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Abstract: The depletion of fossil fuels and rising global warming challenges encourage to find safe
and viable energy storage and delivery technologies. Hydrogen is a clean, efficient energy carrier in
various mobile fuel-cell applications and owned no adverse effects on the environment and human
health. However, hydrogen storage is considered a bottleneck problem for the progress of the
hydrogen economy. Liquid-organic hydrogen carriers (LOHCs) are organic substances in liquid or
semi-solid states that store hydrogen by catalytic hydrogenation and dehydrogenation processes
over multiple cycles and may support a future hydrogen economy. Remarkably, hydrogen storage in
LOHC systems has attracted dramatically more attention than conventional storage systems, such as
high-pressure compression, liquefaction, and absorption/adsorption techniques. Potential LOHC
media must provide fully reversible hydrogen storage via catalytic processes, thermal stability,
low melting points, favorable hydrogenation thermodynamics and kinetics, large-scale availability,
and compatibility with current fuel energy infrastructure to practically employ these molecules in
various applications. In this review, we present various considerable aspects for the development
of ideal LOHC systems. We highlight the recent progress of LOHC candidates and their catalytic
approach, as well as briefly discuss the theoretical insights for understanding the reaction mechanism.

Keywords: liquid-organic hydrogen carrier (LOHC); hydrogen storage; hydrogenation; dehydrogenation;
catalyst

1. Introduction

Energy is crucial for development of the modern world. So far, most energy requirements are
fulfilled by fossil-based fuels. Indeed, rapid industrialization and advanced technologies affect the
fuel economy, and in other direction, the vast consumption of fossil energies causes anthropogenic
global warming, which negatively impacts the environment and human health. Moreover, our giant
usage engenders the depletion of fossil-based resources and faces severe shortage in the near future.
In fact, renewable energy sources, such as solar and wind, have attracted enormous attention [1].
However, these resources are not yet stable and fluctuate depending on the season. Alternatively,
batteries reinforce global electric transportation [2]; however, this technology presents limitations,
such as slow charging rates, scarcity of Li and Co with large-scale utility, and may be costly [3]. Hence,
alternative energy sources must be sought to conquer the current energy demands. In this context,
hydrogen is a clean and efficient energy carrier and can be employed as a carbon-emission free fuel for
a variety of appliances, such as fuel-cell vehicles, stationary and portable electronics, etc. [4,5].

Hydrogen (H2) is the lightest element in the periodic table; it is a colorless, odorless, and tasteless
gas with a low volumetric density of 0.08988 g/L at 101,325 Pa [6]. The idea of using hydrogen as an
energy source and carrier was presented several decades ago. In 1971, Jones postulated that the use
of liquid hydrogen must be seriously considered as a logical replacement for hydrocarbon fuels in
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the 21st century [7]. Substantially, Winsche et al. [8], Momirlan et al. [9], and Bockris [10] have been
highlighted the hydrogen roles and its benefits in the future hydrogen fuel economy. Though hydrogen
is anticipated to be a clean and efficient energy carrier, production is highly challenging. In this
respect, there are different varieties of primary energy sources, as well as various efficient technologies
that have been developed for the production of hydrogen. Mostly, non-renewable resources such as
natural gas and coal are displaying similar participation in H2 production. Nevertheless, renewable
and sustainable energy (RSE) sources have shown significant attention for long-term production
of clean hydrogen, for example, the splitting of water into hydrogen (H2) and oxygen (O2) by
electrolysis process [11] and the generating electricity by wind energy, which can be utilized in
water electrolysis. The ubiquitous RSE source, solar energy, also produces hydrogen by employing
sunlight as an energy source in water splitting process. Furthermore, biomass energy can generate
hydrogen by biological and thermochemical processes [12,13]. Despite extensive research toward
the production of clean H2, safe and cost-effective storage and transportation of hydrogen is a major
task in the development of a hydrogen economy. To date, many physical and chemical hydrogen
storage techniques have been extensively investigated. In physical storage methods, high pressure
compression in cylinders (up to 7 × 104 kPa) and liquefaction of hydrogen are commercially used.
However, hydrogen compression in capable cylinders should withstand high pressures ((2–7)× 104 kPa)
and required expensive composite materials (aluminum, steel, or thermoplastic-lined carbon fibers)
for making these storage tanks [14]. Then, liquifying hydrogen (−253 ◦C) in cryogenic tanks also
requires expensive, multi-storage cooling protocols [15]. In contrast, chemical storage techniques
comprised of metal hydrides and their alloys [16,17] (e.g., MgH2, LaNi5H6, NaAlH4), store hydrogen
via chemisorption and physisorption of hydrogen by porous materials [18–20] (e.g., activated carbon,
graphene, carbon nanotubes, and metal-organic frameworks), in which these are more favorable
storage methods. Nevertheless, metal hydrides and associated complexes face severe issues, such as
lower gravimetric hydrogen capacities (<5.5 wt%; In 2010, the Department of Energy (DOE) target
hydrogen capacity was 6 wt% for entire systems including tanks, regulators, valves, etc., and in 2017,
the DOE designated targets of 5.5 wt%, 40 g L−1, for mobile applications [21].), limited reversibility at
optimal pressure-temperature regions, and instability of storage materials. Furthermore, physisorption
of solid materials requires extremely low temperatures (−196 ◦C). Given this, research efforts have
drawn attention toward the development of alternative hydrogen storage compounds, known as
liquid-organic hydrogen carriers (LOHCs).

By definition, LOHCs are organic compounds which exist as liquids or low melting point solids
under ambient storage conditions. Indeed, LOHC systems are potentially safe and relatively cheap
storage materials. These systems can have a pair of hydrogen-rich (H2+) and hydrogen-lean (H2−)
molecules. In this system, hydrogen is stored by H2− molecules through catalytic hydrogenation
(exothermic), and hydrogen is released by catalytic dehydrogenation (endothermic) reactions of H2+

molecules at optimal temperature and pressure conditions (Scheme 1). Notably, the high gravimetric
and volumetric storage of hydrogen in small organic molecules have shown significant promise due
to their numerous advantages, such as easy and clean energy storage without any concept-induced
leakages, compatibility with present transport and refueling infrastructures, as well as operation under
ambient conditions (pressure or temperature). To date, several efficient LOHC compounds have been
developed. However, research efforts toward their development and practical usage is still in infancy.
Thus, based on reported literature [22–24], a LOHC system should meet the following characteristic
properties in order to employ as good candidate for practical applications.
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• It should be non-toxic and safe, with an acceptable eco-toxicology profile during transportation
and usage.

• To avoid the need for solid-based fuel infrastructure and external addition of solvents,
LOHC systems should have low melting points with favorable values <−30 ◦C.

• The boiling point of the LOHC system should be high (>300 ◦C) to simplify the purification of
hydrogen and require low dynamic viscosity for easy pumping.

• Reasonably high volumetric (>56 kg/m3) and gravimetric storage capacities (>6 wt%) are required.
• To attain the stability of LOHC molecules and achieve low dehydrogenation temperatures

(<200 ◦C at 100 kPa H2 pressure), the desired hydrogen binding enthalpy should be in the range
of 40–70 kJ/mol H2, based on Wild et al. [25] and 42–54 kJ/mol H2 per Cooper et al. [26].

• The system should be able to liberate sufficiently pure H2 while producing very selective
hydrogenated and dehydrogenated products over long-life cycles, as well as avoiding alternative
decomposition pathways.

• It should be compatible with existing fuel infrastructure and have low production costs.

Therefore, the above-mentioned characteristic properties pave the way for novel discoveries
toward the development of efficient LOHC candidates in the near future. However, none of the
known LOHCs, such as naphthalene, N-ethyl carbazole (NEC), etc., have achieved these properties to
the full extent. This review focuses on a brief description of LOHC characteristic properties from a
thermodynamic point of view. Additionally, a recent progress of well-known and newly developed
LOHC candidates with associated catalytic systems are highlighted, followed by a brief discussion of
theoretical efforts toward the development of efficient LOHC systems.

2. Brief History of LOHCs

Research studies toward hydrogen storage in LOHCs via hydrogenation/dehydrogenation
processes first took place in the early 1980s [27]. Based on the (de)hydrogenation processes, the most
predominant task was pointed out as toluene/methylcyclohexane (MCH) system [28]. Following the
MCH system research, numerous LOHC concepts have been assessed based on hydrogenation
and dehydrogenation criteria for hydrogen storage. In the early 2000s, the basic concept of a
cyclohexane/benzene LOHC system was investigated by Japanese researchers and they examined
similar systems in more detail [29,30]. Notably, NEC was proposed as a LOHC candidate by
Pez et al. in 2005 [31], and then in-depth research of this carrier material has been continued by
various groups [32–34]. The latter, different research groups have also shown significant interest
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in alternative azaborine carrier materials [35–37]. In 2008, Crabtree suggested that N-containing
heterocyclics are more advantageous LOHC materials, in terms of ease of H2 release, safe storage,
low vapor pressure, better biodegradability, and simple heat management [38]. Muller et al. proposed
that nitrogen-containing aromatic compounds are well-suited for better hydrogen storage based on
thermodynamic evaluation [39], emphasized by their enthalpy changes during hydrogenation. Based on
the LOHC concept, a mile stone was reached by the Chiyoda Corporation (Japan; Scheme 2) [40].
This company completed a pilot-plant facility for large-scale hydrogenation and dehydrogenation of
LOHC materials in 2018. Additionally, numerous potential LOHC candidates were proposed and
exploited in practical applications such as decentralized energy storage network [41], combined heat and
power (CHP) systems [42]. Eypasch et al. demonstrated theoretical assumption of energy supply based
on LOHC for industrial production plants [43]. Very recently, Niermann et al. indicated that LOHCs are
technologically efficient and economically promising safe transportation and storage materials [44].
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In this context, a wide range of potential LOHCs have been proposed in the literature and are
highlighted based on the thermodynamic properties [38,39]. Efficient LOHCs have been proposed,
and important insights into catalytic processes have been gleaned from theoretical approaches such as density
functional theory (DFT) and ab initio-DFT calculations [22,45]. Further, contributions regarding fundamental
catalytic aspects for hydrogenation and dehydrogenation of LOHCs have also been discussed [46].

3. Critical Issues in Developing LOHC Media

According to reported literature, we briefly discuss a few important LOHC characteristic properties
and key aspects of LOHC catalytic systems as well as numerous other factors more generally for
practical implementation of LOHCs.

3.1. Hydrogenation/Dehydrogenation

Usually, reversible hydrogenation and dehydrogenation at ambient temperature conditions is
the primary requirement for hydrogen storage LOHC candidates. Thermodynamically, the feasibility
of these reactions is strongly influenced by the thermodynamic reaction enthalpies. In particular,
aromatic hydrogenation reactions are highly exothermic and thermodynamically favorable
(e.g., aromatic benzene ring enthalpy is ∆Rh =−68.73 kJ/mol H2, but the released energy not typically used.
On the other hand, dehydrogenation is endothermic and requires high heat demand which is in the range
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of 64–69 kJ/mol H2, and as a result, this reaction is unfavorable both kinetically and thermodynamically
(e.g., cyclohexane/benzene and MCH/toluene pairs) [47,48]. In contrast, liquid hydrogen carriers require
low heat management though it needs an active catalyst in the dehydrogenation process. Considering
these thermodynamic difficulties, Pez and coworkers for the first time suggested in their patent, the use
of N-heterocyclics (e.g., NEC) decreases endothermicity and enhance hydrogen release as compared
with alicyclics at relatively lower temperatures [31]. In addition, Crabtree and coworkers’ systematic
computational studies on structural factors generalized the substitution of nitrogen atoms in five- and
six-membered rings how judiciously achieving the lower H2 release temperatures [49]. Based on Muller
et al.’s contribution, the facile reaction enthalpy for an ideal LOHC candidate is about 40 kJ/mol H2,
and they suggested nitrogen-substituted aromatic compounds could reach this requirement easily, despite
non-aromatic compounds being barely suitable [39]. Hence, these reports encourage the nitrogen-containing
compounds are the focus of interest in developing novel LOHC systems.

3.2. Reaction Catalysts for LOHC

Another crucial aspect in LOHC development is selection of the proper catalytic system
for hydrogenation and dehydrogenation reactions. As discussed in Section 3.1, chemical storage
of hydrogen in liquid carriers is attained exothermically during hydrogenation process
whereas endothermic liberation of hydrogen is observed during dehydrogenation process,
moreover, this endothermicity is a major drawback due to the requirement of high heat
demand. Though thermodynamic evaluation is the one of the concerns in designing the LOHCs,
an active catalytic system with a high to moderate loading of precious metal catalysts (e.g., Pd, Pt,
Rh, and Ru) can actually achieve acceptable dehydrogenation kinetics at low temperatures (≤150 ◦C).
In particular, numerous homogenous catalysts [50–52] have been developed for this purpose; however,
the achieved stability, recycling, and practical advantages in large-scale applications have more precisely
promoted heterogeneous catalyst systems. Various commercial heterogenous catalysts with different
supporting substances (e.g., Pd/C, Pt/Al2O3, and Pd-Pt/Al2O3) have attracted much attention for
LOHC technology [46]. However, high catalyst efficiency is the major criteria in which metal loading,
appropriate support selection, and structural properties (particle size, porosity, active surface area,
etc.) are all important characteristics [53–55]. To this end, development and optimization of efficient
catalyst systems obviously requires both experimental and theoretical approaches. Theoretical studies
using DFT calculations can provide fundamental insight into catalytic activity and selectivity over
different metal surfaces and experimental methods comprised of various spectroscopic techniques
(typically X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD),
and infrared reflection absorption spectroscopy (IRAS), etc.) further support the field of LOHC
dehydrogenation catalysis [45,56]. Combining these complementary approaches, the development of
efficient catalytic systems is promising.

3.3. Features of LOHC Medium

3.3.1. Melting and Boiling Points

In 2017, the US DOE designated an organic hydrogen carrier target gravimetric storage capacity
of 5.5 wt% H2 relative to the storage system including the carrier, tank, and dehydrogenation
unit [21]. Predominantly, the carrier materials depend on two major concerns: storage density
(typically 7.3 wt% for naphthalene) and existed temperature range in which the material remains
a liquid. Despite the storage density requirement, carrier compounds can have low melting points
(<−30 ◦C) [57]; otherwise need to use of additional solvents to dissolve it which hinders the targeted
storage capacity. Usually, larger aromatic compounds, like naphthalene and anthracene have high
storage capacities but solidify at room temperature. In this regard, destroying the symmetry by
substituting alkyl chains (e.g., cyclohexane melts at 6.5 ◦C whereas MCH melts at −126.6 ◦C) is an
alternative solution [58], though it decreases storage capacity. Besides, the boiling point (b.pt.) of
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carrier molecules should be as high as possible (>300 ◦C) which can minimize the vapor pressure
during dehydrogenation and storage. In this case, larger aromatic compounds (e.g., b.pt. of anthracene
is 342 ◦C) are more advantageous than smaller compounds (e.g., toluene b.pt. is 110.6 ◦C), except
for the occurrence of their solid phase states. Therefore, these mentioned thermodynamic properties
should be helpful in guiding future LOHC development.

3.3.2. Stability of LOHC Molecules

The consequent consideration in developing of ideal LOHCs is fall under the stability aspect of
LOHC molecules. In LOHC technology, carrier molecule stability is strongly affected by hydrogenation
and dehydrogenation temperatures under relevant catalytic medium. In particular, lower temperature
conditions can avoid the decomposition pathways, thereby, yielding no side-product formation and
allowing for long-term use. On the other hand, suitable catalysts with high activity can minimize
the reaction temperatures. For example, carbazole-based derivatives undergo dealkylation which
potentially leads to deterioration of LOHC materials at the required dehydrogenation temperatures.
In this case, Amende et al. reported that control of particle size and structure-dependent effects of
active metal catalysts on well-defined surfaces could benefit for long-term stability [56,59]. Thus,
understanding both structural properties and theoretical studies on model catalysts and their activities
can facilitate development of future LOHC molecules.

3.3.3. Toxicity and Biodegradability

Considering practical applicability, toxicity and biodegradability of LOHC materials must be
evaluated. Owing to the increased benefits of LOHC technology, hazard assessment of molecules needs
to be examined to minimize negative impacts on human health and the environment. As rated by the
Toxicity Potential Indicator (TPI), values cover the range of “0” for non-toxic to “100” for extremely
toxic [60]. Generally, toxicity assessment is more common for dehydrogenation counterparts than
hydrogenated molecules [23]. For example, the safety data for the technical dibenzyl toluene mixture
(Marlotherm SH; MSH) is described as low risk, and ecotoxicological problems are less than common
diesel and are comparatively more favorable than NEC [61]. In addition, biodegradability is another
key factor of a LOHC system. In this scenario, nitrogen-containing molecules typically have better
biodegradability than alicyclic molecules, as reported by Crabtree [24]. Very recently, Markiewicz et al.
reported hazard assessment of quinaldine, three-different alkyl carbazoles, benzene, and toluene based
on mutagenicity, cytotoxicity, acute aquatic toxicity and biodegradability of each LOHC system [62].
Therefore, study on toxicity and biodegradability of LOHC molecules are imperative for developing
LOHC systems.

In addition, there are several factors such as flashpoint, ignition temperature, density, viscosity,
and surface tensions, that need be considered for the development of LOHC systems. Though these
properties are not addressed to the full extent in the literature for all LOHC molecules, only few
molecules are well-documented due to their utilization in mobile applications [61,63].

4. Classification of LOHC Media and Catalytic Systems

In the field of LOHCs, many organic carrier molecules have been reported to date, and several
important review articles cover various aspects of this topic [23,45,46,48,64]. Herein, we discuss recent
research development of hydrogenation and dehydrogenation catalytic systems. Owing to the high heat
demand for dehydrogenation, the development of efficient dehydrogenation catalysts has been extensively
studied. Based on structural characteristics and utilization purposes, we selected a few promising LOHC
systems and categorized them into two types in the following section: (1) homocyclic and (2) heterocyclic
compounds. Further, we highlight recent theoretical efforts for a few compounds with respect to
development of model dehydrogenation catalysts. Notably, Section 4.1 describes LOHC carrier molecules
toluene, naphthalene, and mono benzyl toluene. On the other hand, recent progress on heterocyclic
compounds, including indole derivatives, phenazine, and 2-(n-methylbenzyl) pyridine, is discussed in
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Section 4.2. Lastly, though NEC-derivatives are incredibly important, we do not cover them in this review
because several recent reviews have already explored these particular LOHC systems [24,65,66].

4.1. Homocyclic Compounds

Hydrogenation of aromatic LOHC compounds using precious metal catalysts are more familiar
than dehydrogenation reactions [23]. Importantly, promising LOHC systems, toluene, naphthalene,
and benzyl toluene (Marlotherm LH, BT), which hydrogenate to MCH, decalin, and perhydro-benzyl
toluene, respectively, in the presence of active catalysts have been well studied. Thus, we focus on very
recent dehydrogenation catalytic systems and their physicochemical properties (Table 1) for practical
utilization in LOHC systems.

4.1.1. MCH Dehydrogenation

During the early stages of LOHC technology, one of the most recognized LOHC systems was
toluene (TOL)/MCH (Figure 1). Toluene is converted into MCH using various efficient heterogeneous
catalysts during hydrogenation. Liquid-phase MCH can reach a hydrogen storage capacity of 6.2 wt%
(satisfying the DOE target of 5.5 wt%) at ambient conditions. Additionally, its liquid state is beneficial for
long-distance transportation, and it can be utilized in many applications. Owing to the high heat demand
for dehydrogenation (−68.3 kJ/mol H2), MCH requires harsh conditions, thermodynamically [67].
In this context, Sinfelt and coworkers reported Pt-based catalysts, which emerged as the most efficient
and selective catalysts for cycloalkane dehydrogenation [68,69]. Though these catalysts are efficient,
they deactivate upon adsorption of dehydrogenated products (aromatic hydrocarbons) and require
high temperatures (≥350 ◦C), leading to formation of coke and other side-products (dealkylation) [70].
In addition, the low boiling point (100.9 ◦C) and low flash point (−3 ◦C) could be problematic for reversibility,
selectivity, and practical purposes. Despite these disadvantages, the Japanese company Chiyoda
Corporation has been successful in large-scale production of TOL/MCH LOHC system applications [40].
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Based on the literature, the two key factors, synergistic effects of bimetallic catalysts (e.g., Pt-Mn,
Pt-Sn) and catalytic supports (e.g., Al2O3 and SiO2), play a promising role in improving catalytic
performance. To reduce the use of precious metal catalysts (e.g., Pt) or improve the efficiency
of MCH dehydrogenation, combination of second metals (typically bimetallic catalysts: Pt-Mn,
Pt-Sn) such as Re, Ni, Sn, and Mn, etc., were investigated [71]. The resulting bimetallic catalysts
exhibited higher performance than their monometallic counterparts. In the view of catalytic supports,
metal oxides (e.g., ZrO2, TiO2, and MnO2) and perovskites (La0.7Y0.3NiO3) have shown great promise
in MCH dehydrogenation [72].
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Table 1. Typical examples of potential LOHCs and their physicochemical properties.

LOHC System
H2

Capacity
(wt%)

Enthalpy
(kJ/mol H2)

Melting Point (◦C) Boiling Point (◦C) Flash Point (◦C)

H2-Rich H2-Lean H2-Rich H2-Lean H2-Rich H2-Lean

Methylcyclohexane→ toluene
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Table 1. Cont.
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In 2018, Yan et al. reported a novel catalyst, Pt-Sn on Mg-Al metal oxide support showed increase
of MCH dehydrogenation activity and possessed high anti-coking abilities and good stability [73].
Studies on catalytic activity with respect to different Sn contents revealed greater performance with
PtSn-5/Mg-Al-350 (PtSn-X/Mg-Al-T, where X = weight percentage of Sn and T = reaction temperature,
i.e., calcination temperature of catalyst precursors; Figure 2a). Interestingly, compared to monometallic
catalysts and the absence of metal oxide supports, the bimetallic catalyst with a Mg-Al-O support,
PtSn-5/Mg-Al-O-350, showed better catalytic activity with high MCH conversion (90.5%), as well as
a 262.1 mmol/gmet/min H2 evolution rate at 300 ◦C. Furthermore, authors declared that enhanced
dehydrogenation activity was attributed to interaction between Pt and Sn, the chemical state of Sn,
and stabilization of the Sn oxidation state by the Mg support.
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Interestingly, catalytic reactions conducted in an electric field by virtue of surface protonics
can improve dehydrogenation selectivity (without coke/methane production) at low temperatures.
Very recently, Sekine and coworkers developed a Pt/anatase-TiO2 catalyst have shown high activity
with a 37% conversion at 448 K in the presence of an electric field (Figure 2b) [74]. Breakthrough
conductivity experiments revealed the role of surface protonics where proton hopping occurs in a 10%
hydrogen atmosphere is improved MCH dehydrogenation at low temperatures. Moreover, XPS and
XANES studies evaluated the states of Pt active sites (Pt0, Pt2+ to Pt4+) in the MCH dehydrogenation
process. Further, an anatanse-TiO2 support reduced catalyst deactivation by weakening the interaction
between Pt and π-coordinated toluene.

4.1.2. Decalin Dehydrogenation

The next important aromatic hydrocarbon LOHC system is decalin/naphthalene (Figure 3).
The hydrogen storage capacity of decalin (DEC) is 7.3 wt% [75]. Despite having greater storage
capacity, the dehydrogenated compound (naphthalene melts at 80 ◦C) is a solid at room temperature.
Additionally, the high heat demand for dehydrogenation (66.3 kJ/mol H2), irreversibility, and difficulty
in transportation engenders the research challenges for practical application of this system. In the
literature, several research findings have emphasized the conversion of decalin to naphthalene using
dehydrogenation catalysts [76–78].
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One challenge in combating these difficulties is efficient catalyst selection and optimization of
the catalyst/substrate ratio. In this regard, Hodoshima and coworkers developed a novel bimetallic
platinum-rhenium composite on granular activated carbon (Pt-Re/C) in a “superheated liquid-film-type”
state, which demonstrated improved DEC dehydrogenation with both batch-wise and continuous-type
reactors [79]. Moreover, the proposed catalytic system required a temperature range of 210 to
280 ◦C for both reactors, which is lower than the reported temperature conditions (440 ◦C). Further,
authors supplied hydrogen from decalin by continuous operation (50 kW, >70% conversion) to fuel-cell
vehicles which resulted in fulfill the fuel-cell-vehicle on-board power range (50–80 kW).

Catalyst preparation method plays a key role in improving catalytic performance. Lee et al.
reported the effect of Pt/C catalyst preparation using various techniques and improved the catalytic
activity of decalin dehydrogenation at 210 ◦C with a batch-type reactor under reflux conditions
(5 ◦C) [80]. In this report, the four different techniques denoted as impregnation (Im), precipitation
(Pr), ion-exchange (Ex), and polyol (Po), were selected for the synthesis of Pt on supported carbon.
Afterwards, these catalysts were characterized by XRD, CO-chemisorption, and TEM analyses. Pt/C_Ex
and Pt/C_Po showed high catalytic activity in decalin dehydrogenation which was attributed to the Pt
particle size (5.8 nm in Pt/C_Ex and 8.1 nm in Pt/C_Po compared to 21.0 nm for Pt/C_Im and 11.4 nm for
Pt/C_Pr) and excellent dispersion of Pt on the supported carbon. Regarding total hydrogen evolution,
the prepared catalyst performances over an hour were as follows: Pt/C_Po (344.4 mmol H2/gPt) >

Pt/C_Ex (333.3 mmol H2/gPt) > Pt/C_Pr (288.9 mmol H2/gPt) > Pt/C_Im (244.4 mmol H2/gPt; Figure 4).
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Though precious metal catalysts have been given significant attention, the selection of support
materials is another important feature in decalin dehydrogenation to avoid hydrogenolysis and
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cracking products. Very recently, Pimerzin and coworkers compared various supports, mesoporous
silicas SBA-15, MCM-48, silica (SiO2), and alumina (Al2O3), using Pt as a metal precursor for decalin
dehydrogenation [81]. The low acidity of silica and mesoporous silicas, compared to the commonly
used alumina, motivated development of these catalyst systems. Interestingly, Pt/MCM-48 (86%) and
Pt/SBA-15 (75%) exhibited relatively high decalin conversion compared with Pt/SiO2 (59%) and Pt/Al2O3

(57%) under 0.5 MPa of pressure, a LHSV (liquid hourly space velocity) of 60 h−1, hydrogen feed stock
of 500 nl/l, and 325 ◦C. In addition, Pt/MCM-48 attained a maximum hydrogen release of 5.7 wt% at
335 ◦C and a LHSV of 20 h−1. The obtained catalytic activity was responsible for the morphology and
chemical-physical state properties of Pt catalyst on the supported surfaces.

4.1.3. Benzyl Toluene Dehydrogenation

Among the aromatic hydrocarbons, another promising LOHC system is perhydro-benzyl toluene
(H12-BT)/benzyl toluene (H0-BT), which stores a hydrogen capacity of 6.2 wt% (Figure 5). H12-BT is
commercially available as heat transfer oil, and the physicochemical properties of this system are
more favorable for LOHCs [61]. Moreover, dehydrogenation of H12-BT requires comparatively
less heat demand per mole of H2 (63.5 kJ/mol H2) than H18-DBT (65.4 kJ/mol H2), but its low
boiling point (270 ◦C) compared to H18-DBT (370 ◦C) limits the liquid-phase dehydrogenation
temperature [63,82]. For this reason, most research review articles highlight the perhydro-dibenzyl
toluene (H18-DBT)/dibenzyl toluene (H0-DBT) LOHC system due to its reasonable hydrogen storage
density (6.2 wt%), good technical availability, and compatibility with current fuel infrastructures.
However, H12-BT possess the following facile advantages making this LOHC system more attractive
in winter (low temperature) energy storage applications:

• faster hydrogen release of H12-BT compared to H18-DBT using Pt/Al2O3 catalyst at 270 ◦C
• formation of structurally less complex intermediates (H6-BT is the only observed intermediate)

during hydrogenation/dehydrogenation processes [83], and
• low viscosity of H12-BT (3.94 cP for H0-BT and 6.97 cP for H12-BT) compared to H18-DBT (49 cP

for H0-DBT and 389 cP for H18-DBT) at 20 ◦C.
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The significant release of hydrogen and physicochemical properties of H12-BT at ambient
conditions prompt its utilization in low temperature storage applications. Wasserscheid and coworkers
proposed mixing of H12-BT with H18-DBT for reducing viscosity as well as enhance hydrogen release
productivity as compared to their pure DBT counterparts [82]. Authors mentioned that a 20 wt%
addition of H12-BT to H18-DBT reduced viscosity by 79% at 10 ◦C. The dehydrogenation of H12/H18
mixtures at 260 ◦C using Pt on Al2O3 support increased hydrogen release by 12–16% compared to pure
H18-DBT. The proposed reaction mechanism pathway for the dehydrogenation process is shown in
Figure 6. Finally, this multicomponent LOHC system enhances future research developments toward
practical application.



Energies 2020, 13, 6040 13 of 23Energies 2020, 13, x FOR PEER REVIEW 11 of 23 

 

Figure 6. Reaction scheme of the proposed reaction mechanism for the transfer hydrogenation between 

H2− benzyltoluene and H2+ dibenzyltoluene. Reprinted with permission from [82]. 

On the other hand, the reactive distillation process is one of the concerns to provide the pure 

hydrogen and enhancement of dehydrogenation efficiency. Very briefly, reactive distillation is defined 

as the dehydrogenation and separation of H2+ from H2− LOHC molecules at the same time and in the 

same reaction volume. Very recently, Geißelbrecht et al. reported a reactive distillation setup for 

improving the dehydrogenation rate of H12-BT under very mild reaction conditions [84]. Importantly, 

the dehydrogenation efficiency of H12-BT with this setup achieved a 50% increase of overall hydrogen 

release rate compared to liquid-phase dehydrogenation with a Pt/Al2O3 catalyst at 218 °C and 30 kPa. 

Authors also conducted several breakthrough experiments to better understand this LOHC system, 

which are not discussed in this review. Finally, such low temperature dehydrogenation reaction 

conditions using reactive distillation can enhance the use of this LOHC system for many hydrogen 

storage applications. 

4.2. Heterocyclic Compounds 

Compared with cyclic aromatic hydrocarbons, N-heterocyclic-based LOHCs have attracted 

significant attention due to their reversibility, favorable kinetics and thermodynamics, and low 

dehydrogenation temperature, etc., as suggested by the Pez and Crabtree research groups [24,31]. In 

addition, other heterocyclics like dibenzofuran (O-heteroatom) and dibenzothiophene (S-heteroatom), 

are chosen less frequently because they give undesired products during hydrogenolysis [85]. As 

mentioned earlier, the N-heterocyclic system (NEC) has been investigated extensively in several 

important reviews. For this reason, the present section focuses on indole derivatives which are similar 

structures to carbazole [86]. Moreover, we briefly describe other important N-based LOHC systems, 

such as phenazine and 2-n-methylbenzyl pyridine, and tabulated physicochemical properties of the 

aforementioned compounds (Table 1). 

4.2.1. Hydrogenation/Dehydrogenation of Indole Derivatives 

Among all N-heterocyclics, indole and its derivatives have suitable kinetic and thermodynamic 

properties, motivating exploration of these compounds for LOHC applications. Moreover, these are 

similar structures to carbazole derivatives, and their low melting points, lower dehydrogenation 

temperatures, and satisfactory storage capacities have made them attractive as potential LOHC systems 

[86]. As suggested by Jessop and coworkers, alkyl substitution on the pyrrolidine rings of indole 

derivatives significantly reduces enthalpy though it minimizes the storage capacity [87]. With this 

attention, few synthetically benign alkyl-substituted indoles have been widely explored in LOHC 

technology. Herein, we highlight catalytic hydrogenation and dehydrogenation of N-methyl indole/N-

methyl perhydroindole, N-ethylindole/N-ethylperhydroindole, 2-methylindole/2-methyl 

perhydroindole, and 1,2-dimethyl indole/1,2-dimethyl perhydroindole LOHC systems (Figure 7). 
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On the other hand, the reactive distillation process is one of the concerns to provide the pure
hydrogen and enhancement of dehydrogenation efficiency. Very briefly, reactive distillation is defined
as the dehydrogenation and separation of H2+ from H2− LOHC molecules at the same time and in
the same reaction volume. Very recently, Geißelbrecht et al. reported a reactive distillation setup for
improving the dehydrogenation rate of H12-BT under very mild reaction conditions [84]. Importantly,
the dehydrogenation efficiency of H12-BT with this setup achieved a 50% increase of overall hydrogen
release rate compared to liquid-phase dehydrogenation with a Pt/Al2O3 catalyst at 218 ◦C and 30 kPa.
Authors also conducted several breakthrough experiments to better understand this LOHC system,
which are not discussed in this review. Finally, such low temperature dehydrogenation reaction
conditions using reactive distillation can enhance the use of this LOHC system for many hydrogen
storage applications.

4.2. Heterocyclic Compounds

Compared with cyclic aromatic hydrocarbons, N-heterocyclic-based LOHCs have attracted
significant attention due to their reversibility, favorable kinetics and thermodynamics, and low
dehydrogenation temperature, etc., as suggested by the Pez and Crabtree research groups [24,31].
In addition, other heterocyclics like dibenzofuran (O-heteroatom) and dibenzothiophene (S-heteroatom),
are chosen less frequently because they give undesired products during hydrogenolysis [85].
As mentioned earlier, the N-heterocyclic system (NEC) has been investigated extensively in several
important reviews. For this reason, the present section focuses on indole derivatives which are similar
structures to carbazole [86]. Moreover, we briefly describe other important N-based LOHC systems,
such as phenazine and 2-n-methylbenzyl pyridine, and tabulated physicochemical properties of the
aforementioned compounds (Table 1).

4.2.1. Hydrogenation/Dehydrogenation of Indole Derivatives

Among all N-heterocyclics, indole and its derivatives have suitable kinetic and thermodynamic
properties, motivating exploration of these compounds for LOHC applications. Moreover, these are
similar structures to carbazole derivatives, and their low melting points, lower dehydrogenation
temperatures, and satisfactory storage capacities have made them attractive as potential LOHC
systems [86]. As suggested by Jessop and coworkers, alkyl substitution on the pyrrolidine rings
of indole derivatives significantly reduces enthalpy though it minimizes the storage capacity [87].
With this attention, few synthetically benign alkyl-substituted indoles have been widely explored in
LOHC technology. Herein, we highlight catalytic hydrogenation and dehydrogenation of N-methyl
indole/N-methyl perhydroindole, N-ethylindole/N-ethylperhydroindole, 2-methylindole/2-methyl
perhydroindole, and 1,2-dimethyl indole/1,2-dimethyl perhydroindole LOHC systems (Figure 7).
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In 2015, Dong et al. reported N-ethyl indole (NEID) as a LOHC candidate molecule and its
physicochemical properties are well-suited for on-board automotive applications [88]. It possesses a
melting point of −17.8 ◦C, boiling point of 253.5 ◦C, and flashpoint of 107.1 ◦C, as well as attaining a
5.23 wt% hydrogen storage density. Hydrogenation of NEID was conducted at 9 MPa over 160–190 ◦C
using 5 wt% of Ru-Al2O3 catalyst. The reaction rate rises sharply with increasing temperatures.
The apparent activation energy for consumption of NEID was 62.4 kJ/mol, which is comparatively
lower than NEC (99.5 kJ/mol), and identified hydrogenation products of NEID were as follows:
NEID→2H-NEID→4H-NEID→8H-NEID. Afterwards, the maximum concentration of dehydrogenated
product was achieved in 60 min using 5 wt% Pd/Al2O3 at 101 kPa and 190 ◦C. Finally, dynamic sampling
mass spectrum (DSMS) results revealed no side-product formation and produced hydrogen gas in
high purity during dehydrogenation process.

In 2016, Li et al. developed another indole derivative, 2-methylindole (2-MID), with a storage
capacity of 5.76 wt% [89]. The melting point of 2-MID (57 ◦C) is lower than NEC (70 ◦C), and the
activation barrier (21 kJ/mol) for hydrogenation is kinetically facile compared to NEC and NEID.
Hydrogenation of 2-MID was studied with the Ru/Al2O3 (5 wt%) catalyst, a hydrogen pressure of
7 MPa, and a temperature range of 120–170 ◦C. The temperature dependent hydrogenation reaction
and theoretical studies revealed the reaction route (2-MID to 8H-2-MID) through kinetically stable
intermediates (Figure 8). On the other hand, the fully dehydrogenated product of 8H-2-MID was
achieved with 5 wt% of Pd/Al2O3 catalyst in 4 h at 190 ◦C, and the apparent activation energy during
this process was estimated to be 27.1 kJ/mol.
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In 2018, Yang et al. developed an alkylated indole derivative, 1-methyl indole (NMID). Its low
melting point of −20 ◦C and relatively low vapor pressure exhibits this material well-suited for
LOHC technology [90]. Similar to 2-MID, Ru and Pd on alumina support catalysts were selected
for hydrogenation and dehydrogenation reactions. Furthermore, DSMS experiments proved that
99.99% purity H2 gas without any side-product formation was detected during dehydrogenation
(Figure 9). Very recently, Dong et al. proposed another indole derivative, 1,2-dimethylindole (1,2-DMID)
which possess storage capacity of 5.23 wt% [91]. The chemical stability of 1,2-DMID during
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hydrogenation/dehydrogenation and moderately favorable physicochemical properties (melting
point of 55 ◦C, boiling point of 260 ◦C) facilitate use of this hydrogen storage material for on-board
applications. Similar catalysts (typically for the 2-MID LOHC system) were used during this catalysis
reaction, as well.
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Figure 9. (a) The time-dependent hydrogen release curves of 8H-NMID dehydrogenation at different
temperatures. (b) DSMS spectra of hydrogen gas released from the dehydrogenation process at 180 ◦C.
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4.2.2. Hydrogenation/Dehydrogenation of Phenazine

Another promising N-heterocyclic LOHC system, perhydro-phenazine/phenazine (Figure 10)
exhibits a hydrogen storage capacity of 7.2 wt%, as reported by Kempe et al. [92]. Interestingly,
octahydro-phenazine was synthesized sustainably from hydrogenolysis of lignin product and ammonia
(Figure 11a). Owning to the thermally and chemically inert nature of the amorphous silicon carbonitride
(SiCN) matrix, it was selected for synthesis of the bimetallic nanocomposite Pd2Ru@SiCN catalyst.
Utilizing this catalyst, quantitative dehydrogenation of octahydro-phenazine (obtained from lignin) to
phenazine was performed, followed by used in hydrogen storage cycles. In the view of hydrogenation
reaction, the dioxane/water-dissolved phenazine at 150 ◦C and 5 × 103 kPa of H2 pressure, yielded a
high hydrogenation rate due to the influence of the aqueous solvent medium. On the other hand,
this candidate molecule performed well in terms of reversibility and stability, as confirmed by better
conversion of tetradecahydrophenazine to phenazine at 190 ◦C using diglyme as the solvent. Moreover,
the LOHC candidate molecule showed hydrogen uptake/release with small variations over seven
consecutive cycles. Further, no carbon monoxide (CO) was detected, and high purity hydrogen gas
was released (Figure 11b).
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Figure 11. (a) A section of the lignin structure with alkoxybenzene subunits marked by green circles
(top). Lignin can be converted to cyclohexane-1,2-diol using existing methodologies (hydrogenolysis).
Synthesis of octahydro-phenazine from cyclohexane-1,2-diol and ammonia (bottom). (b) Hydrogen
uptake and release over consecutive cycles were calculated by GC and GC-MS analysis, based on the
preceding step. Reprinted with permission from [92].

4.2.3. Hydrogenation/Dehydrogenation of 2-(n-Methylbenzyl Pyridine)

Recently, a new potential LOHC candidate molecule, 2-(n-methylbenzyl pyridine) (MBP),
was adjoined in N-heterocyclic compounds (Figure 12). Suh and coworkers proposed the MBP
hydrogen carrier molecule which stores 6.15 wt% hydrogen density and exists in the liquid state at
ambient conditions [93]. Theoretical calculations and the ease of MBP synthesis satisfy thermodynamic
challenges and technical availability (Figure 13a). Upon examining various synthesized and commercial
catalysts, Ru/Al2O3 performed well for hydrogenation, whereas Pd/C showed better activity for
dehydrogenation. MBP is less viscous (5.9 cP at 25 ◦C) compared to dibenzyl toluene (DBT, 37.8 cP)
and ethylene glycol (16.1 cP), and the copper strip corrosion test revealed that MBP is favorable for
transportation. Furthermore, MBP is stable and maintains consistent hydrogen storage efficiency over
three consecutive cycles (Figure 13b).
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Figure 13. (a) Effect of N-substitution and -CH3 addition to dicyclohexylmethane on the calculated
dehydrogenation enthalpy value and theoretical hydrogen storage capacity. The values in parentheses
indicate the difference of ∆Hdehydro between the molecules in each arrow. (b) GC chromatograms of
product mixtures obtained thorough three cycles of MBP hydrogenation over 1 wt% Ru/Al2O3 and
H12-MBP dehydrogenation over 1 wt% Pd/C. Reprinted with permission from [93].

The development of an efficient catalytic system for dehydrogenation is highly dependent on
the support materials’ activities and stabilities, it will minimize the dehydrogenation temperature.
The same research group was motivated by these concerns and developed a Pd-based heterogeneous
catalyst (Pd/CCA) using a carbon-coated alumina (CCA) support [94]. Compared with pure carbon and
alumina, the most stable CCA support exhibited excellent performance in terms of activity and stability
at a carbon-content of 3.3 wt% (Pd/3.3CCA). In addition, the authors examined catalyst behavior,
stability, Pd loading, and particle size through various techniques such as TEM, TPD, and TG-MS, etc.
In this report, Pd/3.3CCA displayed better conversion and selectivity of H12-MBP and achieved
a high hydrogen yield compared to Pd/Al2O3 and Pd/C at 250 ◦C for 4 h (Table 2). Furthermore,
a carbon-coated silica-alumina support (CCSA) showed improved catalytic activity over SiO2-Al2O3

under similar reaction conditions (Pd/3.3 CCSA > Pd/SiO2-Al2O3). Finally, these catalysts may pave
the way toward novel alumina surface modifications to achieve better catalyst stability and activity
during dehydrogenation processes.

Table 2. Activity results in the dehydrogenation of H12-MBP at 250 ◦C for 4 h [a].

Catalyst H12-MBP Conversion [mol%] Selectivity to H0-MBP [mol%] H2 Yield [mol%]

Pd/Al2O3 65.3 63.3 53.3
Pd/2.0CCA 72.1 75.4 63.2
Pd/3.3CCA 80.6 76.4 71.1
Pd/4.5CCA 65.5 62.3 53.1
Pd/6.0CCA 60.1 29.2 38.8

Pd/C 59.0 78.2 52.6

[a] Calculated by GC results.

5. Theoretical Effort for Development of LOHCs

The growing interest in LOHC technology has encouraged theoretical evaluation for an in-depth
understanding of catalysis and related catalytic aspects. Notably, DFT calculations have gained
attention for proposing associated catalyst models and benefit the investigation of mechanistic reaction
pathways on numerous catalyst species and surfaces [22,95]. Though there are several experimental
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reports on LOHCs, insights into reaction pathways, the role of the catalyst and its corresponding
surface effects, and the contributions of reactants/products during catalysis are still in infancy. Recently,
a few reports on catalytic dehydrogenation of octahydroindole and 2-methyloctahydroindole on Pt(111)
surfaces [86,96] and decalin dehydrogenation over Pd- and Pt-supported catalysts [97] have been
investigated. Herein, we briefly describe one recent catalytic dehydrogenation study on a metal surface
using DFT calculations.

Among all, catalytic dehydrogenation of MCH has attracted dramatically due to the rapid
increase of its practical utilization. Due to Pt-based catalysts’ high activity in MCH dehydrogenation,
understanding the MCH dehydrogenation mechanism theoretically on Pt surfaces is vitally important.
Very recently, Chen et al. reported the step-by-step dehydrogenation of MCH to toluene on a Pt(111)
surface using DFT calculations [98]. To understand the adsorption pathway, the authors optimized the
most stable adsorption and co-adsorption configurations for reactants, intermediates, and products on
four adsorption Pt(111) surface sites (denoted as top position, bridge position, hcp hollow, and fcc
hollow; Figure 14a). Moreover, C-C bond length studies revealed shrinkage of each product bond
length during MCH dehydrogenation. The six-step MCH dehydrogenation energy profile on the Pt(111)
surface indicated that the first step is rate limiting step and the second and fourth step intermediates can
be formed in thermodynamically stable molecules 4-methylcyclohexene and methylcyclohexadiene,
respectively, which is consistent to experimental results (Figure 14b). Therefore, clarification of the
stepwise dehydrogenation process further progress in the design of novel Pt-based catalysts.
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6. Conclusions and Perspective

The depletion of fossil-fuels and limited access to use renewable, sustainable energy leads to a
quest for alternative energy sources to fulfill the modern world’s energy demands. Hydrogen storage
technology is endowed as a clean and efficient system, which prevent the global warming and keep
the planet safe. Since hydrogen storage and transportation are cost-effective and unsafe, the current
technologies are highly dependent on this new class of alternative systems: LOHCs. In this context,
extensive research progress is devoted to finding efficient candidate molecules for practical application.
This review covered various essential aspects to development of high performance LOHCs for targeted
applications. Additionally, the reviewed molecules and systems have their own merits and drawbacks
from numerous viewpoints, such as storage capacity, stability, catalytic medium, physicochemical
properties, toxicology, biodegradability, etc. However, the highlighted compounds are role models for
future investigation of LOHC candidates.

In general, LOHCs have attractive features that are very similar to crude oil; thereby, these systems
are suitable for use with existing energy infrastructure. In this regard, toluene and dibenzyl toluene
LOHC systems show the highest potential for large-scale production. However, there is a need
for further development in LOHC technology. Especially in the thermodynamic view, as lower
dehydrogenation enthalpies facilitate less heat demand and it benefits the molecular stability,



Energies 2020, 13, 6040 19 of 23

and recyclability of the candidate molecules over multiple cycles. Another figure catalytic medium
pointed out that catalyst’s efficiency with a superb material support may reduce the activation energy
barrier for fruitful dehydrogenation at lower temperatures. Besides, performing theoretical evaluation
is necessary for developing suitable model catalysts and understanding the mechanistic aspects
of (de)hydrogenation. The latter, technical availability, toxicity profile, and biodegradability were
examined for very few LOHC systems. Hence, hazard assessment and economic evaluation needs to
be addressed to make this technology practical. Overall, the scientific community and industry’s joint
effort can meet these challenges, benefiting future implementation of this attractive technology across
broad applications.
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