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Abstract: The Kaya identity is a powerful index displaying the influence of individual carbon dioxide
(CO2) sources on CO2 emissions. The sources are disaggregated into representative factors such
as population, gross domestic product (GDP) per capita, energy intensity of the GDP, and carbon
footprint of energy. However, the Kaya identity has limitations as it is merely an accounting equation
and does not allow for an examination of the hidden causalities among the factors. Analyzing the
causal relationships between the individual Kaya identity factors and their respective subcomponents
is necessary to identify the real and relevant drivers of CO2 emissions. In this study we evaluated
these causal relationships by conducting a parallel multiple mediation analysis, whereby we used
the fossil fuel CO2 flux based on the Open-Source Data Inventory of Anthropogenic CO2 emissions
(ODIAC). We found out that the indirect effects from the decomposed variables on the CO2 flux are
significant. However, the Kaya identity factors show neither strong nor even significant mediating
effects. This demonstrates that the influence individual Kaya identity factors have on CO2 directly
emitted to the atmosphere is not primarily due to changes in their input factors, namely the
decomposed variables.

Keywords: ODIAC; GOSAT; CO2 flux; mediator analysis; Kaya identity; causality

1. Introduction

Reducing carbon dioxide (CO2) emissions is currently one of the international community’s main
goals. However, despite the clarity of this objective, determining which measures have the strongest
effects on CO2 emissions is difficult. To design appropriate strategies, policy makers need detailed
insight into causality as well as the effects of individual measures. The Kaya identity is a tool to analyze
the drivers of CO2 emissions by providing a conceptual framework to characterize those driving
forces [1]. In this context, CO2 emissions are disaggregated into five factors: CO2 divided by fossil
fuel-based energy consumption (EC), EC divided by total energy consumption (TEC), TEC divided
by the gross domestic product (GDP), GDP divided by population (P), and P itself [2]. Although
simple, the Kaya identity has a powerful ability to track progress in implementing CO2 emission
reduction efforts, because many countries already express their climate policies in terms of Kaya
components [3–5]: Under the Paris Agreement, treaty parties set nationally determined contribution
(NDCs) plans based on the Kaya identity with respect to various CO2 emission scenarios. Thereby,
the parties of the United Nations Framework Convention on Climate Change (UNFCCC) branch out
the Kaya identity factors into different sectors to design detailed NDC goals. In this context, policy
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makers focus on reducing the driving forces behind Kaya identity factors by managing the intensity of
decomposed variables (e.g., TEC and GDP). A common climate change policy is to promote electricity
generation based on solar and wind power. To supersede and reduce fossil fuel electricity generation,
solar and wind power generation have been growing at about 37% (solar) and 23.4% (wind) per year
on average [6].

However, a notable drawback of the Kaya identity is that it is an accounting equation and the
driving forces it addresses are not independent. The fixed links of the Kaya identity do not represent
causality and ignore non-monotonic or non-proportional effects between individual factors [7].
For instance, scenario builders often assume that high economic growth rates result in high capital
turnover, which encourages the development of more advanced and more efficient technologies, in turn
leading to lower energy intensities for the economy [2]. Another recent example of dependencies
between Kaya identity factors and CO2 emissions is the decrease in CO2 emissions induced by the
COVID-19 crisis. The COVID-19 pandemic has considerably transformed energy demand patterns
around the world by, for example, closure of international borders, underutilization of labor and
capital, increased international trade costs, decreased travel services, and a redirection of demand
away from activities [8]. As a result, global GDP is predicted to decrease by 6% for single-hit scenarios
and by about 7.6% in case of a double-hit scenario, which became reality in the second half of 2020 [9].
In concert with a severe economic recession, by early April 2020 daily global CO2 emissions declined
by 17% relative to 2019 [10].

Most previous studies have focused on the crucial drivers contributing to inventory CO2 emissions
by disaggregating the Kaya identity factors using either the Stochastic Impacts by Regression on
Population, Affluence, and Technology (STIRPAT) model or the Logarithmic Mean Divisia Index
(LMDI) method [11,12]. LMDI, which applies the Divisia index and logarithmic mean weighted
values to decompose CO2 emissions, quantifies the relative influence of various factors on the changes
of an aggregate CO2 emissions indicator. The method implies that changes in the relative size
of factors can change the factors’ relative influences on the CO2 emissions [13,14]. The STIRPAT
model, developed as a stochastic version of the impact by population, affluence, and technological
development (IPAT) approach, allows testing of the hypothesis that impacts have a weaker relationship
with affluence or economic development over time. The STIRPAT model allows the application of
sociological theory regarding anthropogenic drivers of environmental impacts, and individual driving
forces can be quantified by their respective coefficients [15,16]. Both LMDI and STIRPAT focus on
the individual driving forces of the Kaya identity factors, which allows examination of the direct
connection between each Kaya identity factor and CO2 emissions. However, possible interactive
effects between the individual Kaya identity factors (and/or their decomposed variables) are neither
analyzed nor quantified. Causality issues are also ignored. Han et al. (2018) considered this aspect
by conducting a Granger causality test. They intended to explore the directional causality between
CO2 emissions, economic growth, urbanization, and material stocks [17]. Duro and Padilla (2006)
proposed applying the Theil index to decompose international inequalities in per capita CO2 emissions
into Kaya identity factors and two interaction terms. They found that the international inequality
in per capita CO2 emissions can be attributed to inequality in per capita income levels [18]. Lately,
Hwang et al. (2020) [19] looked closer at the mutual interdependencies between the Kaya identity
factors as well as their decomposed variables and the ODIAC-based fossil fuel CO2 flux. Thereby,
ODIAC stands for Open-Source Data Inventory of Anthropogenic CO2 emissions. Their focus was on
EU countries, and they identified different spatial patterns in the computed correlation values. Also,
the authors found significant multicollinearity among the decomposed variables, which is not reflected
in the Kaya identity itself. Thereby the focus was on the potentials and constraints of the decomposed
variables in explaining the variations of intensity of fossil fuel CO2 flux. However, so far, it has not
been deeply explored whether there are any a priori causal relations and indirect effects among the
driving forces of Kaya identity factors themselves, or between Kaya identity driving forces such as
their subcomponents and actual CO2 emissions.
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Therefore, in this paper, we analyze these interactive effects and causalities in depth using a
concept called mediation analysis. Mediation analysis is applied to identify the underlying relations
between a dependent variable and an explanatory variable via a third variable, which is called a
mediator. This is done by designing and calibrating multivariate linear models in which the mediator
variable is inserted between the original independent variables and the dependent variable. It is a fairly
simple setup, but it allows understanding of the nature of dependence between dependent variables
and explanatory variables via quantifying indirect effects among the explanatory variables and direct
effects between individual independent and dependent variables. Hence, it is apt for our purpose:
we want to find out tangible evidence for interdependencies among the Kaya identity factors. Can we
quantify the causal relations among the Kaya identity factors and their decomposed variables? Can we
also quantify the causal effects of the mentioned factors on actual CO2 emissions? The answers to those
questions can help us to monitor the execution effects of mitigation policy efforts and set effective targets
for decreasing CO2 emissions. Our results show—similarly to previous studies [19]—multicollinearity
among Kaya identity factors’ decomposed variables. Besides which, using mediation analysis, we were
able to identify both direct and indirect effects (including causalities) among those variables and from
those variables on actual CO2 emissions, which is a novelty compared to existing studies. We found
out that the net (causal) effects among the decomposed variables alleviate the direct effects of their
corresponding composite Kaya identity factors on actual CO2 emissions. This exacerbates to identify
the true driving forces among the Kaya identity factors on actual CO2 emissions. In practical terms:
common policy measures like subsidizing electric vehicles aim to influence the decomposed variables
of the Kaya identity. However, according to our results, this does not necessary imply a reduction
of CO2 emissions. The Kaya identity factors are only weak and sometimes ambivalent mediators,
which implies the need for measures that directly reduce CO2 emissions.

The paper is structured as follows: in Section 2 the composition of our data set is explained, while,
in Section 3, the reader can find an introduction to the methodology used in this paper, with a special
focus on mediation analysis. The results of our research are presented in Section 4, and discussed
more in detail in Section 5. Here, we comment also on possible implications for politics. Section 6
summarizes and concludes the paper.

2. Materials

There is a wide range of economic and environmental data available; in Section 2.1 we motivate
why we focus on a subset of European countries. Section 2.2 contains a details explanation of our set of
historic CO2 observations, while Section 2.3 defines the Kaya identity in detail, gives an overview over
all data sources and provides some fundamental statistics for all data sets.

2.1. Countries Included in the Study

European countries in the Annex 1 group have accurate and developed statistical technologies for
recording both EC and CO2 emissions [20,21]. Europe is the second smallest continent in the world
after Australia, consisting of 44 highly diverse and densely populated countries. These countries differ
with respect to EC, industry, and many other factors [22], making Europe ideal for exploring the causal
relations between fossil fuel CO2 flux and Kaya identity factors under different conditions. In addition,
Europe is taking a leading role in implementing active climate change policy, as all countries jointly
decided to reduce CO2 emissions by 40% until 2030 and by even 55% until 2050 (in relation to the
1990 levels). The latter goal was set in the context of the European Green Deal [23], which—among
other things—involves the transition of the EU’s economies towards using clean, affordable, and secure
energy. To have a legal measure for enforcing this goal, i.e. climate neutrality, by 2050, the European
Commission designed the European Climate Law [23,24]. Thus, Europe shows more substantial
changes with respect to the Kaya identity and CO2 emissions than other continents. To process the
fossil fuel CO2 flux, accurate preliminary CO2 emissions data are required because CO2 emissions are
recorded and fixed by in situ surveys. The uncertainty report for Annex 1 countries notes that the
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uncertainty of CO2 emissions associated with fossil fuel combustion is less than 6% on average [20].
European countries are a reliable study area for exploring the causality between decomposed variables
and Kaya identity factors and fossil fuel CO2 flux. For this purpose, we selected 30 Annex 1 countries
in Europe, excluding countries that are either too small or too far away from continental Europe.
We excluded those countries because it is hard to establish a precise country-specific flux data base as
the satellite-based data are recorded on a 1◦ × 1◦ grid.

2.2. ODIAC-Based CO2 Emission Data

Previous literature used inventory net CO2 emissions on a national scale [25–27]. Net inventory
CO2 emissions fluctuate depending on several variables, such as the collection and reporting system
used for the country’s energy statistics, data definitions and data processing methods, level of detail,
and specific local conditions. In addition, the accuracy, transparency, and uncertainty of inventory
CO2 emission data varies between countries due to differences in the proficiency in and level of
development of statistics [28–32]. These fluctuations and uncertainties preclude the interpretation
of interactive effects and causality between decomposed variables and Kaya identity factors against
CO2 emissions in reality. To explore the true causality and existing interactive effects between the
decomposed variables and Kaya identity factors, as well as their effects on actual CO2 emissions,
we need reliable CO2 emissions data measured using standardized tools and methods on a regional
scale with high spatial resolutions. For this purpose, we chose ODIAC data. ODIAC was developed
by Oda and Maksyutov in the context of the Greenhouse Gases Observing Satellite (GOSAT) project at
the National Institute for Environmental Studies (NIES) in Japan [33]. The purpose of the ODIAC is to
provide precise prior fossil fuel CO2 emissions data for global and regional CO2 inversions using the
column-averaged CO2 (XCO2) data collected by GOSAT. The ODIAC has been widely utilized for the
inversion of the official GOSAT Level 4 CO2 flux data [34–36]. ODIAC data are global, high-resolution
monthly emission data, which are the result of a spatial disaggregation of total national emission
estimates taken from the Carbon Monitoring for Action (CARMA) data set. It includes emission levels
of all types of power plants (fossil fuel, nuclear, hydro, and other renewable energy plants) for over
50,000 locations [37]. ODIAC data at country scale are built to match data from the Carbon Dioxide
Information Analysis Center (CDIAC) with a 1 × 1 km spatial resolution [36,38–40]. The ODIAC-based
fossil fuel CO2 flux has detailed information on regional CO2 sources in terms of distribution patterns
and actual fossil fuel combustion with a high spatial resolution, including the international bunker,
which is not presented in the Carbon Dioxide Information Analysis Center (CDIAC) [36]. Thus, we can
specifically measure the CO2 amounts directly emitted to atmosphere precisely in those areas where
CO2 sources are located [39,41,42]. Therefore, the ODIAC-based fossil fuel CO2 flux can facilitate the
exploration of realistic causality and interactions among Kaya identity subcomponents against directly
emitted to the atmosphere on a regional scale. In this study, we used the ODIAC-based fossil fuel CO2

flux from GOSAT L4A global CO2 flux V02.06 provided by the National Institute for Environmental
Studies (NIES) of Japan [43].

2.3. Kaya Identity—An Introduction to the Methodology and a Description of Our Data Set

2.3.1. Kaya Identity—The Concept

The IPAT model (I = P×A×T) explains the level of environmental impact (I) from anthropogenic
activities with population size (P), affluence (A)—i.e. the level of income, and technological
development (T). Kaya identity is based on the IPAT model, but it is more specific regarding the total
level of CO2 emissions. Kaya identity expresses the CO2 emissions as the product of four factors:
(1) population (P), (2) GDP per capita (GDP/P), (3) energy intensity per unit of GDP (total energy
consumptions/GDP), and (4) carbon intensity (CO2 emissions/total energy consumptions) [44] (Figure 1).
Recently, many studies extended the carbon intensity in the traditional Kaya identity by decomposing
it into CO2 emission intensity related to fossil fuel consumption and the share of fossil fuel in the total
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energy consumption [11,25,45]. In its extended form, the Kaya identity splits fossil fuel CO2 emissions
into five different factors: P, G = GDP/P, E = TEC/GDP, M = EC/TEC, and I = CO2 emissions/EC.
The factors G, E, and M quantify per capita income, energy intensity, and the share of fossil fuel
consumption relative to TEC, respectively. The factor I describes the fossil carbon intensity of energy [46].
The corresponding formula reads as follows:

CO2 emissions = Population× GDP
Population ×

TEC
GDP ×

EC
TEC ×

CO2 emissions
EC

= P × G × E × M × I
(1)

Figure 1. A hierarchy of Kaya identity representations including the decomposed variables.

In a second step we also modify the right side of Equation (1). In order to assess the influences of
anthropogenic drivers on fossil fuel CO2 flux presented in the Kaya identity model, we use a modified
form of the Kaya identity with respect to the fossil fuel CO2 flux [47]. The modified Kaya identity
splits up the fossil fuel CO2 flux multiplicatively instead of the CO2 emissions. As suggested by
Le Quéré et al. (2018) [48], we recalculate the fossil fuel CO2 flux in CO2 equivalents (FFoss) to serve as
estimates of CO2 emissions instead of inventory CO2 emissions in Equation (2). Most factors like P, G,
E, and M are analogously defined. For the left side of Equation (1) we follow Raupach et al. (2008) [47]
and replace it by F = FFoss/EC, i.e., the fossil carbon intensity of energy. Hence, in Equation (2),
FFoss appears on both sides of the equation.

FFoss = Population × GDP
Population ×

TEC
GDP ×

EC
TEC ×

FFoss
EC

= P×G× E ×M× F
(2)

All model variations and decomposition levels are summed up in Figure 1, which is based on a
similar representation in Peters et al. (2017) [49].

2.3.2. Kaya Identity—The Data Sets

The International Energy Agency (IEA) collects EC and production data globally [50,51] and
categorizes energy statistics into 13 energy types. In the IEA Energy Statistics [50,51] observations per
energy type are converted into energy units (Ktoe). Here, we applied the total final consumption sector
from the IEA energy balance from 2010 to 2017 to calculate TEC and EC, which we used to compute
the factors E (TEC/GDP), M (EC/TEC), and F factor (FFoss/EC). To attain EC, we extracted the fossil
fuel consumptions (coal, crude oil, oil products, natural gas) from the IEA energy balance. We use
2010–2017 GDP and population data from the World Bank data base in order to derive the factors G
(GDP/Population), E (TEC/GDP), and P (population size). For an overview over variable definitions
and the sources of our data sets, see Appendix A.
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To compare the factors’ variation, we calculated the coefficient of variation (CV), which is defined
as a factor’s standard deviation divided by its mean. Hence, CV indicates the size of variation relative
to a factor’s average level. As shown in Table 1, most factors have large CV values. M, which is
the share of fossil fuel consumption in net EC shows the lowest CV (approximately 18%), meaning
that over the years and over all countries, the ratio of fossil fuel consumption is relatively constant
compared to other factors. Apart from that, high CV values are not surprising as we used data from
30 heterogeneous countries.

Table 1. Descriptive statistics for fossil fuel CO2 flux in CO2 equivalents (FFoss), five factors of the Kaya
identity (E, G, P, F, and M), and the corresponding decomposed variables for 30 European countries
from 2010 to 2017.

Category Min Max Mean STDEV CV (%)

Kaya identity factors

E (ktoe/MM U.S. $) 0.03 0.56 0.11 0.09 80.55
G (1000 U.S. $/person) 2.02 102.91 31.71 22.25 70.18

P (MM person) 1.31 82.66 21.67 24.50 113.03
F (Kt CO2-Equation/ktoe) 2.24 13.28 5.21 2.17 41.64

M (ktoe) 0.33 0.80 0.6 0.11 18.23

E = TEC/GDP, G = GDP/Population, P = population size, F = FFoss/EC, and M = EC/TEC.

Decomposed
variables of Kaya

identity factors

GDP (100 billion U.S. $) 0.20 38.84 6.53 9.05 138.53
Population (MM person) 1.31 82.66 21.67 24.50 113.03

TEC (Mtoe) 2.84 228.90 44.99 51.62 114.73
EC (Mtoe) 1.29 158.23 30.10 36.62 121.64

FFoss (10 Mt
CO2-Equation yr−1) 7.14 827.82 138.79 172.65 124.40

Min: Minimum Max: Maximum Mean: Average CV: Coefficients of variation STDEV: Standard deviation.

3. Methodology

Our analysis is based on the calibration results of a multiple linear regression model combined
with a mediation analysis. Multiple linear regression is widely known and often used; hence we keep
Section 3.1, which concerns the regression models, short and focus on mediation analysis in Section 3.2.

3.1. Multiple Regression Models

To examine the mutual interdependencies between the Kaya identity factors and FFoss,
we established a regression model that uses Kaya identity factors as independent variables and
FFoss as the dependent variable. Equations (3) and (4) display the corresponding multiple regression
models calibrated using the ordinary least squares method.

FFoss = α0 + α1P + α2G + α3E + α4M + α5F + ε1, (3)

FFoss = β0 + β1Population + β2GDP + β3TEC + β4EC + ε2, (4)

where αi, βj ∈ R, i, j = 1, . . . , 5, and both ε1 and ε2 are Gaussian distributed with mean values of
zero and standard deviations σ > 0. Equation (3) is the regression model based on the Kaya identity
and Equation (4) is the regression model using the decomposed variables of the Kaya identity factors.
There are eight years of data available (2010–2017); thus, we have 240 observations for each variable as
we aggregate over years and countries. The decomposed variables used in Equations (3) and (4) are
annual net amounts and observations of FFoss are annual mean values.

3.2. Mediation Analysis–Introduction and Research Design

Mediation analysis is a statistical method to analyze how the causal antecedent X transmits its
effect to the consequent variable Y [52]. A mediation model intends to identify and explain the causality
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between an independent variable and a dependent variable by inserting a third variable known as
a mediator variable [53]. In lieu of a direct causal relation between the independent and dependent
variables, a mediation model suggests that the independent variable affects the mediator variable,
which again influences the dependent variable. Thus, the mediator variable illuminates the level
of correlation (or interdependence in general) between independent and dependent variables [54].
Mediation analysis helps with finding a valid interpretation of the relationship between independent
and dependent variables when those variables seem to have an ambiguous connection.

A parallel multiple mediator model with k mediators has k + 1 consequent variables (one for each
of the k mediators Mi, i = 1, . . . , k, and one for the outcome variable Y). This requires the calibration
of k + 1 equations to cover all possible effects of X on Y [55], and the formulas for these calibrations are
expressed in Equations (5) and (6):

Mi = interceptMi
+ aiX + eMi for all i = 0, . . . , k, (5)

Y = interceptY + c′X +
n∑

i = 0

biMi + eY. (6)

In these parallel multiple mediator equations, ai measures the effect of X on Mi; bi estimates the
effect of Mi on Y, controlling X and the other k− 1 mediator variables Mi. The factor c′ calculates the
effect of X on Y, holding all n mediator variables Mi constant [55]. Both interceptMi

and interceptY are
constant factors. If Mi is an effective mediator, it is substantially correlated with X due to the path
from X to Mi (path a). If X explains most of the variation of Mi, there would be no unique variation in
Mi to explain Y. According to literature the minimum required sample size for testing coefficients b
(Mi → Y) and c′ (X→ Y) is k(1 − r2), where k is the sample size and r is the correlation coefficient
between the causal variable and the mediator. If Mi is a successful mediator (i.e., path or coefficient ai

is large), in order to properly examine coefficients b and c′, we need a comparably larger sample size
in order to achieve a test power equivalent to the case of Mi being a weak mediator [56].

In this study, we applied the parallel multiple mediator model to explore the causality between
each of the Kaya identity factors as well as their respective decomposed variables and FFoss. Each of the
total effects from antecedent X (Kaya identity factors and decomposed variables) on consequent Y (FFoss)
could be partitioned into direct and indirect effects through at least one mediator. The proposed
mediators (i.e., Kaya identity factors and decomposed variables) can be associated with an outcome
either because it gives rise to the outcome or because it correlates with another variable that causally
affects the outcome. Hence, including multiple mediators between independent and dependent
variables allows detection of the underlying causality. To identify indirect effects among the Kaya
identity factors and their decomposed variables, we used all of them as mediators and performed
multiple analyses simultaneously. However, in order to do that we had to overcome one problem:
our sample size is comparably small as we are handling annual data. Preacher and Hayes (2004)
proposed a solution by applying the widely used bootstrapping method [57]. Bootstrapping is a
method especially developed for small sample sizes that has the advantage of being non-parametric;
therefore, we do not need to impose any distributional assumption on the original data. By resampling
the existing set of observations this method allows us to increase the sample size, which, in turn,
increases the chance of finding statistically significant mediation effects. For example, if we obtain a
non-zero-point estimate, we can only confirm its statistical significance if the zero is not contained in
the corresponding confidence interval, the size of which directly depends on sample size because larger
samples have smaller confidence intervals. This study has a relatively small number of observations
for each variable (240). Hence, by applying the bootstrapping method we increased the chances of
finding significant mediation effects. Here we applied the Preacher and Hayes bootstrapping method
with 5000 bootstrap samples to explore possible mediation effects.
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4. Results

4.1. Two Multiple Linear Regression Models for the Fossil Fuel CO2 Flux-Based CO2 Emissions

We calibrated the models from Equations (3) and (4) and performed a mediation analysis
(see Section 3.2) to identify causalities between the Kaya identity factors and their decomposed variables.

As Table 2 shows, the multivariate linear regression models based on Equations (3) and (4)
have a relatively high explanatory power, with respective R2 values of 0.85 and 0.95. Both the
decomposed variables of Kaya identity factors (Decomposition 1) and the five Kaya identity factors
(Decomposition 2) can well explain FFoss. Considering the p-values of the regression coefficients, we see
that the coefficients of population and E are statistically insignificant in both decompositions. Hence,
their influence on FFoss cannot be proven using the model of Equation (3). Another remarkable result
is that Decomposition 2 shows significant multicollinearity whereas Decomposition 1 does not. Similar
results were demonstrated by Hwang et al. (2020) [19], which—contrary to this analysis—only focused
on the superficial relations between the decomposed variables and the ODIAC-based fossil fuel CO2

flux with an additional focus on the country-specific situation. Here we look closer into the causal
relations between the individual factors by using mediation analysis (see Section 4.2).

Table 2. Results of the multivariate linear regression of (a) decomposed variables on FFoss and (b) Kaya
identity factors on FFoss.

Category Standardized
Coefficient t-Statistics p-Value

Variance
Inflation

Factor (VIF)

Decomposed variables
of five factors in

Kaya identity

Population −0.11 −2.31 0.22 9.30
GDP −0.43 −7.98 0.00 12.79
TEC 0.73 4.69 0.00 108.62
EC 0.74 4.58 0.00 116.37

(a) R: 0.973 R2: 0.947 Durbin-Watson: 2.11 F-value (p-value): 1055.64 (0.00)

Kaya identity factors

E 0.02 0.54 0.59 1.63
G 0.18 4.97 0.00 2.05
P 0.93 31.76 0.00 1.32
F 0.19 6.05 0.00 1.50
M 0.06 1.97 0.05 1.34

(b) R: 0.921 R2: 0.849 Durbin-Watson: 1.849 F-value (p-value): 263.31 (0.00)

E = TEC/GDP, G = GDP/Population, P = population size, F = FFoss/EC, and M = EC/TEC.

Note that the factor Population, which is identical to Kaya identify factor P, is not statistically
significant (with a p-value of 0.22) whereas P is (p-value of 0). Hence, all relevant information
about population size must already be included in the other factors. Thus, we also tested various
multiple regression models with different combinations of decomposed variables from Decomposition 1.
The results of this test are shown in Table 3. We saw that Population is statistically significant when it is
used as an exogenous variable in combination with GDP, TEC, or EC. However, if two of the variables
are included in the regression, the p-value of Population increases significantly (up to 0.34). Regarding
multicollinearity between GDP, TEC, and EC, the VIF values vary with the model setup. If at least two
of GDP, TEC, or EC are used together in the regression, we saw a considerable increase of variance
inflation factor (VIF) values (up to 26.23). These VIF values are remarkably high when TEC and EC
are used conjointly in the regression model. This seems reasonable when considering the fairly high
correlation value between both variables (see Table 4). To look more deeply into the interdependencies
among Decomposition 1 and 2, we applied mediation analysis as described in Section 3.2, and use
FFoss as endogenous variable in all setups.
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Table 3. Results of different multiple regression models with different combinations of independent
variables (decomposed variables of the Kaya identity) and FFoss as a dependent variable.

Category Standardized Coefficient t-Statistics p-Value VIF

Population 0.56 13.34 0.00 3.28
GDP 0.41 9.88 0.00 3.28

R: 0.93 R2: 0.87 Durbin-Watson: 2.13 F-value (p-value): 811.81 (0.00)

Population 0.08 1.75 0.08 7.14
TEC 0.89 19.58 0.00 7.14

R: 0.97 R2: 0.93 Durbin-Watson: 1.99 F-value (p-value): 1606.50 (0.00)

Population 0.06 1.24 0.22 7.50
EC 0.91 19.45 0.00 7.50

R: 0.97 R2: 0.93 Durbin-Watson: 2.12 F-value (p-value): 1591.92 (0.00)

Population −0.08 −1.74 0.08 9.19
GDP −0.38 −6.90 0.00 12.30
EC 1.40 16.90 0.00 28.11

R: 0.97 R2: 0.94 Durbin-Watson: 2.06 F-value (p-value): 1285.93 (0.00)

Population −0.04 −0.95 0.34 8.48
GDP −0.37 −6.80 0.00 12.05
TEC 1.35 16.95 0.00 26.23

R: 0.97 R2: 0.94 Durbin-Watson: 2.06 F-value (p-value): 1291.13 (0.00)

Population 0.06 1.19 0.24 7.50
TEC 0.49 2.82 0.01 104.41
EC 0.43 2.43 0.02 109.60

R: 0.97 R2: 0.93 Durbin-Watson: 2.05 F-value (p-value): 1095.20 (0.00)

Table 4. Correlation between Kaya identity factors and their decomposed variables.

Category Decomposed Variables Kaya Identity Factors
Population GDP TEC EC FFoss E G P F M

Population 1 0.83 ** 0.93 ** 0.931 ** 0.91 ** −0.01 −0.063 1.00 ** −0.18 ** 0.47 **
GDP - 1 0.95 ** 0.95 ** 0.88 ** −0.34 ** 0.286 ** 0.83 ** −0.29 ** 0.38 **
TEC - - 1 0.99 ** 0.97 ** −0.14 * 0.115 0.93 ** −0.23 ** 0.42 **
EC - - - 1 0.97 ** −0.15 * 0.097 0.93 ** −0.22 ** 0.48 **

FFoss - - - - 1 −0.04 0.008 0.91 ** −0.08 0.44 **
E - - - - - 1 −0.61 ** 0.01 0.37 ** −0.08
G - - - - - - 1 −0.06 −0.52 ** −0.09
P - - - - - - - 1 −0.18 ** 0.47 **
F - - - - - - - - 1 −0.16 *
M - - - - - - - - - 1

*: p ≤ 0.05; **: p ≤ 0.01.

4.2. Interactions between the Decomposed Variables and Kaya Identity Factors and the ODIAC-Based Fossil
Fuel CO2 Flux Detected through Mediation Analysis

4.2.1. Indirect Effects Among the Decomposed Variables on the Fossil Fuel CO2 Flux-Based CO2 Emissions

Table 5 shows mediation analysis results for all Decomposition 1 variables. Confidence intervals
are computed based on a 5% error probability. We see that Population strongly influences FFoss through
GDP, TEC, and EC. The indirect effect of Population through GDP, TEC, and EC on FFoss varies from
−39.36% to 76.10%, meaning that the other decomposed variables strongly dominate the relationship
between Population and FFoss. There is seemingly no direct relationship between Population and FFoss;
however, there is an indirect one that is mediated by some decomposed variables (Figure 2). The strong
mediation effect causes Population to be statistically insignificant in the regression on FFoss. In contrast,
Population has a comparatively weaker mediation effect on GDP, TEC, and EC, ranging from −10.19%
to −9.99%. However, GDP, TEC, and EC have strong mediating effects on each other, with values
ranging from −42.09% to 79.69 % on FFoss (see Table 5). This means that GDP, TEC, and EC are highly
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dependent on each other, which supports the results of the above correlation analysis (see Table 4).
When GDP, TEC, and EC are applied as mediators to each other, they mediate the other decomposed
variables by explaining most of the variation caused by mediated variables. Thereby, the high indirect
effects from GDP, TEC, and EC on each other indicate high multicollinearity among these variables.

Table 5. Mediation analysis results among the decomposed variables of all Kaya identity factors on FFoss.

Category Mediator R R2 p-Value Coeff. Std. Coeff.
Indirect Effect

Indirect (%) LLCI ULCI

Population

GDP 0.83 0.70 0.00 0.31 0.83 −39.36 −3.50 −1.69
TEC 0.93 0.86 0.00 1.95 0.93 74.92 2.33 7.76
EC 0.94 0.87 0.00 1.39 0.93 76.10 1.90 8.10

FFoss 0.91 0.82 0.00 6.38 0.91 - - -
Total effect (p-value): 6.38 (0.00) Direct effect (p-value): −0.74 (0.12)

GDP

Population 0.83 0.70 0.00 2.26 0.83 −9.99 −3.96 0.64
TEC 0.95 0.90 0.00 5.42 0.95 78.81 6.22 21.19
EC 0.95 0.90 0.00 3.84 0.95 79.69 5.20 22.04

FFoss 0.88 0.78 0.78 16.83 0.58 - - -
Total effect (p-value): 16.82 (0.00) Direct effect (p-value): −8.16 (0.00)

TEC

Population 0.93 0.86 0.00 0.44 0.93 −10.15 −0.76 0.13
GDP 0.95 0.90 0.00 0.17 0.95 −42.09 −1.84 −0.95
EC 1.00 0.99 0.00 0.71 1.00 76.38 0.98 4.06

FFoss 0.97 0.93 0.93 3.23 0.97 - - -
Total effect (p-value): 3.23 (0.00) Direct effect (p-value): 2.45 (0.00)

EC

Population 0.93 0.87 0.00 0.62 0.93 −10.19 −0.76 0.13
GDP 0.95 0.90 0.00 0.23 0.95 −42.06 −1.84 −0.95
TEC 1.00 0.99 0.00 1.40 1.00 75.50 0.98 4.06
FFoss 0.97 0.93 0.00 4.55 0.97 - - -

Total effect (p-value): 4.55 (0.00) Direct effect (p-value): 3.49 (0.00)

FFoss

Population 0.91 0.82 0.00 0.13 0.91 - - -
GDP 0.88 0.78 0.00 0.05 0.88 - - -
TEC 0.97 0.93 0.00 0.29 0.97 - - -
EC 0.97 0.93 0.00 0.21 0.97 - - -

Total effect (p-value): 1.00 (0.00) Direct effect (p-value): 1.00 (0.00)

Coeff.: coefficients; Std. coeff.: standardized coefficients; LLCI: lower limit of the bootstrap confidence interval;
ULCI: upper limit of the bootstrap confidence interval; FFoss: fossil fuel CO2 flux-based CO2 emissions.

Figure 2. Comparisons of indirect effects among the decomposed variables of Kaya identity factors on FFoss.
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In this regard, we also see that the lack of statistical significance of E, which is calculated by
dividing TEC by GDP, is also due to the opposite mediating effects between TEC and GDP. A strong
correlation between X (TEC, GDP) and the mediator (E factor) can inflate the standard error of Path b
(E factor→FFoss). If Path b is not significant because of multicollinearity, the indirect effect necessary to
create mediation would be probably insignificant [58]. GDP has a significant negative mediating effect
on TEC, at a level of −42.09%. This means that GDP depresses the direct effect of TEC on FFoss at a level
of −42.09%. In contrast, TEC has a positive mediating effect on GDP, encouraging a direct effect of
GDP on FFoss at a level of 78.81%. Hence, TEC and GDP mutually compensate their influences on FFoss,
which flattens the influence E has on FFoss and causes the insignificancy.

4.2.2. Indirect Effects between the Decomposed Variables and Kaya Identity Factors on ODIAC-Based
Fossil Fuel CO2 Flux

In our mediation analysis we observed that Kaya identity factors have weakly negative mediating
effects on the casualty between the decomposed variables of Kaya identity factors and FFoss. Indirect
effects of Kaya identity factors range from −5.86% to −2.12%, except for GDP versus Kaya identity
factors, which is 31.69 (Table 6). Even though the mediator variables, which are the Kaya identity factors
in this subsection, do not change the direction of the relationships between the decomposed variables
and FFoss, they slightly decrease the strength of the existing relationships (Figure 3). In particular,
the high (total) indirect effect of GDP results from the high indirect effects of P. That is because countries
with a comparably higher GDP, such as France, Germany, Italy, Spain, and the United Kingdom,
are among the most densely populated countries in this study. In addition, the Kaya identity factors
and their respective decomposed variables are statistically insignificant in terms of mediating effects.
Table 6 displays statistically insignificant indirect effects between the Kaya identity factors and their
decomposed variables in three scenarios: (1) Population→G factor→FFoss, (2) GDP→G factor→FFoss,
and (3) EC→M factor→FFoss. Both G and M factor do not play a statistically significant mediating
roles for their decomposed variables, which is also true for Population, GDP, and EC. This can be
shown by considering the confidence interval for the case where G operates as mediator for Population,
which ranges from a lower level of −0.21 to an upper level of 0.05. The confidence intervals for the
scenarios where G operates as a mediator for GDP or M factor as a mediator for EC are [−0.02, 0.34]
and [−0.10, 0.2], respectively. In all three cases, zero is included in the confidence interval. Hence the
effects are not statistically significant. In other words, the variation of some Kaya identity factors
(G and M factor) cannot be explained by their decomposed variables.

Given our dataset, there is a fair chance that we observe significant multicollinearity in the
regression of the decomposed variables on FFoss as indicated by the VIF values in Table 2. Mediation
analysis reflects these interdependencies as net effects among the decomposed variables are quantitative
visible and measurable. As displayed in Table 5 and Figure 2 we see indirect effects between −42.09%
and +79.96%. These are significant effects, which, besides multicollinearity, are underestimated
or in the Kaya identity model, where a mediation analysis shows weaker indirect effects between
−5.26% and 38.29% (see Table 6 and Figure 3). Hence, changes of the decomposed variables have a
considerably smaller effect on the CO2 emissions because of weak mediating effects of the Kaya identity
factors and strong mediating effects among the decomposed variables. Quantifying such effects is a
benefit of mediation analysis and contributes to the existing literature. Previous studies have already
attempted to account for multicollinearity. Authors like Purcel (2020) [59], Georgiev and Mihaylov
(2015) [60], and Choi et al. (2010) [61] mainly focused on empirically explaining interdependencies
using the environmental Kuznets curve (EKC) [62]. Multicollinearity is sometimes also accounted
for by decomposing the independent variables and excluding selected ones from the regression [63].
However, despite being reasonable, these decomposition approaches face the danger of an omitted
variable bias. Besides, if you first decompose and then eliminate input factors, the whole theoretic
foundation of the regression model itself might be altered [64]. Consider, for example the Kaya identity
or the IPAT modification. These are basically composite indices that have been in use for the past
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15–20 years, and many studies and political decisions have been based on findings derived from this
model. If you decompose the influence factors and eliminate those causing multicollinearity, you have
to reconsider all theories based on the Kaya identity model.

Table 6. Results of mediation analysis on Kaya identity factors in a relationship between decomposed
variables and FFoss.

Category Mediator R R2 p-Value Coeff. Std. Coeff.
Indirect Effect

Indirect (%) LLCI ULCI

Population

E 0.01 0.00 0.85 0.00 −0.01 −0.02 −0.06 0.01
G 0.06 0.00 0.23 −0.06 −0.06 −1.25 −0.21 0.05
F 0.18 0.03 0.00 −0.02 −0.18 −3.83 −0.35 −0.14
M 0.45 0.22 0.00 0.00 0.47 2.99 0.08 0.31

Total effect (p-value): 6.38 (0.00) Direct effect (p-value): 6.52 (0.00)

GDP

E 0.34 0.11 0.00 0.00 −0.34 −5.26 −1.17 −0.61
G 0.29 0.08 0.00 0.70 0.29 0.87 −0.02 0.34
F 0.29 0.09 0.00 −0.07 −0.29 −4.86 −1.11 −0.59
M 0.38 0.14 0.00 0.00 0.38 2.65 0.26 0.67
P 0.83 0.70 0.00 2.26 0.83 38.29 5.08 8.10

Total effect (p-value): 16.82 (0.00) Direct effect (p-value): 11.49 (0.00)

TEC

E 0.14 0.02 0.00 0.00 −0.14 −0.83 −0.04 −0.01
G 0.12 0.01 0.00 0.05 0.12 0.04 −0.01 0.01
F 0.23 0.05 0.00 −0.01 −0.23 −3.31 −0.15 −0.07
M 0.42 0.17 0.00 0.00 0.42 2.80 0.06 0.13
P 0.93 0.86 0.00 0.44 0.93 −3.07 −0.43 0.24

Total effect (p-value): 3.23 (0.00) Direct effect (p-value): 3.37 (0.00)

EC

E 0.15 0.02 0.00 0.00 −0.15 −1.12 −0.08 −0.03
G 0.10 0.01 0.01 0.06 0.10 0.18 −0.08 −0.03
F 0.22 0.05 0.00 −0.01 −0.22 −2.94 −0.19 −0.08
M 0.48 0.23 0.00 0.00 0.48 −0.87 −0.10 0.02
P 0.93 0.87 0.00 0.62 0.93 −1.11 −0.52 0.46

Total effect (p-value): 4.55 (0.00) Direct effect (p-value): 4.81 (0.00)

Coeff.: coefficients; Std. coeff.: standardized coefficients; LLCI: lower limit of the bootstrap confidence interval;
ULCI: upper limit of the bootstrap confidence interval; P = population size; G = GDP/Population; E = TEC/GDP;
M = EC/TEC; and F = FFoss/EC.

Alternatively, some case studies examine the correlation, i.e., interdependencies between CO2

emission and its contributors with composite index factors that are the result of combining two
highly correlated variables. In other words, the composite index is used as a measure to eliminate
multicollinearity. Tavakoli [4], for example, conducted a multiple regression on the Kaya identity
factors from the top ten CO2 emitting countries. It postulates that population, energy intensity, and GDP
per capita are major influential factors. However, if—as in our data set—the measured correlation
is significantly large but not perfect (i.e., +/−1), a model based on composite factors might over- or
underestimate the net effects of changes in the original independent variables [65]. Even if this is not
the case: a composite model provides no precise insight, whereby our mediation analysis does.

To sum up our results: because it is important for policy makers, there is substantial literature
exploring the driving forces of the decomposed variables of Kaya identity. As explained, current
approaches have limitations as problems like omitted variable bias or over-/underestimation of a
parameter’s influence might occur. In contrast, using mediation analysis in this study, we are able to
evaluate the interactive net effects among the Kaya identity factors and their decomposed variables on
direct CO2 emissions to the atmosphere. This is especially of relevance as we analyze recent emissions
from 30 European countries, which, being classified as post-industrial economies, have entered a
new stage in the EKC [66]. These insights can contribute to decisions made by EU policymakers,
who currently struggle to find appropriate measures to mitigate CO2 emissions. Knowledge about the
direct and indirect effects of the decomposed factors of Kaya identity provides valuable information
for this purpose.
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Figure 3. Comparisons of indirect effects of Kaya identity factors in a relationship between decomposed
variables and FFoss.

5. Discussion

In Section 5.1, we discuss implications of the multicollinearity and the mediation effects found in
Section 4 in more detail. Besides, in Section 5.2, we briefly reflect on the benefits of the Kaya identity
concept in the light of both our findings and of the criticism found in contemporary literature. This is
important, as we can only draw accurate conclusions from our findings if we are also aware of the
model’s shortcomings.

5.1. Consequences of Multicollinearity

As noted in Section 4.1, the decomposed variables of the Kaya identity factors show strong
multicollinearity. That means changes in the levels of the decomposed variables significantly account
for variation in other decomposed variables. Hence, we concluded that the decomposed variables
are controlled by other decomposed variables that function as mediating factors in our study. On the
contrary, the variance of the Kaya identity factors cannot be substantially explained by their decomposed
variables as they are independent of each other. The Kaya identity is by definition a multiplicative
identity, and its factors are computed by dividing two decomposed variables. It is thus the ratio and
proportional intensity of the anthropogenic CO2 emitting activities. The calculation process eliminates
the multicollinearity of the respective decomposed variables. The results of the mediation model in
Table 6 support the Kaya identity factors’ independence.

Multicollinearity of the decomposed variables means that if two decomposed variables of a
specific factor are changed with similar growth rates, the driving force of the factor on CO2 emissions
will be stable or change only slightly. As TEC, EC, and GDP remain stable or decline, it stands to
reason that CO2 emissions are likely to remain stable or decline as well. To examine this slightly
different scenario with a focus on the dynamics, i.e., the relationship between changes in Kaya identity
factors and changes in their decomposed variables, we fitted another linear model. This is based
on a concept called proportional growth rate r(X), which is defined as r(X) = X′

X (%/year) [47].
We fitted the model to all combinations of growth rates of both decomposed variables and Kaya identity
factors, and found that—except for GDP—all models have low R2 values, ranging between 0.02 and
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0.54 (Figure 4). The GDP’s R2 is comparatively high, especially considering the regression of GDP’s
growth rate on the growth rates of both E and G, with values of 0.84 and 0.99, respectively (Figure 4).
This means that—except for GDP, Population, and G—there is only a fairly weak connection between
the decomposed variables’ proportional growth rates and the corresponding Kaya identity factors’
growth rate.

Figure 4. Scatter plots of proportional growth rates of decomposed variables (x axis) and Kaya identity
factors (y axis). (a) TEC and GDP versus E, (b) GDP and population versus G, (c) FFoss and GDP versus F,
and (d) TEC and EC versus M.

As mentioned, we measured multicollinearity among the decomposed variables as well as strong
mediating effects among them. Hence, the decomposed variables have a comparatively weak influence
on the Kaya identity factors. In addition, unexpected events such as economic crises, warmer winters,
or the COVID-19 pandemic affect the individual decomposed variables simultaneously. For example,
net EC and fossil fuel combustion are the major drivers of and targets for mitigating CO2 emissions.
Therefore, reducing the decomposed variables does not always yield the desired effect, as the respective
resulting Kaya identity factors may not have a large enough negative effect on CO2 emissions.

5.2. Kaya Identity in the Context of Contemporary Literature

Fischer-Kowalski and Amann (2001) [67] stated that—in the context of the Kaya
identity—population (P) and technology (E, M, F) seem to dominate GDP per capita or affluence (G) in
terms of environmental impact (CO2 emissions). Looking closer, affluence is related to the development
and the internal structure of the economic sector, where (besides mobility) the global supply chains of
companies are one of the major drivers of CO2 emissions. Only considering the factor G in the Kaya
identity ignores the complex interdependencies among and between the country-specific economic
sectors. Ahi et al. (2013) [68], Gong et al. (2019) [69], and Zimon et al. (2019) [70], for example, addressed
this problem by analyzing and proposing a green supply chain management. Karl and Ranné (1997) and
Sadik-Zada and Gatto (2020) stated that conjoint efforts towards a decarbonization-friendly transition
of the energy mix, tertiarization, general trade openness, and green supply chains would significantly
contribute to mitigating CO2 emissions [24,71–73].
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Our analysis cannot cover these international developments, as it is based on the Kaya identity.
However, by considering the decomposed factors and the interdependencies among them, we provide
a basis for further research concerning intercountry effects.

Peters et al. (2017) discussed the recent slowdown of CO2 emissions with Kaya-derived indicators
by using an interconnected and nested structure composed of different forms of Kaya identity
components [49]. They observed that economic factors and energy efficiency have contributed more to
decreased CO2 emissions than the adoption of wind and solar power. They showed that most of the
indicators are currently consistent with emission scenarios from the Paris Agreement goal of keeping
the temperature increase below 2 ◦C. Nonetheless, literature shows that the lack of carbon capture and
storage (CCS) technologies, slow improvements in energy efficiency, or missing transformations of
energy structures would threaten the 2030 goals and net-zero emissions targets of the Paris Agreement.
These issues are also well-projected in this study. Changes in the decomposed variables cannot directly
and effectively affect the reduction of fossil fuel CO2 flux because of multicollinearity among them.
To increase practical CO2-mitigating effects from key Kaya identity factors, CO2 emissions must be
reduced at the same time. In this regard, additional policy-wise efforts, e.g., towards increasing
energy efficiency, reducing energy consumption itself, and/or implementing new technologies like
CCS are required. Independent of politics, industry has to contribute as well. e.g., by designing and
implementing sustainably strategies (see, e.g., Scarpato et al. (2020) [74]) or, as mentioned above,
focusing on a greener, i.e. less carbon-intensive, supply chain.

6. Conclusions

In this study, we evaluated the causal relationship between the Kaya identity factors and their
decomposed variables to explore the real interactive influences on FFoss, which is the CO2 emitted from
in situ fossil fuel CO2 sources to the atmosphere. We also include indirect effects among the decomposed
variables. The analysis was done by evaluating a linear model where the decomposed variables of the
Kaya identity serve as explanatory variables and FFoss as dependent variable. An analogous model
was set up for the Kaya identity factors as well. Also, to look deeper into the direct and indirect
dependencies between the individual variables, we conducted an extensive mediation analysis.

Results (Section 4) show that these indirect effects are especially significant; however, there are no
strong or significant mediating effects from the Kaya identity factors on their decomposed variables.
With respect to the proportional growth rate, changes in the decomposed variables do not lead
to diverse and enormous growth rate changes of Kaya identity factors. Because of the strong
indirect effects among the decomposed variables on FFoss, policy makers must consider the causalities
between the decomposed variables and Kaya identity factors to set realistic carbon mitigation targets.
The quantitative net effects (direct effects and indirect effects) among the Kaya identity factors and
their decomposed variables indicate that there are hidden and intricate interdependencies.

For example, weak indirect effects between the Kaya identity factors themselves suggest that
changes in the decomposed variables unproportionally affect the Kaya identity factors and hence FFoss.
Our analysis using proportional growth rates confirms these findings: except for G, GDP, and population,
there are only weak interdependencies between the growth rates of the Kaya identity factors and its
corresponding decomposed variables. Furthermore, as discussed in Section 5.2, the Kaya identity
model is a national model—the international flow of goods and energy, for example, is not considered.

To sum up our findings: technically speaking, most policy measures target one or more decomposed
variables of the Kaya identity [3–5]—if possible while keeping negative effects on the economy at a
minimum. Policymakers thereby especially focus on E (CO2 emissions/EC) and M (EC/TEC). The factor
P cannot be controlled that easily, and both G and I are closely related to economic growth, i.e. should
not be influenced negatively. Popular examples are subsidies for electric vehicles and renewable
energies like solar power. However, given the weak mediating effects of the Kaya identity factors,
which are, according to the Kaya model equation, eventually responsible for reducing CO2 emissions,
this is not enough. Even if policy measures to mitigate CO2 emissions successfully influence either E
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or M or both, this does not necessarily imply a reduction of emissions on a national level. The results
of our study can be used to account for such unforeseen effects and adjust policy strategies adequately.
Besides this, our results show the need for a global sustainable strategy to reduce CO2 emissions
directly and not only by influencing one of the factors discussed above. However, some promising
new technologies like CCS are controversially discussed, as their long-term impact on environment is
still unclear. A lot of measures that reduce emissions are also quite costly. This shows the need for
more research about the cross-border effects of CO2 emissions reduction measure, e.g., along the global
supply chain, to decide which of them is most effective. Besides, note that when interpreting this
study, we had a short dataset consisting of observations from eight consecutive years. Additionally,
only European countries were included in this study. Hence, more research involving a longer set
of observations (20 years or more if possible) and data from other continents is required and would
produce more information for designing appropriate policy measures.
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CARMA Carbon Monitoring for Action
CDIAC Carbon Dioxide Information Analysis Center
CV Coefficient of variation
EC Fossil-fuel based energy consumption
E CO2 emissions/EC
EKC Environmental Kuznets curve
F CO2 flux/EC
FFoss ODIAC-based fossil fuel CO2 flux
G GDP/P
GDP Gross domestic product
GOSAT Japan Aerospace Exploration Agency Greenhouse Gases Observing Satellite
I TEC/GDP
IEA International Energy Agency
M EC/TEC
NDCs Nationally determined contributions
LMDI Logarithmic Mean Divisia Index
ODIAC Open-Source Data Inventory of Anthropogenic CO2 emissions
P Population size
STIRPAT Stochastic Impacts by Regression on Population, Affluence and Technology
TEC Total energy consumptions
UNFCCC United Nations Framework Convention on Climate Change
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Appendix A

Table A1. Descriptions of datasets applied in calculating Kaya identity factors.

Kaya Identity Factor Decomposed Variables Dataset

P factor Population Population data from the World Bank data

G factor
(GDP/Population)

GDP GDP (constant 2010 US$) from World Bank
Population Population data from the World Bank data

E factor
(TEC/GDP)

TEC Total final consumption from the IEA energy balance
GDP GDP (constant 2010 US$) from the World Bank

M factor
(EC/TEC)

EC Fossil fuel consumptions (coal, crude oil, oil products,
natural gas) from the IEA energy balance

TEC Total final consumption from the IEA energy balance

F factor
(CO2 flux/EC)

CO2 flux ODIAC-based fossil fuel CO2 flux

EC Fossil fuel consumptions (coal, crude oil, oil products,
natural gas) from the IEA energy balance
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