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Abstract: The Weiyuan (WY) and Changning (CN) fields are the largest shale gas fields in the Sichuan
Basin. Though the shale gases in both fields are sourced from the Longmaxi Formation, this study
found notable differences between them in molecular composition, carbon isotopic composition,
and noble gas abundance and isotopic composition. CO2 (av. 0.52%) and N2 (av. 0.94%) were higher
in Weiyuan than in Changning by an average of 0.45% and 0.70%, respectively. The δ13C1 (−26.9% to
−29.7%) and δ13C2 (−32.0% to −34.9%) ratios in the Changning shale gases were about 8% and 6%
heavier than those in Weiyuan, respectively. Both shale gases had similar 3He/4He ratios but different
40Ar/36Ar ratios. These geochemical differences indicated complex geological conditions and shed
light on the evolution of the Lonmaxi shale gas in the Sichuan Basin. In this study, we highlight the
possible impacts on the geochemical characteristics of gas due to tectonic activity, thermal evolution,
and migration. By combining previous gas geochemical data and the geological background of
these natural gas fields, we concluded that four factors account for the differences in the Longmaxi
Formation shale gas in the Sichuan Basin: a) A different ratio of oil cracking gas and kerogen cracking
gas mixed in the closed system at the high over-mature stage. b) The Longmaxi shales in WY and
CN have had differential geothermal histories, especially in terms of the effects from the Emeishan
Large Igneous Province (LIP), which have led to the discrepancy in evolution of the shales in the
two areas. c) The heterogeneity of the Lower Silurian Longmaxi shales is another important factor,
according to the noble gas data. d) Although shale gas is generated in closed systems, natural gas
loss throughout geological history cannot be avoided, which also accounts for gas geochemical
differences. This research offers some useful information regarding the theory of shale gas generation
and evolution.

Keywords: gas geochemical characteristics; noble gas; shale gas evolution; Large Igneous Province
(LIP); heterogeneity; gas loss

1. Introduction

Shale gas is produced from organic-rich black shale and self-generation and self-storage natural
gas, and is continuously accumulated in nano-scale micropores in shale [1]. Shale gas is a thermogenic
natural gas generated by organic matter pyrolysis. The shale gas relative elemental abundance

Energies 2020, 13, 5981; doi:10.3390/en13225981 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-5415-0950
http://www.mdpi.com/1996-1073/13/22/5981?type=check_update&version=1
http://dx.doi.org/10.3390/en13225981
http://www.mdpi.com/journal/energies


Energies 2020, 13, 5981 2 of 15

patterns and isotopic compositions fluctuate continuously throughout the pyrolysis process due to the
fractionation effect [2,3].

Shale gas is produced in a closed system and gas does not easily migrate. As a result, compared
with conventional natural gas it has a greater genetic accumulation impact [4–6]. Hence, shale gas
maintains more of the original information regarding the means of oil and gas generation from source
rocks than conventional natural gas does, and its geochemical characteristics could be a reflection of
the evolutionary process of closed-system fossil energy production. Natural gas formation theory has
focused on the generation and evolution of shale gas, since differences the in geochemical characteristics
between conventional natural gas and shale gas were discovered [7–11]. Shale gas geochemical
irregularities include (1) the rollover of iso-alkane/normal alkane ratios [12]; (2) the rollover of ethane
and propane isotopic compositions [13]; and (3) abnormally light ethane and propane δ13C values and
isotope reversals among methane, ethane, and propane [11,12,14–16]. Together, these irregularities
reflect the complicated history of shale gas generation and the isotopic fractionation associated with it,
as well as the in situ “mixing and accumulation” of gases that are generated from different precursors
at various thermal maturities [4]. In addition, shale gases from different areas around the world also
have many different geochemical characteristics [7,12,17–20]. Even if these shale gases come from
the same area and same strata, variations in molecular composition, carbon isotopic composition,
and noble gas abundance and isotopic composition can be found [15,16]. Recently, we found that the
gas geochemical characteristics of shale gases from the Longmaxi Formation, Sichuan Basin, China,
show several apparent differences between the Weiyuan (WY) and Changning (CN) areas [14–17,21–23].
For instance, there is more CH4 in CN shale gas, and its carbon isotope composition is heavier than that
of WY shale gas [14,16,17,21–23]. Meanwhile, the He and Ar abundance and isotope composition are
higher in WY shale gas than in CN shale gas [15]. Although previous studies have found differential gas
geochemical characteristics between WY and CN shale gas, few studies have explained the potential
reason for these differences.

We collected and compared the geochemical data from our previous works [14–16] and other
studies [16,21,22] and combined the geological background and oil/gas generation theory to clarify the
causes and mechanics of variations in the geochemical characteristics of shale gas from the Longmaxi
Formation, Sichuan Basin, China. These results should increase our understanding of the generation
and evolution of shale gas.

2. Geological Background

The Sichuan Basin is a structurally complex, superimposed basin that comprises an area of over
18 × 104 km2. The Sichuan Basin and the surrounding areas contain many gas fields (Figure 1). The two
largest shale gas fields in the Sichuan Basin, Weiyuan and Changning, are located on the south and
east borders of the basin, respectively. The organic-rich shales of the Wufeng–Longmaxi Formation
(Ordovician–Silurian), one of the most important hydrocarbon source rocks in China, are the source
of the shale gas generated ftom these two shale fields. The Silurian shales have equivalent vitrinite
reflectance (EqVRo, %) values ranging from 2.4% to 3.8% [24–26], indicating that they are largely
thermally over-mature and in a dry gas generation stage [24,27]. One possible external heat source
for the maturation of organic-rich shale is the Emei Large Igneous Province (LIP), located in the
southwestern part of the basin [28,29].
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Figure 1. Geological sketch map of the Sichuan Basin, showing the locations of the main gas sampling
sites, isolines of Ro values, and shale thickness of the Longmaxi Formation.

The Sichuan Basin is in the transition zone between the Palaeo–Pacific tectonic area and the
Tethys–Himalayan tectonic area [30]. The Caledonian, Hercynian, Indosinian, and Yanshanian orogenies
and Himalayan movement have all been recorded in the Sichuan Basin (Figure 2). There were two
major tectonic evolution stages in the history of the Sichuan Basin: an early cratonic depression
during the Palaeozoic era, followed by a foreland basin stage in the Triassic era [30–33]. This could
have generated a large number of faults and unconformity surfaces, leading to diverse hydrocarbon
migration and gas preservation [34]. The Lower Silurian Longmaxi Formation experienced deep burial
in the Yanshan period, causing gas generation to reach its peak. Subsequent repeated uplift and erosion
caused hydrocarbons to migrate out of the formation [35,36].
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Figure 2. Schematic diagram showing the stratigraphy system of the Sichuan Basin, as well as the main
tectonic events.

The Weiyuan (WY) area extends over 2700 km2 on the southeastern edge of the Leshan–Longnvsi
paleo uplift in the southwestern part of the Sichuan Basin (Figure 1) [37]. Silurian strata are present in
the southeastern part of the WY area, but are missing from its northwestern part. Silurian Longmaxi
Formation shale is characterized as graptolite shale, mainly organic type I with an EqRo range from
1.80% to 2.24% [38,39]. It is primarily found on the southeastern flank of the Weiyuan anticline at a
current burial depth of 1600–3200 m. The Changning (CN) area is located southwest of the Changning
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anticline in a gentle flank zone. The CN has an overall area of nearly 4000 km2 (Figure 1). The CN area
is closer to the core zone of Emei Large Igneous Province (LIP) than the WY area (Figure 3). In this
area, the Longmaxi shale mainly belongs to type I-II1 organic matter, with a thermal maturity Ro of
2.8% to 3.3% [40,41].

Figure 3. Schematic map of the Emeishan large igneous province (ELIP) and its thermal effect (Jiang,
2017, modified from Sun et al., 2010). The dashed lines show the boundaries of the inner, intermediate,
and outer zones of the ELIP, as defined by He et al. (2003). For the interpretation of the references for
color in this figure legend, the reader is referred to the web version of this article. The red column
represents the Permian heat flow and the green column represents the present heat flow.

3. Differences in Gas Geochemical Characteristics

3.1. Molecular Composition

With an average content of 98.2%, CH4 dominates the Longmaxi shale gases. The average contents
of C2H6 and C2H6 are 0.51% and 0.02%, respectively. Non-hydrocarbon gases are mainly composed of
N2 and CO2, with a small amount of He and Ar. H2S has not been detected. The content of methane in
Weiyuan (WY) shale gas (av. 97.9%) is slightly lower than that in Changning (CN) shale gas (av. 98.6%),
while the contents of CO2 (av. 0.47%) and N2 (av. 0.98%) in the WY area are higher than those in CN
area (av. 0.45% and av. 0.70%, respectively).

3.2. Carbon Isotope Composition

As shown in the carbon isotope correlation diagrams in Figures 4 and 5, there were distinct
differences in the carbon isotopic distribution characteristics between the WY and CN shale gases.
The δ13C1 values of WY Longmaxi shale gas ranged from −34.1% to −37.3%, the δ13C2 values ranged
from −37.6% ~ −43.4%, and the δ13C3 values ranged from −33.6% ~ −43.5%. The δ13C1 (−26.8% to
−31.3%) and δ13C2 (−32.3% to −34.9%) values of the CN Longmaxi shale gas were heavier by about 8%
and 6%, respectively, than those in the WY area (Figure 4). The δ13C3 values ranged from −34.8% to
−37.2% in the CN area.
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Reversed distribution patterns of carbon isotopic compositions for CH4 to C3H8 were found in
the Longmaxi shale gas in both the WY and CN areas. Full reversal distribution patterns of the carbon
isotopic composition according to the carbon number were found in most Longmaxi Formation shale
gases in these areas—that is, δ13C1 > δ13C2 > δ13C3. However, shale gases from three wells (W202,
W201, and W201-H1) in the WY area showed a partial reversal distribution pattern of carbon isotopic
composition according to the carbon number—that is, δ13C2 > δ13C1 and δ13C3 < δ13C2 (Figure 5).

Figure 4. Carbon isotopic composition of shale gas from the Longmaxi Formation in the Weiyuan and
Changning areas, Sichuan Basin, China.

Figure 5. Variation in δ13C2-δ13C1 as a function of δ13C3-δ13C2 for gases from the Weiyuan (WY) and
Changning (CN) areas, showing the isotope distribution patterns among methane, ethane, and propane.

3.3. Noble Gases

The Longmaxi formation shale gases in the Sichuan Basin showed regional differences in the
abundance and isotopic compositions of noble gases [15]. The abundance and isotopic ratios of He and
Ar in the WY shale gas are slightly higher than those in the CN shale gas (Figure 6). The concentrations
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of 4He and 40Ar ranged from 304.5 to 1286.3 ppm and 473.7 to 734.7 ppm, respectively, in the WY shale
gas. The 3He/4He ratio was mainly around 0.02Ra, and the 40Ar/36Ar ratios ranged from 1276.2 to
6640.3 in the WY shale gas, while the concentration of 4He and 40Ar in the CN area varied in a small
range from 386.1 to 445.9 ppm and 32.0 to 176.4 ppm, respectively. The 3He/4He ratios were around
0.01Ra, and the 40Ar/36Ar ratios were clustered around 1700 in the CN area. The ratios of 20Ne/22Ne
and 21Ne/22Ne of the Longmaxi shale gases showed similar values to those of atmospheric Ne.

Figure 6. Plots of (a) 3He/4He vs. 40Ar/36Ar and (b) 20Ne/22Ne vs. 40Ar/36Ar of Longmaxi shale gases
in the Weiyuan (WY) and Changning (CN) areas, China.

4. Causes of Gas Geochemical Variation

Hydrocarbon gases are ubiquitous products of organic maturation at all stages of burial. During the
burial history, complex geological events may occur that could influence their maturity and lead
to secondary alteration processes (migration, preservation, and water–rock interactions) that may
result in changes in gas geochemical characteristics. The carbon isotope compositions of shale gas are
closely related to the thermal alteration of organic matter. The different thermal histories of source
rocks could bring about various patterns of carbon isotope composition [42–44]. Apart from the
effect of temperature, the loss of natural gas during tectonic processes also affects the distribution of
the molecular and isotope compositions of shale gas [45–50]. Water–organic matter redox reactions
are another factor which could reform the gas geochemical characteristics of shale gases [51–54].
Lastly, the heterogeneity of Longmaxi Formation shale can lead to different concentrations of some
molecules/elements in shale gases.

4.1. Mixing of Secondary Cracking Gas

Most shale gases are generated by the thermal degradation of sedimentary organic matter.
The origin of this sedimentary organic matter is tightly linked to organic matter diagenetic and thermal
alteration [42–44]. Although differences in the thermal maturity and/or organic type (marine and
terrestrial shale gas) could bring about various δ13C values and carbon isotopic distribution patterns [24],
this seems not to be the reason for the differences in gas geochemistry between Weiyuan (WY) and
Changning (CN) shale gas, as they have the same conditions in terms of these two factors [21,22,24].
Tissot and Welte [55] found that, in the early thermal evolution stage, gaseous hydrocarbons are formed
concurrently with oil from kerogen in source rocks, whereas in the late thermal evolution stage gaseous
hydrocarbons are generated by the thermal cracking of both residual kerogen and oil. The produced
natural gas becomes progressively drier and isotopically more positive with the improvement in the
thermal evolution degree [43,56]. The source rocks of the Longmaxi formation in the WY and CN areas
are all in the high to over-maturity stage [24–26]. However, according to the tectonic activity history,
Longmaxi shale in the WY and CN areas has experienced different processes of temperature change.
Therefore, the differences in the molecular and carbon isotopic compositions of shale gas from the
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Longmaxi Formation between the WY and CN areas could be caused by the different proportions of
secondary cracking gas generated by residual kerogen and liquid hydrocarbons.

The different effects of tectonic movement in the WY and CN areas could have led to the different
burial and thermal histories of Longmaxi shale. During the Triassic to Early Cretaceous era, the WY
area underwent strong subsistence and then experienced extensive uplifting and erosion after the
Late Cretaceous era. These events resulted in large fluctuations in temperature in the shales [57].
As shown in Figure 7, from the Middle Triassic (70 ◦C, started to generate oil) to the Late Cretaceous
era (210 ◦C, maximum gas generation), a complete evolution of the hydrocarbon generation stages
occurred in the WY Silurian Longmaxi shale, including oil generation, oil cracking to gas, and residual
kerogen cracking to gas [57,58]. High temperature ranges from 172 ◦C to 205 ◦C were revealed
by the homogenous temperature of the fluid inclusions taken from N202 in the CN area [59,60],
providing evidence that the CN Silurian Longmaxi shale also went through the complete evolution of
the hydrocarbon generation stages. The complex tectonic activities in the Weiyuan and Changning
areas will cause source rocks to undergo different evolutionary processes, leading to differences in the
shale gas geochemical characteristics. However, this needs to be proven by accurate source rock burial
history and other information in each region.

Figure 7. Plots of the burial history and thermal evolution of the Silurian Longmaxi shales in the
Weiyuan area (Well W117). The thermal gradient evolution history was established by the reflectance
inversion method: 32 ◦C/km (>96 Ma), 30 ◦C/km (96–65 Ma), 27 ◦C/km (<65 Ma). The thermal evolution
histories of Lower Silurian shale were reconstructed by combining the thermal gradient model and
their burial histories [57,58].

The Emeishan large igneous province (ELIP) covers an area of about 2.5 × 105 km2 in southwest
China. The heat flow in the inner and intermediate zones is abnormally high compared with
that in the outer zone, where a decrease in the average heat flow from 76 to 51 mW/m2 has been
observed [59]. This provides a differentiated heat source for overlying and underlying strata in
different areas. The appearance of pyrobitumen in the Sinian–Cambrian reservoirs is clear evidence
of an abrupt hydrothermal fluid event, which might correspond to the Emei mantle plume in the
late Permian era [60,61]. WY and CN are in the Emeishan large igneous province region (Figure 3).
The thermal evolution of source rocks in the WY and CN areas was strongly affected by the ELIP [62–64].
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From Figure 3, we can see that the CN area is in the intermediate zone of ELIP, while the WY area is in
the outer zone. We can conclude that the CN area received relatively more heat energy than the WY
area during the Emeishan mantle plume activity.

The shale gases from the Longmaxi formation in the WY and CN areas are thermogenic gases,
which are formed at higher temperatures by the thermal decomposition of higher molecular weight
organic matter (kerogen or oil) [27]. It is known that 12C forms slightly weaker chemical bonds in
the process of thermal decomposition than 13C, resulting in a “kinetic isotope fractionation” in which
the reaction product (gas in this case) is enriched in 12C (isotopically ”lighter”) and the rest of the
source material (kerogen or oil) becomes similarly enriched in 13C (isotopically ”heavier”) in a process
known as the Rayleigh fractionation effect [27]. As the maturity degree increases, the δ13C1 ratio
decreases until it reaches the lightest point, after which it increases [9]. Closed-system kerogen pyrolysis
experiments and the study of geologic systems have determined that the secondary cracking of heavier
hydrocarbons is a crucial pathway for gas generation [47,65–68]. Primary gases generated from
kerogen and secondary gases cracked by oil and/or gaseous hydrocarbons are the main components of
thermogenic shale gases. Shale gas (e.g., CH4, C2H6, and C3H8) generated at different temperatures
will have different isotopic compositions due to the Rayleigh fractionation effect. This may be one
of the primary causes of the differences in the carbon isotopic composition of Longmaxi shale gases
between the WY and CN areas, which experienced different temperature changes throughout their
thermal evolution.

4.2. The Loss of Shale Gas

Shale gas aggregates continuously in gas reservoirs and is characterized by relatively short
hydrocarbon migration distances [69]. Tectonic movement and preservation conditions are the main
drivers of the accumulation and migration of shale gas [33,36]. The Sichuan Basin experienced
complex tectonic movements during the evolution from the Craton basin (Palaeozoic) to the foreland
basin (Triassic) [33,36]. Silurian Longmaxi shale was affected by the Yanshan, Indo-China, Dongwu,
and Yunnan movements after deposition (Figure 2), which generated a large number of faults
and unconformity surfaces and resulted in various pathways of hydrocarbon migration and gas
loss [33,70,71]. Repeated uplift and erosion and numerous faults destroyed the preservation conditions
of Longmaxi shale gas in the WY and CN areas [36,70] and consequently caused shale gas loss.
The formation of the Leshan–Longnvsi paleo uplift involved several periods of tectonic movements,
from the Tongwan movement to Yanshanian movement [35]; its tectonic evolution has had a greater
influence on the formation and distribution of the WY shale gas reservoirs than that of the CN shale
gas reservoirs [72–74].

During shale gas loss in the geological history, diffusive leakage from reservoirs and source rocks
could induce carbon isotope fractionation ranges from 1% to 30% [75], and this loss of fractionation is
universal in sedimentary basins [75,76]. Further, the smaller the volume of gas in the accumulation,
the more likely any type of secondary fractionation will be significant [77]. Cao et al. [15] and
Zhang et al. [16] discovered changes in noble gas abundance and isotopic composition and molecular
and carbon isotope variation in the Longmaxi Formation shale gas in the WY and CN areas over the
course of 3.5 years. Shale gas production is a kind of artificial diffusion process; the methane carbon
isotope composition become slightly heavier, with its content decreasing in WY shale gases, while there
are no changes in CN shale gases [16]. The differences between the gas geochemical characteristics
in these two areas is due to the lower gas pressure (which means smaller volume) of the Longmaxi
reservoir in the WY area [15,16,75–77].

Therefore, we can conclude that the Longmaxi shale in the WY area has been more affected by the
intense tectonic activities, resulting in more shale gas loss over geological history. According to the
diffusive fractionation theory [75,77], there should be a heavier δ13C1 ratio in WY shale gases, but just the
opposite is true [16,21,22,27]. Some other secondary reactions may have occurred in the Longmaxi shale
gas reservoirs, either in WY or CN, leading to the present carbon isotope composition characteristics.
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4.3. Water–Rock Interaction

The δ13C1 ratios of shale gases in the CN area range from −26.8% to −31.3%, which is heavier
than that of the thermogenic methane from type I and II kerogen (−50% to −30%, [78,79]). Its carbon
isotope composition and distribution pattern are similar to those of abiogenic gas (>−30%, [80]).
Abiogenic hydrocarbons could be generated by Fischer–Tropsch-type reactions in granitic rocks, whose
δ13C1 ratios range from −32% to −20% and δ13C1 > δ13C2+ [81,82]. Tang et al. [83] recognized a new
mechanism of shale gas generation: a Fischer–Tropsch-type synthesis of hydrocarbon from CO2 and
H2, resulting from the water reforming of residual organic matter in shale.

CHx (organic matter) + 2H2O→ CO2 + (2 + x/2) H2, (1)

CO2 + mH2→ xCH4 + yC2H6 + . . . + zH2O. (2)

The Longmaxi shale in the CN area contains a large amount of formation water, providing the base
materials for this methane generation mechanism, which may account for 50% or as much as 80% of the
gas in shale, especially in particularly high-producing wells [83]. This also could increase the porosity
and permeability of the shales [83]. Therefore, high δ13C1 ratios, the full reversal distribution pattern
of the carbon isotopic composition, and high gas pressure may be related to this new mechanism
of shale gas generation. However, much more detailed work, including on the temperature and
catalyst of the reaction and the matrix pore features, should be undertaken to properly understand this
Fischer–Tropsch-type reaction.

4.4. Heterogeneity of Longmaxi Shale

Longmaxi shale has obvious lateral and vertical heterogeneity in its mineral composition,
Total Organic Carbon (TOC), porosity, and trace elements [84–89]. Figure 6 shows the differences
in 4He and 40Ar content between the WY and CN shale gases. The 4He production in the crust is
dominated by the α-decay of the 235,238U and 232Th decay chains, and is therefore directly proportional
to the concentration of these radioelements in the crust, while the decay of 40K dominates the 40Ar
production in the crust, which is thus directly proportional to the K concentrations. The contents of U,
Th, and K are varied in Silurian Longmaxi shale [88,89], which may be one reason for the differences in
noble gas isotope abundance (4He and 40Ar).

In addition, the 40Ar/36Ar ratio of W201-H1 is extremely high (6640.3), and close to that (7000) of
conventional natural gas from the Sinian Dengying Formation reservoirs [15,90]. The two sets of gas
reservoirs are in the same area (WY), and this combined with the intense tectonic activities in this area
makes it very likely that some deeper conventional natural gas has leaked into the W201-H1 well from
the fractures. Due to the low permeability and connectivity of shale rock, these deeper gases remained
contained and did not spread to other shale gas wells.

5. Conclusions

There are differences in the molecular and carbon isotopic composition and noble gas abundance
and isotopic composition in the Longmaxi shale gas sourced from the Weiyuan (WY) and Changning
(CN) areas. This could be accounted for by the intense tectonic activities of the Sichuan Basin and
secondary reactions in the shale gas reservoir. Additionally, the differential effect on WY and CN of the
complex burial history and Emeishan super mantle plume activities in the Sichuan Basin has resulted
in different thermal histories and hydrocarbon generation processes of Longmaxi shale in these two
areas. The carbon isotope fractionation effect during the processes of shale gas generation results in
different molecular and carbon isotopic compositions in the primary gases generated from kerogen
compared with the secondary gases cracked by oil and/or gaseous hydrocarbons. The different partial
mixing of primary and secondary gases is a governing factor for the differences in the gas geochemical
characteristics between WY and CN. In addition, the different geotectonic movements have caused
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different fault and fracture systems in the WY and CN Longmaxi shale strata, which have led to various
amounts of shale gas loss and consequently carbon isotope fractionation in the gas loss processes.
Furthermore, water–rock interactions could enhance the molecular and carbon isotope composition
differences, and the heterogeneity of the shale could bring about the different noble gas abundances
and isotope compositions.
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