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Abstract: The sample size or particle size of shale plays a significant role in the characterization
of pores by various techniques. To systematically investigate the influence of particle size on pore
characteristics and the optimum sample size for different methods, we conducted complementary
tests on two overmature marine shale samples with different sample sizes. The tests included
small-angle neutron scattering (SANS), gas (N2, CO2, and H2O) adsorption, mercury injection
capillary pressure (MICP), and field emission-scanning electron microscopy (FE-SEM) imaging.
The results indicate that artificial pores and fractures may occur on the surface or interior of the
particles during the pulverization process, and some isolated pores may be exposed to the particle
surface or connected by new fractures, thus improving the pore connectivity of the shale. By comparing
the results of different approaches, we established a hypothetical model to analyze how the crushing
process affects the pore structure of overmature shales. Our results imply that intact wafers with
a thickness of 0.15–0.5 mm and cubic samples (~1 cm3) are optimal for performing SANS and
MICP analyses. Meanwhile, the 35–80 mesh particle size fraction provides reliable data for various gas
physisorption tests in overmature shale. Due to the intrinsic heterogeneity of shale, future research
on pore characteristics in shales needs a multidisciplinary approach to obtain a more comprehensive,
larger scale, and more reliable understanding.

Keywords: sample size; neutron scattering; mercury injection capillary pressure; adsorption; shale

1. Introduction

With the commercial development of shale gas in North America and China, the pore characteristics
of shale reservoirs have been extensively studied [1–3]. Pore characteristics not only control the
hydrocarbon gas storage capacity [4,5], but also have an important influence on the gas flow mechanism
and producibility [6,7], which can provide basic information for the evaluation of shale reservoirs and
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shale gas accumulation mechanisms. Therefore, a series of quantitative and visual techniques are used
to characterize the pore structure of shales and the characterization scales are summarized in Figure 1.
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Among the above methods, fluid intrusion analytical methods are the most widely applied to
characterize the pore structure of shale [8–10]. However, for each test, there is no uniform standard as
to whether the test sample size should be an intact or crushed sample, as well as the particle size of the
crushed sample. Chen et al. [11] carried out gas (N2 and CO2) physisorption measurements on New
Albany Shales with different particle sizes (4 mesh, 20 mesh, and 60 mesh), and the results indicated
that the mesopore volume increased with a decrease in particle size, whereas the micropore volume
changed irregularly. Subsequently, Wei et al. [12] and Han et al. [13] evaluated the effect of particle size
(5–250 mesh) on the change in pore structure through gas (N2 and CO2) adsorption experiments for
Longmaxi Shale samples. Their conclusions were consistent with those of Chen et al. [11], who found
that the decrease in particle size primarily affected the pores larger than 10 nm, and suggested that
60–140 mesh is the most suitable particle size for gas adsorption tests. In addition, Mastalerz et al. [14]
suggested that gas adsorption tests on low-maturity (Ro~0.57%) and high-maturity (Ro~1.30%) shale
samples with smaller particle size (200 mesh) could eliminate the equilibration problems and attain
accurate results. However, Hazra et al. [15] proposed that shale particle sizes that were too fine would
lead to destruction or alteration of the mesopore structures. Similarly, the results of the mercury
injection capillary pressure (MICP) analysis for Barnett and Haynesville shale samples demonstrate
that permeability and accessible porosity increase with decreasing sample particle size, indicating that
the shale matrix has a higher connectivity on a small scale [16]. Moreover, the water vapor adsorption
results for shale show that the total adsorption at 95% relative humidity (RH) is smaller in larger
particle size samples, which is associated with fewer accessible pores [17,18]. Nevertheless, there is still
a lack of a systematic analysis explaining the above results in the various fluid intrusion experiments.

In addition to fluid intrusion techniques, the nondestructive small-angle neutron scattering (SANS)
technique has been used to evaluate the pore characteristics of shale reservoirs in recent years [19–21].
The main advantage of SANS in characterizing pore structure compared with fluid intrusion methods
is that it contains information on closed pores (inaccessible to fluids) [3]. Thin sections of thickness
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from 0.15 mm to 0.5 mm are commonly used in the SANS test for shale for neutron transmission
and avoidance of multiple scattering [22,23]. In addition, shale grain samples can also be used for
the SANS test to avoid the anisotropy of the SANS images for wafer samples [24–26]. However, few
studies have been performed on the effect of particle size on pore structure using SANS. Previous
studies using fluid intrusion techniques considered the enhancement of the pore connectivity and
ignored the artificial pores and fractures generated in the process of particle size reduction [14,16,27].
Therefore, the revelation of pore structure changes in the shale samples with different particle sizes by
SANS can compensate for the deficiencies of previous studies. Moreover, the results of the crushed
shale pressure-decay test for different particle sizes show that the helium permeability decreases with
decreasing particle size [28]. However, the adsorption capacity of methane increased with decreasing
particle size [29]. The reasons for the above phenomena can be explained by the mechanism of pore
structure changes during the process of shale particle size reduction.

This study aims to reveal the influence of particle size on the pore characteristics of overmature
organic-rich shales. Two shale samples were prepared as 1 cm cubes and particles of 20–35 mesh,
35–80 mesh, and 80–200 mesh. With a combination of SANS, low-pressure gas (N2, CO2, and H2O)
physisorption, and MICP, pore structure changes in shale with different sample sizes were first analyzed
quantitatively. Then, the grinding positions of the shale were observed and characterized using field
emission-scanning electron microscopy (FE-SEM). Finally, the effect of the pulverization process on
the original pore characteristics of the shale was revealed. Thus, this study attempts to provide a
reasonable suggestion on the size of shale samples that should be selected for the characterization
techniques of different principles.

2. Materials and Methods

2.1. Sample Preparation

In this work, two fresh, overmature marine shale samples were collected from the Upper
Ordovician Wufeng Formation of Well TY1 and Lower Cambrian Niutitang Formation of Well RY2,
northwest of Guizhou Province, respectively (Figure 2). Information regarding the composition and
maturity of selected samples is listed in Table 1. The raw shale samples were cut into cubes with
a side length of 1 cm for the FE-SEM observation and MICP test. Then, the cubes were carefully
hand-crushed and sieved into three particle size subsamples: 20–35 mesh (size A), 35–80 mesh (size B),
and 80–200 mesh (size C). The shale samples used for analysis were well preserved, and with no
sign of oxidation or weathering. Each subsample was dried in a vacuum oven at 60 ◦C for more
than 48 h (until mass constancy) to remove the initial moisture content and subsequently analyzed
via SANS, low-pressure N2 and CO2 physisorption, water vapor adsorption, and MICP measurements
to determine various parameters of pore characteristics.
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Table 1. Basic properties of shale samples used in this work.

Sample Depth (m) TOC 1 (wt.%) Ro
2 (%)

Quantitative Analysis of Whole-Rock Minerals (wt.%) Relative Content of Clay Minerals (wt.%)

Quartz K-Feldspar Plagioclase Calcite Dolomite Pyrite Clays K 3 C 4 I 5 I/S 6 %S 7

TY1-20 677.5 2.93 2.61 45 3 6 1 0 2 43 11 14 48 27 15
RY2-18 926.7 11.6 3.56 74 1 2 1 2 4 16 0 2 79 19 5

1 TOC = total organic carbon; 2 Ro = equivalent vitrinite reflectance converted from the reflectance of bitumen; 3 K = kaolinite; 4 C = chlorite; 5 I = illite; 6 I/S = illite-smectite
mixed-layer mineral; 7 %S = percentage of smectite in mixed-layer mineral.
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2.2. SANS Experiment

SANS was performed at the Suanni SANS instrument at the China Mianyang Research Reactor
using three sample-to-detector distances (10 m, 4 m, and 1 m) and two neutron wavelengths λ = 5.3 Å
(4 m, 1 m) and λ = 8 Å (10 m). The scattering vector (Q) range of this test was 0.0039–0.3 Å−1,
which corresponds to the pore diameters (D) from 128 nm to 1.7 nm, according to an approximate
relation D = 5/Q [30]. Shale samples with different particle sizes were placed into Hellma cells with a
1 mm path length for the SANS measurement. The raw scattering data were corrected for scattering
from the background and space between sample particles by acid-washed quartz sand with the
same mesh and empty-cell [21]. The corrected SANS data were analyzed using the polydisperse
size-distribution model (PDSM) in IRENA macros of the IGOR Pro software, which assumes that
the pores are in a spherical shape and have a random size distribution [31]. Additional background
information on the application of the SANS technique for pore characterization of shales can be found
in a review article of Sun [3].

2.3. Low-Pressure N2 and CO2 Physisorption

Shale samples with different particle sizes were analyzed via low-pressure N2 and CO2

physisorption on a Quantachrome Autosorb-iQ apparatus after the SANS tests. The samples were
degassed at 105 ◦C for 12 h to remove any adsorbed moisture and volatile matter. The relative pressures
(P/P0, where P0 is the vapor pressure of the adsorbing gas, and P is the actual gas pressure) of the N2

and CO2 adsorption ranged from 0.0009 to 0.995 and 0.0006 to 0.03, respectively. The surface area and
pore size distribution (PSD) of the samples were calculated from N2 adsorption data. N2-based and
CO2-based adsorption data were interpreted using the density functional theory (DFT) [32].

2.4. Water Vapor Adsorption Experiment

Water vapor adsorption (WVA) tests were carried out on the shale samples, which completed
low-pressure gas physisorption using the dynamic vapor sorption (DVS) method at 25 ◦C. The DVS
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apparatus (Quantachrome Aquadyne) accurately measures the mass change (resolution of 0.1 µg ± 1%)
of shale samples from 2% to 95% RH to obtain the water vapor ad-/desorption isotherm. The RH usually
corresponds to the ratio of the pressure of water vapor (P) to the pressure of saturated vapor (P0).
Based on the Kelvin equation, the relation between RH and pore radius (rp) of the water-filled capillary
can be described [33]:

ln
( 1

RH

)
=

2γVm cosθ/RT
rp

(1)

where γ is the surface tension, Vm is the molar volume of the water vapor, θ is the contact angle, R is
the universal gas constant, and T is the temperature. In addition to the water-filled in the pores by
capillary condensation, the water adsorbed on the pore surfaces also occupies part of the pore volume.
Before capillary condensation, it is assumed that the pore surface of the shale is covered by multiple
layers of water vapor with the same interfacial forces to form a water film of a specified thickness.
When van der Waals force is the main controlling factor of water film thickness, the thickness (t) of the
water-adsorbed layer on the pore surface could be calculated using Hasley’s equation [17]:

t = 0.354
[
−5/ ln

(
P
P0

)] 1
3

(2)

Since the bound water in clay minerals is not removed during sample treatment, only water film
and capillary water are considered when calculating the PSD of the shale sample by WVA isotherm.
The mass change could then be converted to the pore volume. The actual pore radius (r) measured by
WVA could be expressed as follows:

r = rp + t (3)

2.5. MICP Measurement

MICP measurements were conducted on intact cube samples and crushed samples (size A, size B,
and size C) using a porosimeter (Autopore IV 9520, Micromeritics) located at the China University of
Geosciences (Wuhan) at pressures up to 60,000 psia (~413 MPa). In addition, to determine the influence
of the space between the particles on the intrusion curves, acid-washed quartz sand with different
particle sizes was used as a reference for MICP. The porosities and distribution of pore-throat sizes
ranging from 3 nm to 36 µm were calculated from the mercury intrusion data.

2.6. FE-SEM Imaging

The intact TY1-20 shale sample was first cut into a 10 mm × 10 mm × 5 mm slice, and then
ion-milled on a 10 mm × 10 mm surface using an argon-ion-beam polisher (LEICA EM XTP) to obtain
a smooth surface for FE-SEM observation. After imaging, the sample was carefully hand-crushed into
particles of approximately 0.5 mm in diameter (~35 mesh). Then, the crushed subsamples were further
observed using FE-SEM to identify the influence of crushing on the shale sample.

3. Experimental Results

3.1. Characteristics of SANS Results

Figure 3a,b display the neutron scattering curves of the two shale samples with different
particle sizes. As shown in Figure 3a,b, the scattering intensity of the shale samples with size C in the
low Q region is higher than that of shale samples with size A. The neutron SLD values of the shale
samples were calculated by averaging the SLD value of each component in the shale, recorded in
Table 2. The detailed calculation method can be found in our previous study [3,20]. Shale is treated as
a pseudo-two-phase system of pores and solids when the pore structure parameters are determined
from SANS tests [34]. Table 2 shows the results of the porosity and specific surface area (SSA) derived
from SANS. For the two shale samples, with decreasing particle size, the PDSM porosity increased
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(Table 2). Because the porosity measured by SANS represents the total porosity (open and closed pores),
the increase in porosity with the decrease in particle size is primarily due to the artificially increased
pore and fracture space induced during the sample crushing. However, the SSA of the shale samples
derived from SANS did not show the same trend as porosity.

The relationship between the scattering vector (Q) and pore radius (R) can be transformed by the
empirical equation R = 2.5/Q [30]. The PSD of the samples with different particle sizes are illustrated in
Figure 3c,d for comparison. For the TY1-20 sample (Figure 3c), the pore volumes of both size B and
size C were significantly higher than those of size A within the pore size range tested by SANS. For the
RY2-18 sample (Figure 3d), as the particle size decreased, the pore volume of the pores with a diameter
greater than 20 nm increased considerably. In addition, the pore volumes of size B and size C within
the pore size range of 2~5 nm were also significantly higher than that of size A.
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Table 2. Pore parameters of samples from SANS and gas (N2 and CO2) adsorption.

Sample ID SANS SLD 1

(×1010 cm−2)
PDSM 2 Porosity (%)

(1.6–127 nm)
PDSM SSA 3

(m2/g)
N2 Pore Volume

(10−2 cm3/g)
N2

4 Porosity (%)
(1.6–127 nm)

N2 BET SSA
(m2/g)

CO2 Pore Volume
(10−2 cm3/g)

CO2 DFT SSA
(m2/g)

TY1-20 (size A)

3.94

7.83 23.87 2.22 5.25 27.79 0.34 5.42

TY1-20 (size B) 10.80 32.36 2.36 5.37 27.41 0.33 5.29

TY1-20 (size C) 11.05 30.39 2.50 5.70 26.65 0.32 5.03

RY2-18 (size A)

4.03

6.91 36.22 1.01 2.42 10.77 0.45 7.19

RY2-18 (size B) 7.44 30.40 1.30 3.10 15.75 0.44 7.03

RY2-18 (size C) 8.75 30.72 1.18 2.66 14.13 0.43 6.84
1 The SLDs (×1010 cm−2) of organic phase used in the samples (TY1-20 = 3.3, RY2-18 = 3.7); 2 PDSM = Polydisperse sphere model; 3 SSA = Specific surface area; 4 N2 Porosity is calculated
by N2 pore volume and bulk density of shale cubes obtained from mercury injection capillary pressure (MICP).
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3.2. Low-Pressure N2 and CO2 Physisorption

Figure 4a,b show the N2 adsorption–desorption isotherms of the two shale samples for the three
different particle sizes. All samples display distinct hysteresis loops, and the hysteresis influence of
desorption is mostly due to the pore morphology (ink-bottle shape). A comparison of the adsorption
branches shows that the shale samples with the minimum particle size exhibit the maximum adsorption
capacity at the maximum equivalent pressure. The observation of the desorption branches demonstrates
that the desorption rate increases as the particle size decreases from size A to size C. In other words,
the decrease in sample particle size shortens the distance required for desorption, thus enhancing the
pore connectivity and gas transport capacity.Energies 2020, 13, x FOR PEER REVIEW 9 of 23 
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Figure 4. (a,b) Low-pressure N2 adsorption/desorption isotherms and (c,d) PSD for the TY1-20 and
RY2-18 samples with three different particle sizes.

The N2 pore volume and surface area of the two samples are listed in Table 2. For sample
TY1-20, the N2 pore volume increased with decreasing particle size, and the increased pore volume is
predominantly concentrated on the range of pore sizes larger than 10 nm (Figure 4c). Similarly, the BET
SSA of sample TY1-20 does not show the same trend as the pore volume changes with particle size.
For sample RY2-18, the N2 pore volume and SSA increased with the particle size reduction from size A
to size B, but then decreased for size C. Similar to sample TY1-20, the pore volume with a pore size
larger than 10 nm increased with the decrease in particle size (Figure 4d). However, sample RY2-18
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at particle size C exhibited a significant reduction in pore volume within the pore size range of less
than 10 nm.

The CO2 adsorption capacity of the two samples decreased slightly with a decrease in particle
size (Figure 5a,b). Determined by CO2 adsorption, the pore volume and SSA of the shale samples were
consistent (Table 2). The consistency of the CO2 PSD curves of shale samples with different particle
sizes (Figure 5c,d) indicates that the effect of particle size reduction on the micropore volume of the
overmature shale is limited.Energies 2020, 13, x FOR PEER REVIEW 10 of 23 
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different particle sizes.

3.3. WVA Analysis

The water vapor adsorption–desorption isotherms of the shale samples are presented in Figure 6a,b.
As the particle size decreased, the total water adsorption of the shale samples under 95% RH increased
continuously (Table 3). When the RH is higher than 70%, the WVA curves of samples with different
particle sizes are the most distinct. According to Equations (1)–(3), the results of the distribution
relationship between pore size diameter and water incremental intrusion are shown in Figure 6c,d.
Within the pore size range, less than 6.2 nm (corresponding to approximately 70% RH), the water
absorption capacity of the samples with different particle sizes did not differ significantly. However, with
pore sizes larger than 6.2 nm, the water vapor uptake increased dramatically with decreasing particle size.
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In general, the adsorption of water vapor in shale occurs in three stages: monomolecular-layer coverage,
multimolecular-layer adsorption, and capillary condensation with an increase in humidity [18,35].
Therefore, the influence of particle size on the WVA of the overmature shale is primarily reflected in
the stage of capillary condensation.

Moreover, pronounced hysteresis loops were observed in all the water vapor adsorption/desorption
isotherms (Figure 6a,b). Based on the IUPAC classification, the hysteresis loops of sample TY1-20
and sample RY2-18 can be classified as type H3 and type H2, indicating slit-like and ink-bottle
shape pore networks, respectively [36]. In this work, the Areal Hysteresis Index (AHI) was used to
quantitatively describe the characteristics of the hysteresis loop. The AHI is expressed as follows [37]:

AHI =
Ade −Aad

Aad
× 100% (4)

where Aad and Ade are the areas under the adsorption and desorption isotherms, respectively. The AHI
values of sample RY2-18 were significantly higher than those of sample TY1-20 (Table 3). In addition,
the values of AHI tended to increase with the decreasing particle size.
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Table 3. Parameters obtained from water vapor adsorption (WVA) and MICP analyses.

Sample ID

WVA MICP

Total Adsorption at
95% RH 1 (µL/g) AHI 2 (%)

Particle Density
(g/cm3) Porosity (%) Total Pore

Area (cm2/g) APtS 3 (nm)

TY1-20 cube - 2.55 2.83 10.9 5.9

TY1-20 (size A) 15.51 13.96 2.4 3.09 6.3 9.6

TY1-20 (size B) 16.54 18 2.62 9.29 9.1 19.1

TY1-20 (size C) 17.56 20.23 2.41 13.94 0.3 908.1

RY2-18 cube - 2.5 0.79 1.6 7.8

RY2-18 (size A) 15.62 25.17 2.55 1.79 0.3 107.5

RY2-18 (size B) 16.31 30.62 2.48 4.92 0.2 663.9

RY2-18 (size C) 17.34 30.44 2.33 11.65 0.3 1537.7

Quartz (size A) - 2.57 0.39 -

Quartz (size B) - 2.57 0.85 -

Quartz (size C) - 2.55 9.96 -
1 RH = relative humidity; 2 AHI = areal hysteresis index; 3 APtS = average pore-throat size.

3.4. MICP Analysis

The cumulative mercury intrusion curves and pore-throat size distribution curves for all sample
sizes of TY1-20 and RY2-18 are illustrated in Figure 7. As shown in Figure 7, as the sample size
decreased, the cumulative mercury intrusion volume increased. The cumulative intrusions of sample
TY1-20 from the cube to size B increased even at the maximum pressure (413 MPa), indicating that
mercury will continue to enter the pore space if the pressure is increased. However, for TY1-20 with
size C, the cumulative intrusion would not increase when the pressure was higher than 4000 psia.
For sample RY2-18, the cumulative intrusion volume of all the samples except the cube will be constant
after a certain pressure.

The pore-throat size distribution curves (Figure 7) indicate that the accessible pore volume
connected with the pore throat less than 10 nm in the cube samples will be greatly reduced in the
particle samples. For the samples with particle size C, the pore network space connected with a pore
throat of less than 100 nm almost disappeared. Contrarily, the connected pore volume of the samples
with pore-throat diameters larger than 100 nm dramatically increased with the decrease in sample size.
Furthermore, the MICP results of acid-washed quartz sand with different particle sizes demonstrated
that the influence between particles was mostly manifested on the micron scale (Figure 8).

Table 3 summarizes the results of the pore structure parameters corrected by the acid-washed
quartz sand using MICP data and conformance volume calculations [16,38] for the different sample
sizes of TY1-20 and RY2-18 samples. The results demonstrate that porosity is strongly related to
the sample size, which increased with decreasing sample size. With the decrease in the sample size,
the pore throat with a small diameter gradually disappeared, which led to an increase in the average
pore-throat size (APtS) and a decrease in the total pore area. The particle density of the same samples
with different sizes also exhibited slight differences, indicating that there will inevitably be subtle
differences in composition in the sorting process.
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3.5. Observation of FE-SEM

Various mineral components and organic matter can be clearly observed under FE-SEM on the
smooth surface of shale obtained by argon-ion-beam polishing (Figure 9a). The crushed subsamples
were then fixed with epoxy resin and further observed using FE-SEM, revealing that the smooth surface
became rough (Figure 9b). Artificial microcracks at the nanometer scale formed by the fracture of rigid
minerals could be observed on the rough surface of crushed subsamples (Figure 9c). In addition, in the
process of particle size reduction, the structure of the clay minerals was prone to collapse, leading to
the generation of smaller fragments and new artificial pore space (Figure 9c).
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Figure 9. Field emission-scanning electron microscopy (FE-SEM) images of the TY1-20 sample.
(a) Smooth surface of shale obtained by argon-ion-beam polishing; (b) Crushed subsamples were then
fixed with epoxy resin; (c) Artificial pores and microcracks; (d) Artificial microfractures perpendicular
to the bedding direction; (e) Marks of the crushing process on the smooth surface; (f) An enlargement
of the crush mark in the rectangle area in Figure 9e.

Among the artificial microcracks, artificial microfractures perpendicular to the bedding direction
are more conducive to enhancing pore connectivity. As illustrated in Figure 9d, the hydrocarbon fluids
in the original pores could flow out through artificial microfractures, whereas the small molecular
fluid in fluid-invasion porosimetry can enter the original pores through the artificial microfractures.
The marks of the crushing process on the smooth surface by argon-ion-beam polishing could be
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observed in the local area of the particle sample (Figure 9e). By magnifying the observation of the
crush area (Figure 9f), it was found that the artificial pore-fracture is manifested in three forms: (1) the
separation of rigid minerals (quartz, calcite, etc.) and plastic components (organic matter and clay) to
form artificial pore-fractures; (2) the fragmentation of mineral grains to form artificial fractures; and (3)
the spalling of mineral grains, such as pyrite, to form artificial moldic pores.

4. Discussion

4.1. Effect of Particle Size on Pore Structure Characteristics

The results of the SANS show that the total porosities (including both open and closed
pores) increased with the decrease in particle size (Table 2). This characteristic indicates that the
increased porosity is due to the artificial pores or fractures created by the pulverization process.
Previous studies [11,15] have shown that shear and compression forces in the crushing process induce
the formation of new fractures and smaller fragments in the shale, generating new porosity, which is
consistent with the results of our FE-EM observations. In addition, during the crushing process,
the shale samples commonly fracture along the inherent weak parts, which will also lead to the
disappearance of some microfractures [28,39]. Based on the analysis of the above results, a hypothetical
model of the effect of the crushing process on the pore structure in shale was established (Figure 10).
As illustrated in Figure 10, when an intact shale sample is crushed into particles, the pore connectivity
in the shale is significantly enhanced. For a particle, artificial fractures or pores may form on the
surface or interior of the particle. Meanwhile, some isolated pore networks may also be exposed to the
particle surface or connected by new fractures.

The results of the MICP data indicate that MICP porosity increases with the decrease in sample
size (Table 3). For the MICP test, shale can be divided into three constituents: accessible pores,
inaccessible pores, and solid matrix [40,41]. The primary pores in the overmature shale have
been greatly reduced after a long period of compaction and cementation [42,43]. In addition,
the closure of minerals to the organic matter pore system results in low overall pore connectivity in the
overmature shale [10,44,45]. Therefore, with the increase in sample size, the pore connectivity of shale
decreases further, which results in a lower cumulative mercury intrusion, consistent with the reduction
in accessible porosity. Moreover, as can be seen from the schematic representation of particle size
reduction (Figure 10c,d), the disappearance of some pore throats results in a lower driving pressure
for mercury entering the pores. When pore throats less than 3 nm (corresponding to a maximum
pressure of 60,000 psia) are damaged, the pores that are inaccessible to mercury become accessible,
thus increasing the accessible porosity. Gas injection porosimetry experiments from Sun et al. [46]
also indicated that the crushing process decreases the required total diffusion time and minimum
gas injection pressure. The results of MICP show that the destruction of the smaller pore throat is
the primary cause of the increase in APtS and the decrease in total pore area with an increase in the
crushing level.

The studies of Davudov et al. [47] and Hu et al. [7] on Barnett shale show that permeability and
diffusivity increase as the sample size decreases. The permeability measured by MICP in shale is a
strongly correlated function of accessible porosity and APtS [47]. Therefore, the increase in these two
parameters is bound to increase shale permeability. However, the permeability values obtained from
the helium shale matrix permeameter (Core Laboratories SMP 200) in the Woodford Shale decrease
with a decrease in the sample particle size [28]. Compared with the permeability measured by MICP,
the permeability of the shale matrix measured by the helium pressure-decay method is primarily at
the nano-Darcy scale [28], which is inconsistent with the micro-Darcy scale permeability reported by
Davudov and Moghanloo [16]. This also indicates that the shale matrix permeability is controlled
by pore-throat distribution. With the reduction in particle size, the disappearance of a smaller pore
throat will cause some transport pores to become dead-end pores, which will lead to a loss of seepage
capacity and a decrease in matrix permeability.
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The effect of the particle size on the pore structure parameters obtained by low-pressure gas
(N2, CO2, and H2O) physisorption are compared with those generated by MICP and SANS (Tables 2
and 3). The pore structure characterization in the shales using the gas adsorption techniques range
from micropores to macropores with the increase in pressure, which is opposite to the order of Hg
entering the pores in MICP [48,49]. For N2 adsorption, the connectivity of the pore network, especially
for sizes larger than 10 nm, is significantly enhanced (Figure 4), which is consistent with previous
studies [11,13]. However, according to the results of sample RY2-18 (Figure 4), the particle sizes of
80~200 mesh will cause some small pores to be damaged. A similar phenomenon of pore destruction
was observed in the results of CO2 adsorption, but the overall effect on the pore system parameters
was not significant. For WVA, an increasing trend was found for the total adsorption at 95% RH with a
decreasing particle size, which could be dependent on the enhanced connectivity of the hydrophilic
pore network [50]. The pore structure changes associated with clay minerals observed by FE-SEM may
be responsible for the increased water adsorption sites. Similarly, previous studies also found that
the methane uptake rate and excess sorption capacity of shale increased with a decrease in particle
size [29,51]. This also indicates that the physical disruption of shale fabric will improve the pore
connectivity and, thus, more methane adsorption sites. In addition, the increased artificial space can
improve the swelling ability of shale after methane adsorption [52,53].
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Moreover, evidence for the weaker hysteresis effect of N2 in the pores associated with smaller
particle sizes (Figure 4) is related to the increased pore connectivity due to shorter flow paths. However,
the hysteresis loops of water vapor sorption did not tighten with a decreasing particle size (Figure 6).
In contrast, AHI increased with decreasing particle size, suggesting that wettability, in addition to
pore structure, also caused fluid retention in the pores [35,36,50]. The closed porosities of various
shales calculated by comparing the results of N2 adsorption and SANS have been reported in some
studies [20,54,55]. However, in this work, the results of SANS were found to contain information on
artificial pores rather than those of gas adsorption. Therefore, for the same particle size, the closed
porosity measured by comparing the results of N2 adsorption and SANS is generally overestimated.

4.2. Implications for Sample Size Selection of Different Methods

The size of the sample has a great influence on the determination of the petrophysical parameters
of shale using different measurement methods. The heterogeneity of shale is characterized by
rich microstructural features (microfractures and laminae), complex components (organic matter
and minerals), and multi-scale pore structure (from nanometers to micrometers) [56–58]. As shown in
Figure 11, for the same intact shale sample, sampling at different locations for testing may produce
different results. In addition, based on the analysis of Section 4.1, the difference in the results of particle
size variation obtained by several methods is primarily related to the different theoretical bases.

For the neutron scattering technique, the most significant advantage is the nondestructive
determination of the total porosity, including open and closed pores. Gu et al. [59] studied Marcellus
shale with different sampling directions (parallel and perpendicular to the lamination) and found that
the scattering pattern of the parallel layered samples is isotropic, while that of the vertically layered
samples is anisotropic. The study of pore anisotropy in oriented shale wafers using SANS provides new
insights for shale gas storage, migration, and preservation [23,60,61]. The SANS test on particle shale
samples results in isotropic scattering patterns due to the reduced effects of bedding and microfractures.
For the same shale sample, the scattering intensity for particles is higher overall in the low Q range
than in the intact wafer [22]. The results of this work also indicate that the downsizing of particles will
increase the SANS porosity due to the creation of more artificial pore space. Therefore, it is imperative
to select an intact shale wafer in the SANS test to limit the analytical error caused by artificial space on
the shale surface. Shale wafers with a thickness of 0.15~0.5 mm seem to be optimal for performing
SANS analysis, considering the scattering time and multiple scattering of the shale.

The MICP measurement provides multi-scale (nm-µm-scale) information regarding the pore
throats of shale [62–64]. Compared with the intact shale sample, the real pore throat distribution
characteristics could not be provided with the destruction of small pore throat with particle reduction
(Figure 7). Meanwhile, the artificially increased pore space is also reflected in the results of MICP.
According to Yu et al. [27], the MICP results for 20~35 mesh particle shale samples can be corrected by
fractal theory. However, the study only eliminated the error of mercury intrusion between particles
without mentioning the effect of pore-throat damage. In addition, the smaller the particle is, the larger
the modified exterior surface will be, causing the edge-accessible pores in shale to constitute a high
percentage of the interior volume, which cannot truly reflect the pore-throat distribution of the
shale [7,65]. As shown in Figure 11, the selection of representative positions at the centimeter scale can
reflect the pore characteristics of shale more comprehensively. Therefore, the cubic samples (~1 cm3)
with polished surfaces reduced the effect of cutting pockmarks and pore-throat damage and were more
suitable for the MICP test. Moreover, previous studies have confirmed that MICP with cubes from
overmature shale has minimal compression effects [40,66].

Many studies have demonstrated that more pores can be accessible to the adsorption gas (e.g., N2,
CO2, and H2O) as the particle size of pulverized shale decreased [11,14,50]. Meanwhile, samples
with smaller particle sizes can shorten the equilibration time and increase the desorption rate [41].
Therefore, Mastalerz et al. [14] suggested that a 200 mesh size of shale is more suitable for N2 and
CO2 analysis to determine the total pore volume. However, the N2 and CO2 adsorption results in this
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work indicate that an extremely fine particle size (80–200 mesh) may result in the destruction of finer
mesopores (i.e., less than 10 nm) and micropores, which is consistent with the study of Hazra et al. [15].
Gas adsorption experiments typically measure pore size ranges of less than 100 nm and rarely involve
artificial pores and fractures on the shale surface during the grinding process [12,13]. Considering the
equilibration time and original pore connectivity characteristics of shale, 35~80 mesh particle samples
provide good quality and reliable data for characterizing the PSD and calculating the pore volume of
the overmature shale. For WVA of overmature shale, it is recommended to use consistent particle sizes
for comparison with other gas adsorption results.
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Due to the intrinsic heterogeneity of shale, the information to be included should be selected
when characterizing the pore characteristics of organic-rich shales. Pore structure characterization is a
significant part of a petrophysical evaluation of shale reservoirs and for assessing shale gas productivity.
However, even for samples with the same particle size, discrepant results will be produced owing
to the different principles and error sources of each test method. Therefore, future research on pore
characteristics will need a multidisciplinary approach to obtain a more comprehensive, larger scale,
and more reliable results.
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5. Conclusions

Multiple tests, including SANS, MICP, gas (N2, CO2, and H2O) physisorption, and FE-SEM,
were conducted to analyze the influence of particle size on the pore characteristics of the two
overmature shales. The following main conclusions can be summarized:

(1) The results consistently show that artificial pores and fractures are created on the surface or
interior of the particles during the pulverization process. The pore connectivity of the shale is
enhanced as some isolated pore networks may be exposed to the particle surface or connected by
new fractures.

(2) For the SANS analysis of the shale, intact wafers with a thickness of 0.15~0.5 mm and an area
of approximately 1 cm2 are the optimal sample size. Fine particles less than 80 mesh are not
recommended because the result will include information regarding artificial pores and fractures.

(3) For the MICP test, the cubic samples (~1 cm3) appear to be optimal. The downsizing of particles
will lead to the destruction of the pore-throat, which cannot reflect the true pore-throat distribution
of shale using the MICP test.

(4) Gas adsorption is usually conducted on the same shale samples for comparison. Considering the
equilibration time and original pore connectivity characteristics of shale, 35~80 mesh is the most
practical for overmature shale.

Highlights

(1) The analytical sample size influences small-angle neutron scattering and fluid intrusion results.
(2) A model of the effect of the crushing process on the pore structure was established by visual and

quantitative techniques.
(3) An intact wafer with a thickness of 0.15~0.5 mm is recommended for SANS measurements.
(4) Cubic samples (~1 cm3) appear to be optimal for MICP analysis of shale.
(5) The 35–80 mesh particle size range is optimum for overmature shale samples used in

gas adsorption.
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