm. This new technique is strong, effective and fast in comparison with the original imperialist competitive algorithm [20]. The particle swarm optimization and the shuffled frog leaping algorithm are hybridized to solve OPF using the generator’s constraints, such as prohibited zones and valve point effect.This method can successfully increase the diversity of generating population by adding four dominant strategies to move each individual of the existing swarm [21]. A chaotic invasive weed optimization algorithm is proposed to solve the OPF problem with non-smooth and non-convex fuel cost curves. The difficulties that the original invasive weed optimization algorithm faces in order to reach a better optimal solution were addressed. Additionally, this method is more stable and suitable for non-linear OPF [22]. Brain storming optimization (BSO) and teaching-learning optimization(TLBO) are hybridized to minimize the fuel cost of thermal generation units; this method outperforms TLBO and BSO, owing to a self evolving principle which is applied to the control parameter and a higher memory capability during its intermediate stages [23]. A hybrid optimization algorithm is based on sequential quadratic programming (SQP) to generate an initial population. Then, a differential evolution(DE) took that population to find the optimal solution more effectively and it was used to minimize the fuel cost with valve point and the transmission line real losses, the unfavorable results of DE which include stagnation and premature convergence can be avoided through benefiting from the impressive role of SQP in relaxing the discrete variables of the system [24].



A growing and considerable effort have been made in recent years to solve and model the OPF problem, including renewable energy sources. The OPF problem with taking into account uncertainties in the wind, solar, and load forecast and optimized using a genetic algorithm and two-point estimate method is presented in [25]. A hybrid method called moth swarm algorithm and gravitational search algorithm is used to solve the problem of OPF, including wind power [26]. A modified two-point estimation method is used to solve probabilistic OPF incorporating wind and solar photovoltaic power [27]. Hybrid wind photovoltaic power systems are optimized using the unscented transformation method, which can carry out probabilistic OPF with high accuracy and less computational time [28]. The OPF, including wind, is optimized using a fuzzy-based particle swarm optimization. A fuzzy set modeled the forecast load demand and wind speed [29].



Besides, OPF incorporating wind power energy is optimized by a hybrid algorithm called a hybrid dragonfly with aging particle swarm optimization [30]. Adaptive differential evolution with proper constraint handling method is addressed OPF, including wind and solar. The forecast wind and solar photovoltaic are modeled using Weibull and lognormal probability distribution functions [4]. An optimal reactive power dispatch with solar photovoltaic power and its impact on minimizing real power losses is addressed using the Jaya algorithm to solve this issue [31]. A constrained multi-objective population external optimization method in [32] is presented to minimize the fuel cost and emission in the presence of renewable energy sources. A grey wolf optimization algorithm (GWO) in [33] was proposed to tune the parameters of a thyristor controlled series compensator and address OPF, including wind and solar power. A best guided artificial bee colony optimization in [1] was to find the optimal setting of conventional and renewable power generation.




1.3. Contribution and Paper Organization


In the present work, an equilibrium optimizer [34], which is a novel optimization method inspired by controlling the volume mass balance model for estimating both equilibrium and dynamic states, is used to prove its performance in solving the OPF problem. It is implemented on (i) IEEE 30-bus system, (ii) wind integrated IEEE 30-bus system, (iii) solar PV integrated IEEE 30-bus system, and (iv) hybrid wind and solar PV integrated IEEE 30-bus system. Real power loss minimizations, total cost minimization of generating units and emission index minimization are considered to be the objective functions of the OPF problem. Weibull and lognormal probability distribution functions are used to model the wind speed and solar irradiance to forecast the output power of wind and solar PV systems. Furthermore, aiming to fill the gap in the literature, this paper investigates the impact of the presence of only wind or only solar PV or both of them on enhancing the objective functions of the OPF problem. In addition, a comprehensive statistical analysis for the equilibrium optimizer technique (EO) and other optimization techniques are used.



The rest of this paper is organized as follows: the formulation of OPF problem is described in Section 2. Then, a mathematical model of wind and solar PV plants is introduced in Section 3. Section 4 presents the equilibrium optimizer technique (EO) and its implementation to solve the OPF problem. Section 5 presents the test systems and the input parameters of the test systems and the optimization methods. Simulation results are explained in Section 6. Finally, Section 7 draws the conclusion of this work.





2. Problem Formulation of OPF


2.1. General Structure of OPF


Generally, OPF aims to minimizes some objective functions.   f o   is the objective function to be minimized, and h and g are the equality and inequality constraints in the power system network; OPF can be expressed as [14,35]:


      M i n i m i z e        f o   (  x , u  )          s u b j e c t   t o       g (  x , u  ) ≤ 0           h (  x , u  ) = 0      



(1)







x is a state vector of dependent variables including the real power of swing generator (  P  G 1   ), (  V  L i   ) is the voltage magnitude of load buses, (  Q  G i   ) is the reactive power of generator at   i  t h    bus and (  S  l i   ) is the loading of the   i  t h    transmission line. x can be expressed as follows [14,35]:


  x =   [  P  G 1   ,  V  L 1   , … ,  V  L  n p q    ,  Q  G 1   , … ,  Q  G  N G    ,  S  l 1   , … ,  S  l  n l    ]  T   



(2)




where   n p q   and   n l   are the number of PQ buses and transmission lines.   S l   and   n l   are the loading of transmission lines and the number of transmission lines, respectively.



u is a vector consisting of control variables, (  P  G i   ) is the real power of all generators excluding swing generator, (  V  G i   ) is the voltage magnitude of generators, (  T S  ) is the branch transformer tap, and (  Q C  ) is the shunt capacitor. u can be expressed as follows [14,35]:


  u =   [  P  G 2   , … ,  P  G  N G    ,  V  G 1   , … ,  V  G  N G    ,  Q  C 1   , … ,  Q  C  N c    , T  S 1  , … , T  S  N T   ]  T   



(3)




where,   N G  ,   N c   and   N T   are the number of generators, shunt VAR compensator and transformers, respectively.




2.2. Objective Functions of OPF


Here, the first four cases dealt with solving single objective OPF and the last one addressed the multi-objective OPF.



	
Case 1: real power loss minimization



Due to the presence of the inherent resistance for the transmission lines, the aim of this function is to minimize the active power losses and it is expressed as [14,35]:


   f o   ( x , u )  =  P  l o s s   =  ∑  q = 1   n l    G  q  ( i j )     (  V  i  2  +  V  j  2  − 2  V i   V j  cos   (  δ  i j   )  )   



(4)




where   G  q ( i j )    is the conductance of   q  t h    transmission line, and   V i   and   V j   are the voltage magnitude of terminal buses of transmission line.



	
Case 2: emission index minimization



In the present case, the target is to reduce the harmful gases emission from the thermal generation units, and the coefficients of the gas emission of the thermal power generators are given in Table 1. Emission in tons per hour (t/h) can be described by [14,35]:


   f o   ( x , u )  = E =  ∑  i = 1   N G    [  (  α i  +  β i   P  G i   +  γ i   P   G i   2  )  ∗ 0.01 +  ω i  e   (  μ i  P  G i     )  ]   



(5)




where  α ,  β ,  γ ,  ω  and  μ  are the emission coefficients and G1, G2, G3, G4, G5, and G6 represent thermal power generators at buses 1, 2, 5, 8, 11, and 13, respectively, as given in Table 1.



	
Case 3: Basic fuel cost minimization



The relationship between fuel cost (  $ / h  ) and the power generated from the thermal generating units can be approximately given by the quadratic relationship and it is expressed as [14,35]:


   f o   ( x , u )  = F C =  ∑  i = 1   N G    a i  +  b i   P  G i   +  c i   P   G i   2   



(6)




where   a i  ,   b i  ,   c i   are the cost coefficient of the thermal generators and these coefficients are provided in Table 2.



	
Case 4: Voltage deviation minimization



The voltage deviation index is the cumulative deviation of all load buses from nominal value of unity. It also plays a significant role in keeping the voltage quality and security of the electrical power network.This case is expressed as [14,35]:


   f o   ( x , u )  = V D =   ∑  p = 1   N L    |  V  L p   − 1 |    



(7)







	
Case 5: Minimization of basic the fuel cost, emission index, voltage deviation and the real power losses.



The aim of this case is to reduce quadratic fuel cost, active power transmission losses, environmental emission index and voltage deviation index simultaneously. It can be defined as follows [14,35]:


   f o   ( x , u )  = F C +  λ p  ×  P  l o s s   +  λ  V D   × V D +  λ E  × E  



(8)




where   λ p  ,   λ  V D    and   λ E   are weight factors and they are assumed to be 22, 21 and 19, respectively as in [14].







2.3. Constraints


The constraints of OPF are usually categorized into [14,35]:




	
Equality constraints



The equality constraints of OPF are usually represented by the load flow equations:


   P  G i   −  P  D i   =  V i   ∑  k = 1   N B    V k   (  G  i k   cos   θ  i k   +  B  i k   sin   θ  i k   )   



(9)






   Q  G i   −  Q  D i   =  V i   ∑  k = 1   N B    V k   (  G  i k   sin   θ  i k   −  B  i k   cos   θ  i k   )   



(10)




where   P  D i   ,   Q  D i   ,   N B  , and   θ  i k    are the active and reactive load demand, the number of buses and the angle difference between bus i and k, respectively.   G  i k    and   B  i k    are the transfer and susceptance conductance.



	
Inequality constraints



It can be defined by operating limits on the equipment of the power system, transmission loading and voltage of load buses.



	(a)

	
Constraints of thermal and renewable energy generating units


   V  G  i , m i n    ≤  V  G i   ≤  V  G  i , m a x    i = 1 , … , N  



(11)






   P  G  i , m i n    ≤  P  G i   ≤  P  G  i , m a x    i = 1 , … , N  



(12)






   Q  G  i , m i n    ≤  Q  G i   ≤  Q  G  i , m a x    i = 1 , … , N  



(13)








	(b)

	
Constraints of the transformer tap setting


  T  S  k , m i n   ≤ T  S k  ≤ T  S  k , m a x   k = 1 , … ,  N T   



(14)








	(c)

	
constraints of the shunt compensator


   Q  C , j , m i n   ≤  Q C  ≤  Q  C , j , m a x   j = 1 , … ,  N C   



(15)








	(d)

	
Constraints of the voltages at load buses


   V  L r , m i n   ≤  V  L r   ≤  V  L r , m a x   r = 1 , … ,  N L   



(16)








	(e)

	
Constraints of the transmission line loading


   S  l v   ≤  S  l v , m a x   v = 1 , … ,  n l   



(17)

















2.4. Constraint Handling


In order to decline the infeasible solutions of OPF and keep the dependent variables within the allowable ranges, a penalty function was modeled and added to the objective functions defined in Section 2.2 [14,35].


  p e n a l t y =  K p    (  P  G 1   −  P  G 1   L i m   )  2  +  K Q   ∑  i = 1   N G     (  Q  G i   −  Q  G i   L i m   )  2  +  K V   ∑  i = 1   N L     (  V  L i   −  V  L i   L i m   )  2  +  K S   ∑  i = 1   n l     (  S  l i   −  S  L i   L i m   )  2   



(18)




where   K Q  ,   K p  ,   K V   and   K S   are the values of penalty factors associated with generation reactive power, generation real power of the swing generator, load bus voltages and line flow of transmission lines. They are assumed to be 100, 100, 100, and 100,000, respectively [14,36], and   x  L i m    is the value of the violated limit of dependent variables(x). It is equal to   x  m a x    in case of   x >  x  m a x     or   x  m i n    in case of   x <  x  m i n    .





3. Mathematical Models of the Wind and Solar Power Generating Units


3.1. Wind Power Units


3.1.1. Uncertain and Power Model of Wind Turbines


The wind speed of the wind turbines follows the Weibull probability distribution function. The characteristic of the output power generated by the wind turbine is a random variable depending on wind speed. The Weibull probability distribution function with dimensionless shape factor (k) and scale factor (c) is used to model the wind speed    f v   ( v )   . The wind speed (   f v   ( v )   ) can be expressed mathematically as [1,2,37,38]:


   f v   ( v )  =  k c     v c    k − 1   ×  e  −    v c   k     



(19)







The electrical energy generated by a wind turbine is the result of converting the kinetic energy of wind. The actual output power of wind turbines   (  P w   ( v )  )   can be presented as [1,2,37,38]:


   P w   ( v )  =     0    v <  v  i n    a n d  v >  v  o u t          P  w r       v −  v  i n      v r  −  v  i n            v  i n   ≤ v ≤  v r        P  w r       v r  < v ≤  v  o u t         



(20)




where   (  P  w r   )  ,   (  v  i n   )  ,   (  v  o u t   )   and   (  v r  )   are the rated power of the wind turbine, the cut-in wind speed of the wind turbine, the cut-out wind speed and the rated wind speed, respectively.




3.1.2. Calculation of Direct, Underestimation and Overestimation Cost of Wind Power


The direct cost of wind power plant can be defined as [4,39,40,41]:


   C  w , j    (  P  w s , j   )  =  g j   P  w s , j    



(21)




where   g j   is the direct cost coefficient of wind plant.



The cost function is overestimated because the actual generated power from the wind turbine is less than the estimated power by mathematical equations. The overestimation cost is used for reverse the requirements when the estimated output power of the wind turbine is more than actual output power. Reserve cost for the   j  t h    wind turbine can be defined as [4,39,40,41]:


      C  R w , j    (  P  w s , j   −  P  w a v , j   )  =  K  R w , j    (  P  w s , j   −  P  w a v , j   )        =  K  R w , j    ∫  0   P  w s , j     (  P  w s , j   −  P  w , j   )   f w   (  P  w , j   )  d  P  w , j       



(22)




where   K  R w , j   ,   P  w a v , j   ,   P  w s , j    and   f  w (  P  w , j   )    are the reserve cost coefficient pertaining to the   j  t h    wind turbine, the actual available power from the same plant, the estimated power from the   j  t h    wind turbine and the wind power probability density function for   j  t h    wind turbine.



Underestimation cost function of the wind turbine is due to not using the whole power which is generated from the wind turbine. In other words, when the generated power from the wind turbine is more than the estimated power, the underestimation cost function is applied as a penalty due to wasting the surplus power. The penalty cost for the   j  t h    wind turbine can be defined as [4,39,40,41]:


      C  P w , j    (  P  w a v , j   −  P  w s , j   )  =  K  P w , j    (  P  w a v , j   −  P  w s , j   )        =  K  P w , d    ∫   P  w s , j     P  w r , j     (  P  w , j   −  P  w s , j   )   f w   (  P  w , j   )  d  P  w , j       



(23)




where   K  P w , j    is a coefficient representing the penalty cost of the   j  t h    wind turbine and   P  w r , j    is the rated output power which is generated from the   j  t h    wind turbine. As shown in Section 3.1.2, the total cost of wind power turbines (  C  T  W  ) can be described as follows:


   C  T  W  =  ∑  j = 1   N w    C  w , j    (  P  w s , j   )  +  C  R w , j    (  P  w s , j   −  P  w a v , j   )  +  C  P w , j    (  P  w a v , j   −  P  w s , j   )   



(24)




where   N w   is the number of wind power turbines.





3.2. Solar Power Units


3.2.1. Uncertain and Power Model of Solar PV Plants


Solar irradiance can be modelled by lognormal probability distribution function due to its uncertain and stochastic nature. The lognormal probability distribution is a function of solar irradiance (G) with mean  μ  and standard deviation  σ , it can be expressed mathematically as [3,4]:


   f G   ( G )  =  1  G σ   2 π     exp  (   −   ( l n x − μ )  2    2  σ 2    )  G > 0  



(25)







The main role of PV systems is to convert the solar irradiance to electrical energy. The output power of PV system   (  P s   ( G )  )   as a function of irradiance can be estimated as [4,39]:


      P s   G  =       P  s r      G 2    G  s t d    R c         for  0 < G <  R c         P  s r     G  G  s t d         for  G ≥  R c           



(26)




where   G  s t d    represents the solar irradiance in standard environment,   R c   is a certain irradiance point, and   P  s r    is the rated output power which is generated from the solar PV system.




3.2.2. Calculation of Direct, Underestimation, and Overestimation Cost of Solar PV Power


The direct cost of solar power plant can be defined as [4,39]:


   C  s , k    (  P  s s , k   )  =  h k   P  s s , k    



(27)




where   h k   is a coefficient which represents the direct cost of the solar photovoltaic plant.



The same case as in the wind energy system, the solar energy system involves overestimation and underestimation cost due to its uncertain output power. Reserve cost for the overestimation of   k  t h    solar PV system is [4,39]:


      C  R s , k    (  P  s s , k   −  P  s a v , k   )  =  K  R s , k    (  P  s s , k   −  P  s a v , k   )        =  K  R s , k   ∗  f s   (  P  s a v , k   <  P  s s , k   )  ∗       [  P  s s , k   − E  (  P  s a v , k   <  P  s s , k   )   ]      



(28)




where   K  R s , k    is a coefficient which represents the reserve cost pertaining to   k  t h    solar PV system,   P  s a v , k    is the actual available power from the same plant,    f s   (  P  s a v   , k <  P  s s , k   )    is the probability of solar power shortage occurrence than the scheduled power   (  P  s s , k   )   and   E (  P  s a v , k   <  P  s s , k   )   is the expectation of solar PV power below   P  s s , k   .



In the case of the underestimation of   k  t h    solar PV system, the penalty cost is given as [4,39]:


      C  P s , k    (  P  s a v , k   −  P  s s , k   )  =  K  P s , k    (  P  s a v , k   −  P  s s , k   )        =  K  P s , k   ∗  f s   (  P  s a v , k   >  P  s s , k   )  ∗       [ E (  P  s a v , k   >  P  s s , k    ) −  P  s s , k   ]      



(29)




where   K  P s , k    is a coefficient represents the penalty cost pertaining to   k  t h    solar PV system,    f s   (  P  s a v , k   <  P  s s , k   )    is the probability of solar power surplus than the scheduled power   (  P  s s , k   )   and   E (  P  s a v , k   <  P  s s , k   )   is the expectation of solar PV power above   P  s s , k   . As explained in Section 3.2.2, the total cost of solar PV plants (  C  T   P V   ) consists of three terms(direct, underestimation and overestimation cost) and it can be given as follows [4,39]:


   C  T   P V   =  ∑  k = 1   N  P V     C  s , k    (  P  s s , k   )  +  C  P s , k    (  P  s a v , k   −  P  s s , k   )  +  C  R s , k    (  P  s s , k   −  P  s a v , k   )   



(30)




where   N  P V    is the number of the solar PV plants.






4. Proposed EO


4.1. Inspiration and Mathematical Model


The main inspiration for this algorithm is the dynamic mass balance equation which describes the conservation of mass that enters, leaves or generates in a control volume. This equation is a first-order ordinary differential equation and it is described as the following [34]:


  V   d C   d t   = Q  C  e q   − Q C + G  



(31)




where   V   d C   d t     is the rate of change of mass in volume, (V), C is the concentration inside the volume(V), V is the control volume, Q is the volumetric flow rate into and out of the control volume,   C  e q    is the concentration at an equilibrium state, and G is the mass generator rate inside the control volume.



After reaching the steady equilibrium state of Equation (31) that is reformulated as a function of    Q V   , which is called turnover rate   λ =  Q V   . The following equations are derived from Equation (31) to solve for (C) as a function of time   t   [34]:


    d C   λ  C  e q   − λ C +  G V    = d t  



(32)






   ∫   C 0   C    d C   λ  C  e q   − λ C +  G V    =  ∫   t 0   t  d t  



(33)






  F =  e  − λ  t −  t 0      



(34)






  C =  C  e q   +   C 0  −  C  e q    F +  G  λ V    1 − F   



(35)




where F is an exponential term to assist EO having a balance between exploitation and exploration,   t 0   is the initial start time, and   C 0   is the initial concentration.



The Equation (35) introduces three rules for updating the concentration of each particle. The equilibrium concentration is the first term which is described as one of the best-so-far solutions randomly chosen from the equilibrium pool. The difference between a concentration of a particle and the equilibrium state is the second term which helps particles to globally explore the domain. The final term is called the generation rate which mainly acts as an exploiter or solution refiner [34].




4.2. The Interaction between Each Term and the Search Pattern and the Definition of the EO’s Terms


4.2.1. Initialization and Function Evaluation


Firstly, the optimization process starts with the initial population. The Equation (36) describes the initial concentration process which depends on the number of particles and dimensions that are initialized in the search space in a uniform random manner [34].


   C  i   i n i t i a l   =  C  m i n   + r a n  d i    C  m a x   −  C  m i n     



(36)




where   C  i   i n i t i a l    is the initial concentration vector of the   i  t h    particle,   C  m i n    is the minimum value for the dimensions,   C  m a x    is the maximum value for the dimensions and   r a n  d i    is a random vector ranging between zero and one. After that, the fitness function of the particles are evaluated and then solved to determine the equilibrium conditions.




4.2.2. Equilibrium Pool and Candidates (  C  E q   )


The global optimum of EO is represented by the equilibrium state. At the beginning, no information about the equilibrium state exists, but equilibrium candidates are identified to provide a search domain for the particles. There are five equilibrium candidates as given in Equation (37). Four of them are the best-so-far particles determined during the optimization process and the last one is the arithmetic mean of the previous-mentioned four particles. The main goal of the first four candidates is to improve the exploration capability, whereas the fifth candidate enhances the exploitation [34]


   C  a v g   =  (   C →   e q    1  +   C →   e q    2  +   C →   e q    3  +   C →   e q    4  )  / 4  



(37)






   C  e q , p o o l   =    C →   e q    1  ,   C →   e q    2  ,   C →   e q    3  ,   C →   e q    4  ,   C →   a v e     



(38)








4.2.3. Exponential Term (F)


The exponential term (F) helps EO to have an acceptable balance between exploration and exploitation. Referring back to Equation (34), the time (t) in Equation (34) depends on the iteration   ( I t e r )   and it is described as follows [34]:


  t =   1 −   I t e r   M a  x  i t e r        a 2    I t e r   M a  x  i t e r        



(39)







For the purpose of convergence,   t 0   in Equation (10) is proposed to slow down the search speed as well as enhancing the exploration and exploitation ability of EO [34].


   t 0  =  1  λ →   l n  −  a 1  s i g n  (  r →  − 0.5 )   [ 1 −  e  −  λ →  t   ]    



(40)




where   a 1   and   a 2   are constant values for controlling exploration and exploitation ability,   s i g n (  r →  − 0.5 )   is a factor that determines the direction of exploration and exploitation and r is a random vector ranges between zero and one.




4.2.4. The Generation Rate (G)


The generation rate aims to provide the exact solution by enhancing the exploitation ability of EO and can be described as [34]:


   G →  =   G 0  →   e  −  k →   t −  t 0      



(41)







After assumption that   k = λ  , the equation of generation rate was updated as follows [34]:


   G →  =   G 0  →   F →   



(42)






    G 0  →  =   G C P  →     C  e q   →  −  λ →   C →    



(43)






    G C P  →  =      0.5  r 1  ,       r 2  ≥ G P       0 ,       r 2  < G P       



(44)




where   r 1   and   r 2   are a random number between zero and one,   G C P   is the generation rate control parameter.



The generation rate control parameter (GCP) mainly depends on generation probability (GP) which defines the number of particles of the generation term to update their states.



State of the art state that EO at   G P = 0.5  ; EO can achieve a good balance between exploration and exploitation. The updating rule of EO is given as:


   C →  =   C  e q   →  +   C →  −   C  e q   →    F →  +   G →    λ →  V    1 −  F →    



(45)







The second and third terms of Equation (45) can increase variation and thus help EO to better explore in case of they have same signs or to decrease the variation and aiding EO in local searches in case of having opposite signs [34].




4.2.5. Particle’s Memory Saving


This can help each particle track with its coordinates in the space. It aids EO in exploitation capability and avoids getting trapped in local minima [34].





4.3. Implementation of EO to Solve the OPF Problem


The proposed EO is applied to solve OPF problem including wind and solar PV generation units. The following pseudo code and flowchart shown in Figure 1 explain the steps of the application of EO for OPF problem.



	
Define the control and dependent variables and their limits, as well as the target objective function defined in Section 2.2 [34].



	
Collect and read the input data of the power system under test, such as data of transmission lines, transformers, shunt VAR compensator, loads and generation units.



	
Calculate the estimated output power of solar PV and wind power generation units, as defined and explained in Section 3 [34].



	
Initialize the particle’s populations [34].



	
Assign a large number to the fitness of equilibrium candidates and let a1 = 2; a2 = 1; GP = 0.5 [34].



	
Do the main while loop as the following [34]:




	(a)

	
While (current iteration (Iter) <maximum number of iteration (Max-iter))




	(b)

	
For i=1: particles’ number (n)




	(c)

	
Find the fitness value of the   i  t h    particle




	
If fitness (  C i  ) <fitness (  C  e q 1   ) then



Substitute (  C  e q 1   ) with (  C i  ) and fitness (  C  e q 1   )



with fitness (  C i  )



	
Else if fitness (  C i  ) >fitness (  C  e q 1   ) & fitness (  C i  ) <fitness (  C  e q 2   ) then



Substitute (  C  e q 2   ) with (  C i  ) and fitness (  C  e q 2   )



with fitness (  C i  )



	
Else if fitness (  C i  ) >fitness (  C  e q 1   ) & fitness (  C i  ) >fitness (  C  e q 2   ) & fitness (  C i  ) <fitness (  C  e q 3   ) then



Substitute (  C  e q 3   ) with (  C i  ) and fitness (  C  e q 3   )



with fitness (  C i  )



	
Else if fitness (  C i  ) >fitness (  C  e q 1   ) & fitness (  C i  ) >fitness (  C  e q 2   ) & fitness (  C i  ) >fitness (  C  e q 3   ) & fitness (  C i  ) <fitness (  C  e q 4   ) then



Substitute (  C  e q 4   ) with (  C i  ) and fitness (  C  e q 4   ) with fitness (  C i  )









	(d)

	
End (if)




	(e)

	
End (for)









	
Find the    C  a v g   →   according to Equation (37).



	
Construct the equilibrium pool according to Equation (38) [34].



	
In case of the current iteration >1, accomplish memory saving [34].



	
Assign t according to Equation (39).



	
Do the second for loop as following:



For i=1: particles’ number



	(a)

	
Select one candidate from the equilibrium pool randomly.




	(b)

	
Create the two random vector ( λ  and r).




	(c)

	
Construct F,   G C P  ,   G 0   and G according to the Equations (34) and (42)–(44), respectively [34].




	(d)

	
Update the concentration C according to Equation (45)







End the second for loop.



	
Increase the current iteration by one.



	
End the main while loop.



	
Extract and analyse of the results.








5. Test Systems and Control Parameters of Optimization Methods


5.1. Description of the Test Power Systems


	
Test system 1: IEEE 30-bus system



The IEEE 30-bus system consists of six thermal power generators, as presented in Figure 2. The data about transmission lines, tap changing transformers, AVR compensators, limitations on generators and load voltages, active and reactive power demand are given in [42,43,44]. The general specifications of this system are described in Table 3.



	
Test system 2: Hybrid wind and solar PV integrated IEEE 30-bus system



This modified test power system is simulated to show its behavior in the presence of both wind and solar PV power generating units, as depicted in Figure 3. The IEEE 30-bus system has been modified by replacing the thermal power generating units at buses 5, 11, and 13 with wind generator at bus 11 and solar PV at buses 5 and 13. In addition, the new solar PV and wind power generators are constructed at bus 24, and 30, respectively. The objective functions defined in Section 2.2 are modified by adding the output power of solar PV plants (   P s   ( G )   ) and the output power of wind plants (   P w   ( v )   ) given in Section 3. Case 3 and case 5 described in Section 2.2 are modified by adding the total cost of solar PV plants (  C  T   P V   ) and the total cost of wind plants (  C  T  w  ) defined in Section 3. The specification of this hybrid power system is given in Table 3. The data of wind and solar PV plants are described in Table 4 and Table 5, respectively.



	
Test system 3: Solar PV integrated IEEE 30-bus system



This system is modified by locating solar PV generators at buses 5, 11, and 13 instead of the thermal power generators. Furthermore, two new solar power generation units are installed at buses 24, and 30, as shown in Figure 4. The objective funtions defined in Section 2.2 are modified by adding the output power of solar PV plants (   P s   ( G )   ) given in Section 3. Case 3 and case 5 described in Section 2.2 are modified by adding the total cost of solar PV plants (  C  T   P V   ) defined in Section 3. The general data of this system and solar PV plants are presented in Table 3 and Table 6, respectively.



	
Test system 4: wind integrated IEEE 30-bus system



In this system, the IEEE 30-bus system is modified by replacing the thermal power generating units at buses 5, 11, and 13 with wind power generators. Moreover, two new wind generators have been added at buses 24, and 30, as seen in Figure 5. The objective functions defined in Section 2.2 is modified by adding the output power of wind plants (   P w   ( v )   ) given in Section 3. Case 3 and case 5 described in Section 2.2 are modified by adding the total cost of wind plants (  C  T  w  ) defined in Section 3. The general specifications of this system and the data of wind power plants are given in Table 3 and Table 7, respectively.







5.2. Control Parameters of Optimization Methods


The number of iterations, population size, testing ranges and other parameters of the optimization methods are given in Table 8.





6. Results and Discussion


The performance and effectiveness of the EO are verified for solving OPF problem by carrying out 20 independent test trial runs for all cases discussed in Section 2.2. The EO [34] and other five metaheuristic optimization techniques: MFO [47], TACPSO [45], AGPSO1 [45], TLBO [46] and MPSO [45] have been tested on four power test systems given in Section 5.1. All these optimization techniques are implemented on 2.8-GHz i7 PC with 16 GB of RAM using MATLAB 2017.



6.1. Discussion and Analysis of the Objective Functions of OPF


6.1.1. Minimization of Real Power Loss


The EO [34], TLBO [46], MPSO [45], MFO [47], AGPSO1 [45], and TACPSO [45] algorithms are implemented on the test system 1, test system 2, test system 3, and test system 4 for the minimization of the real power loss as defined in Section 2.2. Figure 6a shows the convergence characteristics of real power loss yielded by the best solution of the EO and other optimization methods for test system 1. It observed that the better convergence characteristic is yielded by the EO. Furthermore, Figure 6b,c display voltage and loading profiles of test system 1 for case 1. It is clear that the EO and other optimization methods obey the voltage limits of buses and loading limits of transmission lines. The results of EO and other techniques for test system 1 are displayed in Table 9. It can be observed that EO achieves the minimum real power loss, but other optimization techniques such as TLBO and MFO have less fuel cost at 967.24 $/h and 967.44 $/h, respectively. Furthermore, other techniques have less voltage deviations at minimization this objective function. However, it is clear that the loading of transmission lines for EO is healthy and less than other methods.



The loss and loading profiles using EO for all test systems are given in Figure 7. The optimal (best) results yielded by the EO method for the test system 1, test system 2, test system 3, and test system 4 are tabulated in Table 10. From Figure 7 and Table 10, it is seen that the losses of test system 2, test system 3, and test system 4 reduced by 23.6%, 31.52%, and 33.32%, respectively, compared to test system 1. Additionally, it can be seen that the contribution of power generation of Test system 2 from wind, solar PV and thermal power generation are 15.05%, 33.01%, and 51.93%, respectively. With respect to Test system 3, the contribution of power generation from solar PV and thermal power are 53.33% and 46.66%, respectively. Besides, the wind power plants of Test system 4 contributes 52.35% of the total power generation.



The statistical results (the best, the worst, the mean, and the standard deviation) of the real power loss for the EO and other optimization techniques are given in Table 11. As shown in Table 11, the minimum best, standard deviation, and mean are resulted from the EO.



As expected, the addition and location of the renewable energy resources in the power system have a significant impact on reducing the real power loss.




6.1.2. Emission Index Minimization


In this case, the emission index defined in Section 2.2 was minimized for all test systems. Figure 8 demonstrates the convergence characteristics, loss profiles, and loading profiles for emission minimization using EO and other methods. It can be noticed from Figure 8a that the EO has the smoothest and speediest convergence curves in comparing with other techniques, as well as Figure 8b,c showing that there is no violation in the voltage limits of buses and loading limits of transmission lines. As we can see from Table 13 and Figure 8c that EO can achieve the lowest real power loss and the lowest loading of the transmission lines while minimizing this objective function, but other optimization methods can obtain less voltage deviations in comparison to EO.



The best (optimal) results obtained using the EO for all test systems for case 2 are shown in Table 12. As we can see from Figure 9 and Table 12 that emission index reduced by 55.54% for test system 2, test system 3, and test system 4 compared to test system 1. In this case, the contribution of power generation from wind power plants for Test system 2 and Test system 4 are 12.25% and 54.12% of the total generation, respectively. In addition, the contribution of power generation from solar PV for Test system 2 and Test system 3 are 41.69% and 53.93% of the total generation, respectively.



Table 13 presents the results of the EO and other methods for test system 1 with the minimization of emission index. For example, the objective function of case 2 for EO was 0.204819 ton/h compared to 0.204862 ton/h and 0.204885 ton/h for MFO [47] and TLBO [46] algorithms, respectively.



Table 14 summarizes the statistical results for the present case. It can be found from Table 14 that the EO provides the smallest best, standard deviation, and median than other methods.




6.1.3. Minimization of the Total Cost of Generating Units


The comparative convergence characteristics, loading profiles, and loss profiles for test system 1 for the EO and other optimization techniques are presented in Figure 10. As observed in Figure 10, the voltage and loading profiles are kept within the acceptable ranges and the EO gives the best convergence characteristics compared to other methods. The optimal results of the EO and other techniques for test system 1 are summarized in Table 15. From Table 15, the EO leads to 800.4486 $/h total cost of generators which is better than the total cost obtained by the other compared methods. From Figure 10b,c, it can be found that even though EO can obtain the minimum value of the total cost of power generation, the loading of the transmission lines is more than other methods and voltage deviation of EO is higher than other optimization techniques.



The statistical results yielded by the EO and other optimization techniques are given in Table 16.



From Table 17 and Figure 11, it can be observed that the total cost of generating units for test system 2, test system 3, and test system 4 declined by 3.54%, 3.47%, and 2.91%, respectively, compared to test system 1. In this case, as shown in Table 17; the contribution of power generation from wind power plants for Test system 2 and Test system 4 are 9.58% and 35.68% of the total generation, respectively. Moreover, the contribution of power generation from solar PV for Test system 2 and Test system 3 are 21.33% and 41.17% of the total generation, respectively.




6.1.4. Voltage Deviation Minimization


Figure 12 demonstrates the voltage profiles for all test systems for this case using EO. The optimal solution obtained by EO for test system 1, test system 2, test system 3, and test system 4 are tabulated in Table 18. As shown in Figure 12 and Table 18, the presence of the renewable energy resources improves the voltage profiles and reduced the voltage deviation for test system 2, test system 3, and test system 4 by 22.46%, 37.39%, and 29.61%, respectively, compared to test system 1. Besides, it can be observed that the power generation contribution of Test system 2 from wind, solar PV and thermal power generation are 17.57%, 17.87%, and 64.54%, respectively. With respect to Test system 3, the contribution of power generation from solar PV and thermal power are 34.69% and 65.30%, respectively. Moreover, the wind power plants of Test system 4 contribute 55.34% of the total power generation.



It is clear from Table 19; the minimum best, standard deviation, and median are obtained by the EO.



From Figure 13, the voltage and loading profiles for this case for all optimization methods obey the constraints of voltages at load buses and transmission line loading. It can also be observed that the EO convergence characteristic outperforms the convergence characteristics of other methods. The results of EO and other methods for test system 1 are given in Table 20. From Figure 13b,c and Table 20, it can be seen that EO achieves the minimum emission index while minimizing the objective function of voltage deviation. In addition, EO and MFO can obtain the lowest real power loss at 6.528 MW and 5.965 MW, respectively. Nevertheless, MPSO, TLBO, TACPSO, and ACPSO1 obtain lower fuel cost in comparison to EO.




6.1.5. Case 5: Minimization of the Total Cost of the Generating Units, Voltage Deviation, Real Power Loss, and Emission Index


It is clear from Figure 14 that the EO has the best convergence characteristics compared to the other optimization algorithms and the voltage and loading profiles for all algorithm ranges within the allowable limits. The results of EO and other methods for test system 1 of this case are shown in Table 21. It is clear from Figure 14b,c and Table 21 that while EO achieves the minimum value of voltage deviation and fuel cost in comparison to other methods, other optimization techniques obtain lower values of emission index and real power loss than EO.



The statistical analysis of the EO and other methods for test system 1 is given in Table 22. As shown in the table, the EO gives the minimum best, median and standard deviation.



It is clear from Figure 15 and Table 23 that the objective function for this case for test system 2, test system 3, and test system 4 dropped by 3.90%, 7.77%, and 7.84%, respectively compared to test system 1. It is found from Table 23 that the real power loss for test system 2, test system 3, and test system 4 dropped by 30.94%, 20.75%, and 46.06%, respectively compared to test system 1. It can be noted in Figure 15 that the contribution of power generation from wind for Test system 2 and Test system 4 are 15.67% and 49.37% of the total power generation, respectively. While the solar PV contributes 33.36% and 44.69% of the total power for test system 2 and test system 3, respectively. Moreover, it is observed from Table 23 that emission index for test system 2, test system 3, and test system 4 dropped by 61.24%, 54.91%, and 58.58%, respectively compared to test system 1.






7. Conclusions


In this study, a novel proposed EO method has been successfully applied to solve single and multi-objective OPF with integrated wind turbines and solar PV generators. Its performance and effectiveness were evaluated on four power system, namely: IEEE 30-bus system, wind integrated IEEE 30-bus system, solar PV integrated IEEE 30-bus system, and hybrid wind and solar PV integrated IEEE 30-bus system. Realistic models for the wind turbines and solar PV systems have been proposed and thus real power outputs of wind turbines and solar PV power plants have been accurately forecasted. Therefore, a correct and efficient decision can be taken for inclusion the wind turbines and solar PV power plants in the proper locations. The simulation and statistical results indicate and approve that the EO [34] method outperforms other optimization techniques, namely: TLBO [46], MPSO [45], MFO [47], AGPSO1 [45], and TACPSO [45]. Our research has highlighted the importance of the proper locations of the renewable energy resources on improving the objective functions of OPF problem. Furthermore, adding wind turbines and solar PV play an integral role in enhancing the performance of the standard IEEE 30-bus system. For example, they significantly reduce the fuel cost and emission of the conventional power generators, as well as minimize real power loss and voltage deviation.
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Abbreviations




	OPF
	Optimal power flow



	NLP
	Continuous nonlinear programming



	PCIP
	Predictor-corrector interior point algorithm



	PSO
	Particle swarm optimization



	QP
	Quadratic programming



	SQP
	Sequential quadratic programming



	MILP
	Mixed-integer linear programming



	TLBO
	Teaching–learning-based optimization



	GSA
	Gravitational search algorithm



	DE
	Differential evolution algorithm



	MTLBO
	Modified teaching learning-based optimization algorithm



	MABC
	Fuzzy-based modified bee colony



	BSO
	Brain storming optimization



	GWO
	Grey wolf optimization algorithm



	EO
	Equilibrium optimizer algorithm



	FACTS
	Flexible alternating current transmission system
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Figure 1. Flowchart of implementation of EO to solve OPF problem. 
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Figure 2. Scenario 1: IEEE 30-bus system. 
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Figure 3. Hybrid wind and solar PV integrated IEEE 30-bus system. 
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Figure 4. Solar PV integrated IEEE 30-bus system. 
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Figure 5. Wind integrated IEEE 30-bus system. 
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Figure 6. Comparative convergence, voltage and loading profiles for case 1 for all test systems. 






Figure 6. Comparative convergence, voltage and loading profiles for case 1 for all test systems.



[image: Energies 13 06066 g006]







[image: Energies 13 06066 g007 550] 





Figure 7. Loss and loading Profiles of case 1 for all test systems using EO. 
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Figure 8. Comparative convergence, voltage and loading Profiles for case 2 for all test systems. 
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Figure 9. Total Emission index (ton/hr) of case 2 for all test systems using EO. 
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Figure 10. Comparative convergence, voltage and loading Profiles for case 3 for all test systems. 
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Figure 11. Total cost of generating units of case 3 for all test systems using EO. 
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Figure 12. Voltage profiles of case 4 for all test systems using EO. 
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Figure 13. Comparative convergence, voltage and loading profiles for case 4 for all test systems. 
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Figure 14. Comparative convergence, voltage and loading profiles for case 5 for all Test system 1. 
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Figure 15. Total cost of generating units, total emission index, voltage and loss profiles of case 5 for all test systems. 






Figure 15. Total cost of generating units, total emission index, voltage and loss profiles of case 5 for all test systems.



[image: Energies 13 06066 g015]







[image: Table] 





Table 1. Emission coefficients of thermal power generating units [14,35].
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	Generator
	Bus
	   α   
	   β   
	   γ   
	   ω   
	   μ   





	G1
	1
	4.091
	−5.554
	6.49
	0.0002
	2.857



	G2
	2
	2.543
	−6.047
	5.638
	0.0005
	3.333



	G3
	5
	4.258
	−5.094
	4.586
	0.000001
	8



	G4
	8
	5.326
	−3.55
	3.38
	0.002
	2



	G5
	11
	4.258
	−5.094
	4.586
	0.000001
	8



	G6
	13
	6.131
	−5.555
	5.151
	0.00001
	6.667
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Table 2. Cost coefficients of the thermal power generators [14,35].
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	Generator
	Bus
	a
	b
	c





	G1
	1
	0
	2
	0.00375



	G2
	2
	0
	1.75
	0.0175



	G3
	5
	0
	1
	0.0625



	G4
	8
	0
	3.25
	0.00834



	G5
	11
	0
	3
	0.025



	G6
	13
	0
	3
	0.025
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Table 3. The general specification of all test power systems.
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Values and Details






	
Characteristics

	
Test System 1 [42,43,44]

	
Test System 2

	
Test System 3

	
Test System 4




	
Buses

	
30

	
30

	
30

	
30




	
Transmission Lines

	
41

	
41

	
41

	
41




	
Limitation on generator voltage

	
[0.9–1.1]

	
[0.9–1.1]

	
[0.9–1.1]

	
[0.9–1.1]




	
Limitation on load voltage

	
[0.95–1.1]

	
[0.95–1.1]

	
[0.95–1.1]

	
[0.95–1.1]




	
Thermal power generators

	
6

	
3

	
3

	
3




	
Wind power plants

	
0

	
2

	
0

	
5




	
Solar power plants

	
0

	
3

	
5

	
0




	
Shunt VAR compensation

	
9

	
9

	
9

	
9




	
Transformer with tap ratio

	
4

	
4

	
4

	
4




	
Control Variables

	
24

	
28

	
28

	
28




	
Active and Reactive power demand

	
283.4 MW, 126.2 Mvar

	
283.4 MW, 126.2 Mvar

	
283.4 MW, 126.2 Mvar

	
283.4 MW, 126.2 Mvar
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Table 4. Data of wind power plant for Test system 2.
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	Unit
	Bus
	No. of Turbines
	   P wr    [MW]
	k
	c
	   g i    [$/MWH]
	   K  Rw , i     [$/MWH]
	   K  Pw , i     [$/MWH]
	   v in    [m/s]
	   v out    [m/s]
	   v r    [m/s]





	1
	11
	12
	2
	2
	9
	1.7
	2.8
	1.7
	4
	25
	13



	2
	30
	12
	2
	2
	10
	1.7
	2.8
	1.7
	4
	25
	13
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Table 5. Data of solar power plant for Test system 2.
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	Unit
	Bus
	   P sr    [MW]
	   G std    [W/m    2   ]
	   R c    [W/m    2   ]
	   μ   
	   σ   
	   h k    [$/MWh]
	   K  Ps , k     [$/MWh]
	   K  Rs , k     [$/MWh]





	1
	5
	24
	800
	170
	6
	0.6
	1.55
	3.2
	1.30



	2
	13
	30
	800
	170
	6
	0.6
	1.45
	3.1
	1.45



	3
	30
	30
	800
	200
	6
	0.6
	1.60
	3.0
	1.30
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Table 6. Data of solar power plant for Test system 3.
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	Unit
	Bus
	   P sr    [MW]
	   G std    [W/m    2   ]
	   R c    [W/m    2   ]
	   μ   
	   σ   
	   h k    [$/MWh]
	   K  Ps , k     [$/MWh]
	   K  Rs , k     [$/MWh]





	1
	5
	24
	800
	170
	6
	0.6
	1.55
	3.2
	1.30



	2
	11
	24
	800
	200
	6
	0.6
	1.45
	2.8
	1.30



	3
	13
	24
	800
	170
	6
	0.6
	1.60
	3.1
	1.45



	4
	24
	30
	800
	170
	6
	0.6
	1.60
	3.0
	1.30



	5
	30
	30
	800
	200
	6
	0.6
	1.60
	3.0
	1.30
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Table 7. Data of wind power plant for Test system 4.
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	Unit
	Bus
	No. of Turbines
	   P wr    [MW]
	k
	c
	   g i    [$/MWH]
	   K  Rw , i     [$/MWH]
	   K  Pw , i     [$/MWH]
	   v in    [m/s]
	   v out    [m/s]
	   v r    [m/s]





	1
	5
	12
	2
	2
	9
	1.65
	2.6
	1.5
	4
	25
	13



	2
	11
	12
	2
	2
	10
	1.60
	2.6
	1.5
	4
	25
	13



	3
	13
	12
	2
	2
	9
	1.60
	2.6
	1.5
	4
	25
	13



	4
	24
	15
	2
	2
	10
	1.65
	2.6
	1.5
	4
	25
	13



	5
	30
	15
	2
	2
	9
	1.70
	2.6
	1.5
	4
	25
	13
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Table 8. Control parameters values for optimization methods.
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Algorithm

	
Parameters

	
Values






	
MPSO [45]

	
Inertia coefficient (w)

	
decreasing linearly from 0.9 to 0.4




	
Number of search agents

	
50




	
Maximum number of iteration

	
100




	
Udapting factor (C1,C2)

	
Described in [45]




	
Acceleration coefficient (c1,c2)

	
c1 = 1, c2 = 2




	
TLBO [46]

	
Teaching factor

	
Selected randomly [1,2]




	
Population size

	
50




	
Maximum number of iteration

	
100




	
TACPSO [45]

	
Inertia coefficient (w)

	
decreasing linearly from 0.9 to 0.4




	
Number of search agents

	
50




	
Maximum number of iteration

	
100




	
Udapting factor (C1,C2)

	
Described in [45]




	
Acceleration coefficient (c1,c2)

	
c1 = 1, c2 = 2




	
MFO [47]

	
Population size

	
50




	
Maximum number of iteration

	
100




	
Shape constant (b)

	
1




	
AGPSO 1 [45]

	
Inertia coefficient (w)

	
decreasing linearly from 0.9 to 0.4




	
Number of search agents

	
50




	
Maximum number of iteration

	
100




	
Udapting factor (C1,C2)

	
Described in [45]




	
Acceleration coefficient (c1,c2)

	
c1 = 1, c2 = 2




	
EO [34]

	
Constant values for controlling exploration (  a 1  )

	
2




	
Constant values for controlling exploitation (  a 2  )

	
1




	
Number of search particles

	
50




	
Maximum number of iteration

	
100




	
Generation probability

	
0.5
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Table 9. Results of EO and other methods of case 1 for Test system 1.
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	MFO
	TACPSO
	AGPSO1
	TLBO
	EO
	MPSO





	  V D   (p.u.)
	0.867649
	0.898003
	0.898362
	0.87350728
	0.917249
	0.679794



	  F C   ($/h)
	967.4482
	967.6206
	967.6485
	967.2492825
	967.5865
	967.7676



	  P  l o s s    (MW)
	3.124412
	3.100891
	3.094156
	3.108417583
	3.087342
	3.144079



	E (ton/h)
	0.207299
	0.207259
	0.207266
	0.207286164
	0.207268
	0.207273



	   f o   
	3.124412
	3.100891
	3.094156
	3.108417583
	3.087342
	3.144079



	   I m p r o v e m e n t   ( % )   
	1.18
	0.43
	0.22
	0.68
	-
	1.81
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Table 10. Optimal settings of dependent and control variables for case 1 for all test systems using EO.
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	Parameters
	Min
	Max
	Test System 1
	Test System 2
	Test System 3
	Test System 4





	PG2 (MW)
	20
	80
	79.9983006
	72.14028714
	48.22886744
	51.07651611



	PG5 (MW)
	15
	50
	49.9982627
	49.99945385
	49.97347066
	49.98470056



	PG8 (MW)
	10
	35
	34.99453958
	26.20234283
	34.77838714
	34.92764479



	PG11 (MW)
	10
	30
	29.99984469
	29.42347144
	29.97517159
	29.67713532



	PG13 (MW)
	10
	40
	39.99027741
	25.72695297
	29.69711674
	39.69895071



	PG24 (MW)
	10
	30
	
	18.61010237
	27.4148297
	15.73782289



	PG30 (MW)
	10
	40
	
	13.58641689
	15.23102984
	14.35575851



	V1 (p.u.)
	0.95
	1.1
	1.061430345
	1.033582214
	1.037749499
	1.056224426



	V2 (p.u.)
	0.95
	1.1
	1.057379791
	1.027683624
	1.032739079
	1.051241045



	V5 (p.u.)
	0.95
	1.1
	1.037622078
	1.003632229
	1.013755431
	1.032812731



	V8 (p.u.)
	0.95
	1.1
	1.044007621
	1.015022765
	1.02707043
	1.045463882



	V11 (p.u.)
	0.95
	1.1
	1.073279794
	1.063216144
	0.999050197
	1.042867188



	V13 (p.u.)
	0.95
	1.1
	1.051619936
	1.034701938
	1.044856898
	1.020563172



	V24 (p.u.)
	0.95
	1.1
	
	1.024480465
	1.009002895
	1.020352939



	V30 (p.u.)
	0.95
	1.1
	
	1.022453184
	1.018925985
	1.040981535



	QC10 (MVAr)
	0
	5
	4.287709826
	4.782286758
	2.62406261
	3.612693403



	QC12 (MVAr)
	0
	5
	2.093601675
	0.000803534
	0.986423834
	2.416935212



	QC15 (MVAr)
	0
	5
	3.996488379
	1.898614523
	0.206692775
	3.600783886



	QC17 (MVAr)
	0
	5
	4.136235738
	4.356883849
	2.716911629
	0.342465282



	QC20 (MVAr)
	0
	5
	4.495134896
	3.354513668
	4.692404829
	3.296807199



	QC21 (MVAr)
	0
	5
	5.000000000
	0.046094293
	2.038284465
	0.872744865



	QC23 (MVAr)
	0
	5
	3.197386977
	4.967912056
	4.957773966
	4.740324068



	QC24 (MVAr)
	0
	5
	4.806462479
	4.536993047
	3.79952116
	3.698494945



	QC29 (MVAr)
	0
	5
	2.461175597
	0.21865228
	4.63994E−05
	3.927880442



	T11 (p.u.)
	0.9
	1.1
	1.055740955
	1.015687471
	1.020034326
	1.0962353



	T12 (p.u.)
	0.9
	1.1
	0.924042761
	0.951998195
	0.957069803
	0.900424717



	T15 (p.u.)
	0.9
	1.1
	0.988530694
	0.989254661
	1.094558386
	0.991494831



	T36 (p.u.)
	0.9
	1.1
	0.975749345
	0.977273155
	1.010207101
	1.010623787



	PG1 (MW)
	50
	200
	51.50611659
	50.08572807
	50.22954768
	50.01396753



	QG1 (MVAr)
	−20
	150
	−5.485983591
	−1.712627012
	−9.408754457
	−4.363894439



	QG2 (MVAr)
	−20
	60
	7.574416698
	7.129014137
	3.920290677
	9.504062082



	QG5 (MVAr)
	−15
	62.5
	21.13271229
	17.01446382
	19.68757038
	20.6489489



	QG8 (MVAr)
	−15
	48
	26.41312254
	26.16274206
	28.52016815
	33.06577869



	QG11 (MVAr)
	−10
	40
	19.21231862
	19.38101083
	0.13383456
	18.93870787



	QG13 (MVAr)
	−15
	44
	2.247530335
	8.029799729
	33.49981989
	−2.320248965



	QG24 (MVAr)
	−15
	44
	
	3.105401958
	3.720374455
	2.56415683



	QG 30 (MVAr)
	−15
	44
	
	0.296246809
	2.993820748
	1.368798025



	  V D   (p.u.)
	
	
	0.917249187
	0.367181831
	0.252949566
	0.482190403



	  F C   ($/h)
	
	
	967.5864625
	417.7815499
	358.1435956
	368.1354088



	  P  l o s s    (MW)
	
	
	3.087341565
	2.374755583
	2.128420834
	2.072496662



	E (ton/h)
	
	
	0.20726839
	0.09655031
	0.09111361
	0.091202895



	  T C   ($/h)
	
	
	
	863.2203104
	823.476285
	867.8385329



	  C  T  W   ($/h)
	
	
	
	141.4837171
	
	499.7031241



	  C  T   P V    ($/h)
	
	
	
	303.9550435
	465.3326895
	



	  f o   (MW)
	
	
	3.087341565
	2.374755583
	2.128420834
	2.072496662
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Table 11. Summary of the statistical analysis of case 1 for Test system 1.
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	Best
	Worst
	Mean
	Std dev





	MFO
	3.124412
	3.469255
	3.313791
	0.115148



	TACPSO
	3.100891
	3.495604
	3.162984
	0.119564



	AGPSO1
	3.094156
	3.558659
	3.136808
	0.175963



	TLBO
	3.108418
	3.271804
	3.200392
	0.057571



	EO
	3.087342
	3.131426
	3.089549
	0.013218



	MPSO
	3.144079
	3.417325
	3.202598
	0.080901










[image: Table] 





Table 12. Optimal settings of dependent and control variables for case 2 for all test systems using EO.
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	Parameters
	Min
	Max
	Test System 1
	Test System 2
	Test System 3
	Test System 4





	PG2 (MW)
	20
	80
	67.52765352
	47.15393481
	46.93784062
	46.74579811



	PG5 (MW)
	15
	50
	49.99976843
	49.99997692
	48.55695793
	49.63943974



	PG8 (MW)
	10
	35
	34.99979715
	34.99785564
	35.00000000
	34.99981323



	PG11 (MW)
	10
	30
	30.00000000
	13.08937369
	24.11263394
	28.93951933



	PG13 (MW)
	10
	40
	39.99994042
	39.97364116
	38.90979918
	31.15977654



	PG24 (MW)
	10
	30
	
	29.67649489
	20.72363213
	13.68967898



	PG30 (MW)
	10
	40
	
	22.06349364
	22.1793691
	32.00183302



	V1 (p.u.)
	0.95
	1.1
	1.061391900
	1.035577033
	1.017785294
	1.007633877



	V2 (p.u.)
	0.95
	1.1
	1.055299891
	1.03014784
	1.009596473
	0.99225379



	V5 (p.u.)
	0.95
	1.1
	1.036061646
	0.975474909
	0.982885915
	0.966515297



	V8 (p.u.)
	0.95
	1.1
	1.042336524
	0.994262522
	0.996877809
	0.970873143



	V11 (p.u.)
	0.95
	1.1
	1.056098162
	0.99155371
	1.066472978
	1.018197794



	V13 (p.u.)
	0.95
	1.1
	1.061630874
	1.045591502
	1.053301428
	0.990382535



	V24 (p.u.)
	0.95
	1.1
	
	0.994310052
	1.023161602
	1.006430427



	V30 (p.u.)
	0.95
	1.1
	
	0.976743321
	0.962066536
	0.995194145



	QC10 (MVAr)
	0
	5
	4.194820255
	0.691891638
	0.00000000
	2.28917862



	QC12 (MVAr)
	0
	5
	0.527663733
	3.89808945
	4.781805725
	0.003693677



	QC15 (MVAr)
	0
	5
	4.925786364
	0.093781976
	4.681393138
	3.767863825



	QC17 (MVAr)
	0
	5
	4.982842903
	2.766984513
	4.998326488
	4.887538377



	QC20 (MVAr)
	0
	5
	4.671024822
	4.426843395
	4.610963598
	5.000000000



	QC21 (MVAr)
	0
	5
	4.976075346
	1.329009086
	4.940763823
	2.759967479



	QC23 (MVAr)
	0
	5
	2.74762835
	3.54838243
	0.002439547
	4.271161763



	QC24 (MVAr)
	0
	5
	4.992557282
	0.606928317
	0.970384621
	2.50397663



	QC29 (MVAr)
	0
	5
	2.088379542
	4.949034272
	0.000438444
	2.957731038



	T11 (p.u.)
	0.9
	1.1
	1.045594251
	0.951879814
	0.938502294
	0.940072546



	T12 (p.u.)
	0.9
	1.1
	0.921878284
	0.962206441
	1.096587454
	0.919312335



	T15 (p.u.)
	0.9
	1.1
	1.00248085
	1.099174642
	1.018026147
	1.023627655



	T36 (p.u.)
	0.9
	1.1
	0.972355171
	0.92579926
	1.099689643
	1.060629423



	PG1 (MW)
	50
	200
	64.09434175
	50.00003511
	50.00023516
	50.00000501



	QG1 (MVAr)
	−20
	150
	−5.544691231
	0.054641352
	−1.33241509
	18.58616272



	QG2 (MVAr)
	−20
	60
	6.45002148
	47.44923402
	4.202024706
	1.97952536



	QG5 (MVAr)
	−15
	62.5
	21.67156016
	−1.442938766
	13.43474762
	19.83503047



	QG8 (MVAr)
	−15
	48
	27.29675405
	23.11453954
	7.583267029
	12.95707181



	QG11 (MVAr)
	−10
	40
	11.72500454
	−6.137543909
	13.66528344
	1.654000716



	QG13 (MVAr)
	−15
	44
	9.840166661
	39.23629311
	21.68524583
	6.151027816



	QG24 (MVAr)
	−15
	44
	
	1.089772208
	24.29742231
	20.10756016



	QG 30 (MVAr)
	−15
	44
	
	−13.49116551
	0.162345045
	0.721702425



	  V D   (p.u.)
	
	
	0.90040310
	0.298468513
	0.404641642
	0.391340877



	  F C  ($/h)
	
	
	944.2808599
	354.7638857
	354.038595
	353.3864113



	  P  l o s s    (MW)
	
	
	3.22150126
	3.554805885
	3.020468191
	3.775864192



	E (ton/h)
	
	
	0.204818699
	0.091061921
	0.091060623
	0.091060048



	  T C   ($/h)
	
	
	
	877.5739313
	865.4758094
	867.8663197



	  C  T  W   ($/h)
	
	
	
	108.3986993
	
	514.4799085



	  C  T   P V    ($/h)
	
	
	
	414.4113463
	511.4372144
	



	  f o   (ton/h)
	
	
	0.204818699
	0.091061921
	0.091060623
	0.091060048
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Table 13. Results of EO and other methods of case 2 for Test system 1.






Table 13. Results of EO and other methods of case 2 for Test system 1.














	
	MFO
	TACPSO
	AGPSO1
	TLBO
	EO
	MPSO





	  V D   (p.u.)
	0.702001
	0.856848
	0.921129
	0.541768425
	0.900403
	0.661504



	  F C   ($/h)
	944.3434
	944.6554
	944.3977
	944.6873755
	944.2809
	944.4382



	  P  l o s s    (MW)
	3.356033
	3.286856
	3.235581
	3.336091467
	3.221501
	3.267419



	E (ton/h)
	0.204862
	0.204839
	0.204823
	0.204854728
	0.204819
	0.204833



	  f o   (ton/h)
	0.204862
	0.204839
	0.204823
	0.204854728
	0.204819
	0.204833
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Table 14. Summary of the statistical analysis of case 2 for Test system 1.






Table 14. Summary of the statistical analysis of case 2 for Test system 1.












	
	Best
	Worst
	Mean
	Std Dev





	MFO
	0.204862
	0.204997
	0.20495
	4.15 × 10    − 5   



	TACPSO
	0.204839
	0.205089
	0.204943
	9.14 × 10    − 5   



	AGPSO1
	0.204823
	0.204999
	0.204921
	5.14 × 10    − 5   



	TLBO
	0.204855
	0.204931
	0.204892
	2.43 × 10    − 5   



	EO
	0.204819
	0.204878
	0.204834
	1.78 × 10    − 5   



	MPSO
	0.204833
	0.20497
	0.204934
	5.44 × 10    − 5   
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Table 15. Results of EO and other methods of case 3 for Test system 1.
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	MFO
	TACPSO
	AGPSO1
	TLBO
	EO
	MPSO





	  V D   (p.u.)
	0.740965
	0.845878
	0.761669
	0.811019872
	0.865075
	0.877139



	  F C   ($/h)
	800.8283
	800.5201
	800.5595
	800.616176
	800.4486
	800.5346



	  P  l o s s    (MW)
	9.134902
	9.02898
	9.040104
	8.97569702
	9.041464
	9.059254



	E (ton/h)
	0.366492
	0.366315
	0.365967
	0.363482104
	0.367478
	0.366949



	  f o   ($/h)
	800.8283
	800.5201
	800.5595
	800.616176
	800.4486
	800.5346
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Table 16. Summary of the statistical analysis of case 3 for Test system 1.
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	Best
	Worst
	Mean
	Std Dev





	MFO
	800.8283
	802.8078
	801.5102
	0.72899



	TACPSO
	800.5201
	804.0448
	800.6766
	1.305504



	AGPSO1
	800.5595
	802.1145
	800.7023
	0.453581



	TLBO
	800.6162
	802.225
	800.8366
	0.471362



	EO
	800.4486
	800.646
	800.4793
	0.057894



	MPSO
	800.5346
	804.6442
	801.1155
	1.810857










[image: Table] 





Table 17. Optimal settings of dependent and control variables for case 3 for all test systems using EO.






Table 17. Optimal settings of dependent and control variables for case 3 for all test systems using EO.














	Parameters
	Min
	Max
	Test System 1
	Test System 2
	Test System 3
	Test System 4





	PG2 (MW)
	20
	80
	48.74605575
	45.18712121
	21.21838812
	38.17119779



	PG5 (MW)
	15
	50
	21.4315437
	15.00195728
	15.40668673
	19.095538



	PG8 (MW)
	10
	35
	21.18353338
	29.97018297
	15.60913424
	10.08641797



	PG11 (MW)
	10
	30
	11.52952165
	13.07275916
	29.402226
	20.7452611



	PG13 (MW)
	10
	40
	12.0107829
	19.71387022
	30.51540057
	17.9328134



	PG24 (MW)
	10
	30
	
	27.19702311
	26.3304831
	25.32965431



	PG30 (MW)
	10
	40
	
	14.74139467
	17.72178713
	20.28023584



	V1 (p.u.)
	0.95
	1.1
	1.081191705
	1.022713246
	1.02314065
	1.059255936



	V2 (p.u.)
	0.95
	1.1
	1.063110135
	1.006065736
	1.008766945
	1.043719467



	V5 (p.u.)
	0.95
	1.1
	1.032684857
	0.956733982
	0.961917138
	1.009460201



	V8 (p.u.)
	0.95
	1.1
	1.036543249
	0.994159517
	0.985269141
	1.02095678



	V11 (p.u.)
	0.95
	1.1
	1.097591909
	1.012587735
	1.049992902
	1.0845661



	V13 (p.u.)
	0.95
	1.1
	1.051244633
	1.054638289
	1.011514979
	1.046208927



	V24 (p.u.)
	0.95
	1.1
	
	1.035583887
	1.011800496
	1.043496784



	V30 (p.u.)
	0.95
	1.1
	
	0.950000000
	0.996591531
	1.048407181



	QC10 (MVAr)
	0
	5
	2.971616423
	3.739491269
	4.902790106
	0.325756054



	QC12 (MVAr)
	0
	5
	0.655177618
	4.809891924
	1.662706176
	3.06145818



	QC15 (MVAr)
	0
	5
	3.197516308
	0.002648509
	0.249875162
	3.301750446



	QC17 (MVAr)
	0
	5
	4.723716655
	3.279961844
	1.827574807
	1.707154585



	QC20 (MVAr)
	0
	5
	3.650622268
	0.917150962
	1.107119341
	0.418013886



	QC21 (MVAr)
	0
	5
	5.000000000
	4.948708899
	2.08610321
	4.893042007



	QC23 (MVAr)
	0
	5
	2.498554056
	4.535914953
	4.240774401
	3.58924067



	QC24 (MVAr)
	0
	5
	4.985418463
	5.000000000
	0.00000000
	1.169769378



	QC29 (MVAr)
	0
	5
	2.584313587
	4.144114834
	4.95463484
	1.500067393



	T11 (p.u.)
	0.9
	1.1
	1.027284076
	1.048412041
	1.099843892
	0.985023037



	T12 (p.u.)
	0.9
	1.1
	0.971275895
	0.90000000
	0.922169184
	0.989956238



	T15 (p.u.)
	0.9
	1.1
	0.972373363
	1.002944153
	1.006664961
	0.991751478



	T36 (p.u.)
	0.9
	1.1
	0.9815263
	1.059841992
	0.944073975
	0.971316876



	PG1 (MW)
	50
	200
	177.5400261
	125.374001
	133.7249716
	138.0708394



	QG1 (MVAr)
	−20
	150
	−0.570024945
	−0.833938199
	−5.669301771
	−1.647701957



	QG2 (MVAr)
	−20
	60
	19.80925666
	13.30674022
	30.0465083
	18.91158888



	QG5 (MVAr)
	−15
	62.5
	25.58480054
	6.160576051
	11.07617293
	21.00268292



	QG8 (MVAr)
	−15
	48
	23.28431397
	23.75265502
	14.5584729
	21.65678972



	QG11 (MVAr)
	−10
	40
	25.55139519
	8.157153402
	35.09222447
	19.52230631



	QG13 (MVAr)
	−15
	44
	1.335643081
	21.55072062
	12.13070192
	7.287213883



	QG24 (MVAr)
	−15
	44
	
	22.34214251
	15.27252587
	8.101017671



	QG 30 (MVAr)
	−15
	44
	
	−5.331414964
	−8.278410983
	−1.403218975



	  V D   (p.u.)
	
	
	0.865074691
	0.312619858
	0.288839815
	0.653856503



	  F C   ($/h)
	
	
	800.4486031
	529.3973749
	432.2815387
	473.5571537



	  P  l o s s    (MW)
	
	
	9.041463508
	6.858309749
	6.529077621
	6.311958209



	E (ton/h)
	
	
	0.367478227
	0.141650437
	0.159248156
	0.163097259



	  T C   ($/h)
	
	
	
	772.2465456
	772.7810970
	777.3121394



	  C  T  W   ($/h)
	
	
	
	85.46692162
	
	303.7549857



	  C  T   P V    ($/h)
	
	
	
	157.3822491
	340.4995583
	



	  f o   ($/h)
	
	
	800.4486031
	772.2465456
	772.7810970
	777.3121394
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Table 18. Optimal settings of dependent and control variables for case 4 for all test systems using EO.






Table 18. Optimal settings of dependent and control variables for case 4 for all test systems using EO.














	Parameters
	Min
	Max
	Test System 1
	Test System 2
	Test System 3
	Test System 4





	PG2 (MW)
	20
	80
	70.18121441
	35.84850999
	73.22346542
	42.82238053



	PG5 (MW)
	15
	50
	25.52703119
	20.27116158
	33.56379457
	47.02961201



	PG8 (MW)
	10
	35
	28.87890546
	17.61889372
	18.04097353
	33.85695266



	PG11 (MW)
	10
	30
	29.30401557
	24.63092203
	10.13966121
	14.67013887



	PG13 (MW)
	10
	40
	27.92172576
	15.28698582
	21.57955174
	39.93831108



	PG24 (MW)
	10
	30
	
	16.34156919
	10.07569951
	28.44997135



	PG30 (MW)
	10
	40
	
	26.43024961
	24.9797807
	28.73744876



	V1 (p.u.)
	0.95
	1.1
	1.009811989
	1.032801388
	1.022207169
	1.012647301



	V2 (p.u.)
	0.95
	1.1
	1.003153500
	1.026505843
	1.020581934
	1.004121334



	V5 (p.u.)
	0.95
	1.1
	1.015213206
	1.016105476
	1.019877057
	1.020275353



	V8 (p.u.)
	0.95
	1.1
	1.008124785
	0.993094249
	0.998231049
	1.001227396



	V11 (p.u.)
	0.95
	1.1
	1.038640051
	1.003641057
	1.02134836
	0.99563608



	V13 (p.u.)
	0.95
	1.1
	1.005894818
	1.02703208
	0.996453698
	1.022325949



	V24 (p.u.)
	0.95
	1.1
	
	1.013528762
	1.014235434
	1.018656779



	V30 (p.u.)
	0.95
	1.1
	
	1.002929877
	0.993533496
	0.998414844



	QC10 (MVAr)
	0
	5
	4.999434200
	1.057601365
	4.449085771
	1.224696754



	QC12 (MVAr)
	0
	5
	4.602398118
	2.55410853
	4.99999823
	2.663316679



	QC15 (MVAr)
	0
	5
	4.960424711
	4.999607248
	1.610176653
	3.415934203



	QC17 (MVAr)
	0
	5
	0.01181544
	0.217347144
	1.996228043
	0.019033266



	QC20 (MVAr)
	0
	5
	4.996883927
	4.92956648
	4.978309396
	4.994054795



	QC21 (MVAr)
	0
	5
	4.956429831
	1.646590977
	0.034134918
	4.819904248



	QC23 (MVAr)
	0
	5
	4.972309922
	0.427048793
	1.956957345
	1.039869954



	QC24 (MVAr)
	0
	5
	4.980435681
	2.406207968
	4.614781826
	0.613094925



	QC29 (MVAr)
	0
	5
	2.520824595
	1.71349761
	3.890942901
	3.740081954



	T11 (p.u.)
	0.9
	1.1
	1.056622635
	1.012874303
	1.035801681
	1.002332018



	T12 (p.u.)
	0.9
	1.1
	0.901402975
	0.900602964
	0.902285005
	0.901103808



	T15 (p.u.)
	0.9
	1.1
	0.981060937
	1.013218403
	0.960787866
	0.998733169



	T36 (p.u.)
	0.9
	1.1
	0.966944023
	0.987755959
	0.989855906
	0.98143194



	PG1 (MW)
	50
	200
	108.1160533
	133.9296827
	97.60688393
	51.45175998



	QG1 (MVAr)
	−20
	150
	−19.10239902
	−19.59757178
	−19.11821266
	−0.518817877



	QG2 (MVAr)
	−20
	60
	−14.85253038
	31.85856685
	18.90601653
	−16.64972076



	QG5 (MVAr)
	−15
	62.5
	57.49581183
	49.60698522
	51.42002978
	56.50571855



	QG8 (MVAr)
	−15
	48
	45.23093447
	11.80532985
	26.14354452
	31.44056819



	QG11 (MVAr)
	−10
	40
	20.12674964
	2.380585374
	10.62092072
	−1.914317997



	QG13 (MVAr)
	−15
	44
	−1.74441538
	13.80317636
	−8.465359993
	10.55389137



	QG24 (MVAr)
	−15
	44
	
	14.86630972
	15.99035449
	13.88576475



	QG 30 (MVAr)
	−15
	44
	
	−4.888937122
	−7.68659143
	−7.960636408



	  V D   (p.u.)
	
	
	0.088397534
	0.08005165
	0.064632335
	0.07266919



	  F C   ($/h)
	
	
	848.7795548
	480.1984844
	514.2584395
	339.455916



	  P  l o s s    (MW)
	
	
	6.528945889
	6.957974748
	5.809810669
	3.556575273



	E (ton/h)
	
	
	0.240505607
	0.155665569
	0.119726864
	0.091393798



	  T C   ($/h)
	
	
	
	787.9483007
	810.1863986
	861.8303756



	  C  T  W   ($/h)
	
	
	
	164.0403370
	
	522.3744597



	  C  T   P V    ($/h)
	
	
	
	143.7094792
	295.9279591
	



	  f o   (p.u.)
	
	
	0.088397534
	0.080051650
	0.064632335
	0.07266919
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Table 19. Summary of the statistical analysis of case 4 for Test system 1.






Table 19. Summary of the statistical analysis of case 4 for Test system 1.












	
	Best
	Worst
	Mean
	Std Dev





	MFO
	0.100862
	0.137899
	0.117452
	0.011555



	TACPSO
	0.092725
	0.177792
	0.116202
	0.025827



	AGPSO1
	0.102816
	0.144276
	0.131944
	0.015650



	TLBO
	0.103244
	0.152343
	0.112717
	0.015185



	EO
	0.088398
	0.097568
	0.092814
	0.002809



	MPSO
	0.093414
	0.202628
	0.124612
	0.038641
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Table 20. Results of EO and other methods of case 4 for Test system 1.
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	MFO
	TACPSO
	AGPSO1
	TLBO
	EO
	MPSO





	  V D   (p.u.)
	0.100862
	0.092725
	0.102816
	0.103243
	0.088398
	0.093414



	  F C   ($/h)
	901.7397
	852.0642
	834.1079
	829.58791
	848.7796
	841.3429



	  P  l o s s    (MW)
	5.965677
	9.980964
	7.492151
	8.391654
	6.528946
	7.564352



	E (ton/h)
	0.248497
	0.359732
	0.273799
	0.337325
	0.240506
	0.275282



	  f o   (p.u.)
	0.100862
	0.092725
	0.102816
	0.103243
	0.088398
	0.093414
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Table 21. Results of EO and other methods of case 5 for Test system 1.
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	MFO
	TACPSO
	AGPSO1
	TLBO
	EO
	MPSO





	  V D   (p.u.)
	0.312222
	0.301092
	0.2979
	0.292001838
	0.291525
	0.315655



	  F C   ($/h)
	832.131
	833.4427
	831.8455
	831.251448
	829.9924
	833.2358



	  P  l o s s    (MW)
	5.569804
	5.471244
	5.542919
	5.575077257
	5.604236
	5.490564



	E (ton/h)
	0.250434
	0.249973
	0.251339
	0.252691258
	0.253454
	0.249919



	  f o   ($/h)
	965.9816
	964.8825
	964.8211
	964.8363202
	964.2232
	965.4054
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Table 22. Summary of the statistical analysis of case 5 for Test system 1.
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	Best
	Worst
	Mean
	Std dev





	MFO
	965.9816
	970.7178
	968.0071
	1.616872



	TACPSO
	964.8825
	968.5757
	965.8415
	1.251791



	AGPSO1
	964.8211
	967.8093
	965.6185
	0.874411



	TLBO
	964.8363
	968.0825
	966.0087
	1.105687



	EO
	964.2232
	966.3464
	964.5618
	0.655197



	MPSO
	965.4054
	978.9642
	966.4455
	4.054598
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Table 23. Optimal settings of dependent and control variables for case 5 for all test systems using EO.
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	Parameters
	Min
	Max
	Test System 1
	Test System 2
	Test System 3
	Test System 4





	PG2 (MW)
	20
	80
	52.34900301
	43.76198174
	46.85392201
	39.04580002



	PG5 (MW)
	15
	50
	31.41892625
	25.13957863
	41.57764325
	49.63341394



	PG8 (MW)
	10
	35
	34.99720302
	28.83722988
	15.57308058
	21.63539649



	PG11 (MW)
	10
	30
	26.95716205
	27.72005416
	28.54767347
	26.5299306



	PG13 (MW)
	10
	40
	20.69034077
	37.30220041
	21.35593529
	20.93782021



	PG24 (MW)
	10
	30
	
	33.41823981
	19.87429698
	27.03669094



	PG30 (MW)
	10
	40
	
	17.31391519
	17.29441758
	17.27175615



	V1 (p.u.)
	0.95
	1.1
	1.073302714
	1.024270078
	1.031881955
	1.034535652



	V2 (p.u.)
	0.95
	1.1
	1.05933056
	1.012773005
	1.014838234
	1.023955028



	V5 (p.u.)
	0.95
	1.1
	1.031867076
	0.991186486
	0.965629646
	1.002922115



	V8 (p.u.)
	0.95
	1.1
	1.039079245
	0.991138879
	0.993005954
	1.010973253



	V11 (p.u.)
	0.95
	1.1
	1.039336016
	1.100000000
	1.038730973
	1.039568814



	V13 (p.u.)
	0.95
	1.1
	1.016224258
	1.023619922
	1.047631647
	1.010922024



	V24 (p.u.)
	0.95
	1.1
	
	1.027240201
	1.008908379
	1.012804196



	V30 (p.u.)
	0.95
	1.1
	
	1.026258901
	1.033487159
	1.015369168



	QC10 (MVAr)
	0
	5
	1.42704702
	0.24222794
	5.00000000
	3.367347878



	QC12 (MVAr)
	0
	5
	0.114983911
	4.465905221
	5.00000000
	4.957438998



	QC15 (MVAr)
	0
	5
	2.71927269
	0.00000000
	1.436680682
	3.38628092



	QC17 (MVAr)
	0
	5
	4.777257639
	4.971408287
	0.00000000
	4.999449612



	QC20 (MVAr)
	0
	5
	4.891165116
	4.864936873
	5.00000000
	4.836689278



	QC21 (MVAr)
	0
	5
	4.917867343
	4.114355205
	4.252301174
	2.729537609



	QC23 (MVAr)
	0
	5
	4.944826897
	4.912774176
	0.00000000
	1.224294666



	QC24 (MVAr)
	0
	5
	4.999139393
	3.383242169
	2.790571405
	4.901232863



	QC29 (MVAr)
	0
	5
	2.36221935
	0.622641699
	5.00000000
	0.478740405



	T11 (p.u.)
	0.9
	1.1
	1.098277898
	1.041847001
	0.996768732
	1.070613035



	T12 (p.u.)
	0.9
	1.1
	0.937769396
	0.906411875
	1.061448786
	0.920185016



	T15 (p.u.)
	0.9
	1.1
	1.02148431
	0.939592837
	0.983885511
	0.995441894



	T36 (p.u.)
	0.9
	1.1
	1.002153866
	0.991006369
	0.904079564
	0.993400466



	PG1 (MW)
	50
	200
	122.5915999
	73.77703
	96.76396309
	84.33186618



	QG1 (MVAr)
	−20
	150
	0.44760914
	4.980415704
	11.6826979
	−1.350997342



	QG2 (MVAr)
	−20
	60
	13.45186855
	10.12960773
	16.17020662
	8.009356413



	QG5 (MVAr)
	−15
	62.5
	22.96436543
	30.2545861
	−0.480850004
	19.94798351



	QG8 (MVAr)
	−15
	48
	25.09929462
	4.325252485
	25.37843413
	24.0097914



	QG11 (MVAr)
	−10
	40
	20.42841833
	39.34377358
	16.58858651
	20.9433804



	QG13 (MVAr)
	−15
	44
	4.484753294
	−4.510415315
	19.67801235
	1.913484758



	QG24 (MVAr)
	−15
	44
	
	−1.505790029
	2.129992746
	2.949992903



	QG 30 (MVAr)
	−15
	44
	
	3.138390036
	−7.584798837
	0.645488754



	  V D   (p.u.)
	
	
	0.291524702
	0.340717958
	0.287869453
	0.142747756



	  F C   ($/h)
	
	
	829.9923878
	378.7198323
	401.6872426
	364.5623372



	  P  l o s s    (MW)
	
	
	5.604235892
	3.870229887
	4.440932453
	3.022674546



	E (ton/h)
	
	
	0.253453881
	0.098214148
	0.114249163
	0.104949647



	  T C   ($/h)
	
	
	
	832.9987095
	783.9164460
	817.6301115



	  C  T  W   ($/h)
	
	
	
	144.7990782
	
	453.0677743



	  C  T   P V    ($/h)
	
	
	
	309.4797989
	382.2292034
	



	  f o   ($/h)
	
	
	964.2232199
	927.1649129
	889.8329526
	889.1206976
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