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Abstract: Issues of gain scheduling control for aero-engines are addressed in this paper. An aero-engine
is a system with high nonlinearity, and the requirement on controlling performance is high.
Linear Parameter Varying (LPV) synthesis is commonly used to satisfy the requirements. However,
the designing procedure of an LPV synthesis controller is complex, and may lead to undesirable
design results when the variation rate of scheduling parameter is relatively fast. In this paper,
an improved gain scheduling design procedure that can guarantee reliable stability and performance
is developed. The method allows arbitrary variation of scheduling parameters, and is a modification
for conventional LPV synthesis control. Special cases where traditional LPV synthesis control can still
work are also discussed. The modified design procedure is evaluated on a small turbofan engine.
Simulations show that for conditions where conventional scheduling fail to stabilize the plant, the
proposed modification can ensure reliability and achieve desired performance.

Keywords: aero-engine; LPV synthesis; gain scheduling control

1. Introduction

An aero-engine is a highly nonlinear, complex system operating under a variety of external
conditions and flight conditions [1]. To design a control system that can guarantee safety and
performance under various operating conditions is important [2]. Aero-engine control systems are
firstly designed with linear controllers based on linearized engine models at some trimmed operating
points. Although one single robust controller may possibly stabilize an engine [3], it would fail to
ensure good performance on a larger scale. Therefore, gain scheduling is widely used to achieve
stability and high performance over a large operating range [4–6].

In gain scheduling control, a series of Linear Time Invariant controllers are designed at multiple
trimmed operating points. Then the controllers are scheduled as a global controller [7]. However,
the number of trimmed operating points needs to be decided appropriately. On the one hand,
when only a limited number of design points are chosen, at off-design points the interpolated
controller may provide degraded performance or even cause instability. On the other hand, it is
time-consuming and effort-consuming to consider too many operating points to obtain a globally
satisfactory controller. Meanwhile, the designing procedure does not take parameter variations into
consideration [8]. This means that the even at the chosen trimming points, if the parameters change
too fast, the scheduled controller cannot necessarily work well. However, modern aero-engines work
in a wide flight envelope, and the parameters change rapidly. The truth is that in the early practice,
gain scheduling control virtually gives no guarantee of performance, robustness, or stability [9].
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To overcome the disadvantages, Linear Parameter Varying (LPV) synthesis [10,11] is developed,
and applied to aero-engine systems. The studies include scheduling methods [12–16], switching
methods [17–20] and intelligent methods [21]. An LPV system is a linear time varying system with
exogenous or internal parameters, which are unknown in advance, but measurable in operation.
LPV synthesis comprises linear fractional transformation and Lyapunov function-based methods.
LPV synthesis takes parameter variation into consideration, and the controller can ensure stability
and performance of the system. It was firstly developed for linear systems that have measurable
uncertainty. Later, it has also been applied as a nonlinear control strategy [22].

LPV synthesis can be applied to a nonlinear system with an LPV form. By treating some variables
in nonlinear models as unknown time varying parameters, systems such as missiles and aircrafts [23]
can be formulated into LPV form directly. The derived LPV model is linear differential inclusion of the
nonlinear system, and conservation of the design result can be expected [24]. Some systems may not be
transformed into LPV form in a direct manner. Three indirect approaches to develop LPV models based
on nonlinear systems are Jacobian linearization, state transformation, and function substitution [25].

An aero-engine nonlinear component level model considers nonlinearity of components, and the
characteristics of the compressor and turbine are always determined through look-up tables. So, it is
difficult to transform it directly to an LPV description. The jacobian linearization approach is a
commonly used approach to obtain the LPV model. Unfortunately, with this transformation, the linear
differential inclusion relation disappears, and the design result may be unreliable. A failure example is
given in [26] showing that LPV synthesis based on Jacobian linearization may even fail to stabilize
the system. Although this approach can still work on systems with slowly varying parameters [8],
a closed loop system with too slow parameter variation would not meet the demand of modern
aero-engine control. Therefore, a varying rate of the parameters has to be considered during LPV
synthesis. Moreover, the slowly varying parameter discussion in [8] is more from an analytical
viewpoint. The slowly-varying requirement is not mathematical, and cannot be addressed easily
during the design process. Although many successful design examples for aero-engines can be seen,
the reliability and stability analysis methods still remain uncertain. No further effort on the Jacobian
linearization-based LPV controller design can be found, and the developed LPV-based gain scheduling
still seems far from perfect.

This paper aims to conduct such an analysis, and to provide some improvement so that reliable
stability and desired performance can be guaranteed. The paper starts with an introduction of the
Jacobian linearization-based LPV description a nonlinear system. Based on the analysis of problems
with traditional LPV synthesis, a modified scheduling controller design is illustrated in Section 3 and
applied to a turbofan engine in Section 4. Then the conclusion is presented in Section 5.

2. Traditional LPV Controller

Consider a Jacobian linearization-based LPV controller.
According to LPV quadratic stability theory, the LPV plant{ .

x = A(α)x + B(α)u
y = C(α)x

(1)

with controller (see Figure 1) { .
xk = Ak(α)xk + Bk(α)e
u = Ck(α)xk + Dk(α)e

(2)

is stable if there exists a matrix P > 0 that satisfies

Acl(α)
TP + PAcl(α) < 0 (3)
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where

Acl(α) =

[
Ak(α) −Bk(α)C(α)

B(α)Ck(α) A(α) − B(α)Dk(α)C(α)

]
for any possible value of α. α is scheduling factor, x and xk are the states of the system and controller;
A, B, C and D are system matrices, subscript “k” stands for controller parameters. e = r− y is the error,
y is the output, u is the system input. Subscript “cl” stands for a closed loop system through this paper.

Under a small disturbance, the closed loop system is stable if α in Equation (2) is frozen at any
value but may be unstable when the controller is scheduled. Analysis of this problem is as follows:

Consider a nonlinear plant { .
xp = f (xp, u)
y = g(xp)

(4)

where f is the corresponding function, subscript “p” stands for plant. Suppose the LPV description of
system Equation (4) through Jacobian linearization is{

∆
.
xp = A(α)∆xp + B(α)∆u

∆yp = C(α)∆xp
(5)

For generality, it can be assumed that α = p(x). Obviously at an equilibrium point (xp0, u0)

(correspondingly,α = α0 = p(x0)), the linearized model is{
∆

.
xp = A(α0)∆xp + B(α0)∆u

∆yp = C(α0)∆xp
(6)

Its LPV controller is { .
xk = Ak(α)xk + Bk(α)uk
u = Ck(α)xk + Dk(α)uk

(7)

where uk = e = r− y, according to Figure 1.
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Figure 1. Linear Parameter Varying (LPV) control scheme.

Assume the steady state system variables in Equation (4) and its controller Equation (7) can
be parameterized by the parameter α, which gives ue(α), xpe(α), xke(α), uke(α) and ye(α). Note that
subscript “e” stands for steady states throughout the paper. Define

M(α0) =
∂(Ak(α)xk)

∂α
|α=α0,xk=xke(α0)

N(α0) =
∂(Bk(α)uk)

∂α
|α=α0,uk=uke(α0)

P(α0) =
∂(Ck(α)xk)

∂α
|α=α0,xk=xke(α0)

Q(α0) =
∂(Dk(α)uk)

∂α
|α=α0,uk=uke(α0)

S(α0) =
∂p(xp, u)
∂xp

|x=xpe(α0),u=ue(α0)
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Linearization of the controller Equation (7) gives{
∆

.
xk = Ak(α0)∆xk + Bk(α0)∆uk + (M(α0) + N(α0))∆α

∆u = Ck(α0)∆xk + Dk(α0)∆uk + (P(α0) + Q(α0))∆α
(8)

Substituting
∆α = S(α0)∆xp

∆uk = ∆r−C(α0)∆xp

into Equations (5) and (7) gives
∆

.
xp = [A(α0) + B(α0)(P(α0) + Q(α0))S(α0) − B(α0)Dk(α0)C(α0)]∆xp

+B(α0)Ck(α0)∆xk + B(α0)Dk(α0)∆r
∆yp = C(α0)∆xp

(9)

and {
∆

.
xk = Ak(α0)∆xk + [(M(α0) + N(α0))S(α0) − Bk(α0)C(α0)]∆xp + Bk(α0)∆r

∆u = Ck(α0)∆xk + [(P(α0) + Q(α0))S(α0) −Dk(α0)C(α0)]∆xp + Dk(α0)∆r
(10)

respectively. Therefore, the close loop linearized system at this equilibrium point is{
∆

.
x = Acl(α0)∆x + Bcl(α0)∆r

∆y = Ccl(α0)∆x
(11)

where

∆x =

[
∆xk
∆xp

]

Acl(α0) =

[
Ak(α0) (M(α0) + N(α0))S(α0) − Bk(α0)C(α0)

B(α0)Ck(α0) A(α0) + B(α0)(P(α0) + Q(α0))S(α0) − B(α0)Dk(α0)C(α0)

]

Bcl(α0) =

[
Bk(α0)

B(α0)Dk(α0)

]
Ccl(α0) =

[
0 C(α0)

]
These matrices are different from those considered during conventional LPV synthesis, described as

Acl1(α0) =

[
Ak(α0) −Bk(α0)C(α0)

B(α0)Ck(α0) A(α0) − B(α0)Dk(α0)C(α0)

]

Bcl1(α0) =

[
Bk(α0)

B(α0)Dk(α0)

]
Ccl1(α0) =

[
0 C(α0)

]
The difference between Acl and Acl1 originates from the fact that the linearization of the controller

Equation (7) should result in Equation (8), considering variation of scheduling parameter α. The success
of LPV synthesis applied to control aircrafts and missiles should owe to the fact that the directly
transformed LPV model is a linear differential inclusion of the nonlinear system. However, a in
Jacobian linearization-based LPV, such aa differential inclusion relation disappears. With the same
controller, behavior of LPV model and that of the nonlinear plant is different.
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3. Modification of Jacobian Linearization-Based LPV Control

It should be noted that the LPV model describes only the local dynamics near equilibrium points,
so the designed controller should also be local. If LPV synthesis is performed on such LPV models,
the purpose should be to meet the demand on local stability and performance at any equilibrium point.
Therefore, α should be time-invariant uncertainty during LPV synthesis.

To take the variation rate of α into consideration, the LPV controller should also be viewed as a
Jacobian linearization-based LPV of some nonlinear controller, i.e., should be written as Equation (12),
not Equation (7). {

∆
.
xk = Ak(α)∆xk + Bk(α)∆uk

∆u = Ck(α)∆xk + Dk(α)∆uk
(12)

Equation (12) is not a linear controller, because the definitions of ∆xk and ∆uk vary with α. It is
only a linearization description with parameterized system matrices just like that for the nonlinear
plant. Directly implementing LPV controller Equation (7) on the nonlinear plant Equation (4) may
result in unexpected close loop behaviors. It needs to find a corresponding nonlinear controller that
has such a Jacobian linearization LPV formation such as Equation (12).

The question of whether such a nonlinear controller exists and how to find it will be discussed in
the following section.

3.1. Definition of Controller

Theorem 1. System {
∆

.
xk = Ak(α0)∆xk + Bk(α0)∆uk

∆u = Ck(α0)∆xk + Dk(α0)∆uk
(13)

is a Jacobian linearization description of some nonlinear controller at the equilibrium point (xke(α0), uke(α0),α0),
if and only if there exists a pair of functions xke(α) and uke(α) that satisfy

Ak(α)
∂xke(α)

∂α
+ Bk(α)

∂uke(α)

∂α
= 0 (14)

Ck(α)
∂xke(α)

∂α
+ Dk(α)

∂uke(α)

∂α
=
∂ue(α)

∂α
(15)

for any value of α. The corresponding nonlinear controllers can be described as{ .
xk = Ak(α)(xk − xke(α)) + Bk(α)(uk − uke(α))
u = ue(α) + Ck(α)(xk − xke(α)) + Dk(α)(uk − uke(α))

(16)

Theorem 2. LPV controller Equation (7) for a Jacobian linearization-based LPV system has the linearization
description Equation (13) at the equilibrium point (xke(α0), uke(α0),α0) if and only if its parameterized steady
state variables xke(α) anduke(α) satisfy the equation Equations (14) and (15) for any value ofα.

Proof of the theorems can be referred to in Appendices A and B.

3.2. Solution of Nonlinear Controller

Theorem 1 provides two equations, Equations (14) and (15), to solve for the desired nonlinear
controller. The solvability analysis is given in the following. Assume xk ∈ Rm1. For Jacobian
linearization-based LPV control, both uk and α should be of the same dimensions as the controlled
output, y, i.e., uk ∈ Rn and α ∈ Rn.

In Equations (14) and (15), (m1 + n) × n separated equations need to be solved for (m1 + n) × n
separated derivatives. Therefore these partial derivatives can be determined uniquely. Then the
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primitive function xke(α) and uke(α) can be obtained if they exist. For the single input case, the primitive
functions can always be found. For the multi-input case, the correlation between partial derivatives of
a function may be violated, and consequently primitive function may not exist. As a result the desired
nonlinear controller cannot be always found.

The procedure of improved LPV synthesis using a Jacobian linearization-based LPV is:

(1) solving parameterized steady state system variable xke(α) and uke(α) using Equations (14) and (15);
(2) using the modified LPV controller Equation (16) instead of Equation (7) to control the plant.

3.3. Discussion

It can be seen that the solution of Equations (14) and (15) depends on ue(α), which is determined
by the plant. Generally, xke(α) and uke(α) cannot satisfy the steady state equation and Equations (14)
and (15) simultaneously, so conventional LPV synthesis Equation (7) cannot be applied to the Jacobian
linearization-based LPV model directly. This problem is essentially induced by deficient consideration
of scheduling factor α. The conventional LPV controller assumes α to be stable near steady-state points.
However, in dynamic processes, scheduling factor α changes all the time. So, the traditional LPV
controller only ensures local performance around steady-state points. When it works under conditions
in which parameters change relatively fast, the controlling performance would be triggered.

In comparison, the improved LPV synthesis considers variation of α in the varying equilibrium
point xke(α). The modified LPV controller is designed around the varying equilibrium point xke(α),
so it can provide satisfying controlling performance in a wilder operating region. In other words,
the method proposed in this paper is a modification of the conventional LPV synthesis method.

Furthermore, there are also some special cases in which conventional LPV synthesis is reliable as
listed below:

Case 1: the LPV controller that can be arranged as in Figure 2, from which an integrator can
be isolated.
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In this case, the controller can be described by
.
xk1 = A′k(α)xk1 + B′k(α)uk
u′ = C′k(α)xk1 + D′k(α)uk
.
u = u′

(17)

The parameterized steady state variables are u′e(α) = 0, uke(α) = 0. Therefore,xke(α) = 0, and
the linearized model is 

∆
.
xk1 = A′k(α0)∆xk1 + B′k(α0)∆uk

∆u′ = C′k(α0)∆xk1 + D′k(α0)∆uk
∆

.
u = ∆u′

(18)

According to the theorems, conventional LPV synthesis meets the requirements. This case is not
rare. For example, in an H∞ design to achieve zero a steady-state tracking error, integral dynamics are
specially added. If these controllers are arranged and scheduled as in Figure 2 in application, then LPV
synthesis will be enough to guarantee a reliable design.
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Case 2: a plant with purely integral actuator dynamics. In this case,ue(α) = 0, uke(α) = 0,
and therefore xke(α) = 0. According to the theorems, there is no need for modification.

4. Application to a Turbofan Engine

This improved gain scheduling method was evaluated on a low bypass ratio, double-spool
turbofan. Gross thrust of the engine is 4 kN and fuel mass flow rate is 160 L/h at the design
point. A Nonlinear Component Level (NCL) model was developed with thermodynamic relations.
Compressor and turbine characteristic maps were derived from experimental data, and were in the
form of look-up tables. Combustion efficiency and pressure losses were fitted by curves. By means of
this simplified model, key parameters can be calculated. More detailed description about the model
can be found in the author’s previous work [27].

Based on this NCL model, both an engine LPV model was developed, and an LPV controller was
designed. The LPV model was built in a sea-level static condition through Jacobian linearization and
polynomial fitting. Two state variables, nH (high pressure turbine rotation speed) and nL (fan rotation
speed) are considered. nH is used to control the thrust. The input is fuel mass flow rate qm f with
actuator dynamics as

Ga(s) =
1

0.1s + 1

Small perturbation simulation was carried out on several steady-state working points of the
model, and linear models of each working point were fitted. Then the LPV model of the engine was
obtained by fitting the linear state space matrix. Therefore, the extended LPV model by the actuator
dynamics is 


.
nH
.
nL
.
qm f

 =
[

A(α) B(α)
0 −10

]
nH

nL

qm f

+


0
0
10

u
nH =

[
1 0 0

]
nH

nL

qm f


(19)

where A(α) and B(α) are the system matrices of the engine’s LPV model. The input ranges from 40%
to 98%, and correspondingly the output nH ranges from about 82% to 96%. The design objective is a
zero steady-state tracking error with settling time less than 2 s. Two types of scheduled controller are
investigated in this part.

4.1. PI Controller-Based Gain Scheduling

Using a single PI (proportional–integral) controller tuned at nH0 = 88% for the whole operation
range may result in large overshoot at low power and slow response at high power. Figure 3 shows
step responses for initial speed at 83%, 88%, 92% and 96%, respectively. Therefore gain scheduling is
required. Here, traditional gain scheduling is adopted, and eight PI controllers are designed to cover
the operation range.

Gain and integrator in a PI controller can be arranged freely, for example, as in Figure 4 or Figure 5.
Although they are equivalent in linear systems, scheduling of controllers yields nonlinearity and makes
them different.
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Figure 5. PI gain scheduled controller: case 2.

If the PI controller is initially arranged and scheduled as in Figure 4, the system matrices are

Ak(α) = 0

Bk(α) = ki(α)

Ck(α) = 1

Dk(α) = kp(α)

and the steady state variables are

uke(α) = 0, xke(α) = ue(α)

According to Theorem 2, the controller arranged as in Figure 4 can be designed following
a conventional gain scheduling procedure. The scheduling will provide desired performance as
displayed in Figure 6.
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If the PI controller is configured as in Figure 5, then

Ak(α) = 0

Bk(α) = 1

Ck(α) = ki(α)

Dk(α) = kp(α)

Substituting
uke(α) = 0

and
Ck(α)xke(α) = ue(α)

into Equations (A11) and (A12) in Appendix gives

Ck(α)
∂xke(α)

∂α
=
∂(Ck(α)xke(α))

∂α

which implies that ki(α) does not depend on α. For general scheduled PI controller designs, this cannot
be satisfied and such a scheduled controller cannot work well without modification. As can be seen in
Figure 7, the step responses exhibit undesirable behavior and the close loop system is even unstable at
nH0 = 96% (not included in the figure).Energies 2020, 13, x FOR PEER REVIEW 10 of 19 
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Figure 7. Step responses with a scheduled PI controller: case 2.
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To modify this controller, a pair of functions xke(α) and uke(α) should be solved from

∂uke(α)

∂α
= 0

Ck(α)
∂xke(α)

∂α
+ Dk(α)

∂uke(α)

∂α
=
∂ue(α)

∂α

which gives
uke(α) = const

∂xke(α)

∂α
=

1
Ck(α)

∂ue(α)

∂α
(20)

To obtain xke(α) from Equation (20), direct integration of the expression of ∂xke(α)/∂α should
be avoided, as such an expression is usually much too complex. An alternative way is to first fit the
numerical derivative ∂xke(α)/∂α by a polynomial, and then integrate the polynomial. Here, a 5th
polynomial is used to fit ∂xke(α)/∂α. The results are plotted in Figure 8.
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The modified PI-based scheduling controller is shown in Figure 9. With this modified controller,
the desired performance is achieved as shown in Figure 10, which agrees very well with Figure 6.
It can been seen that the fitting result is good but not perfect. In our simulations, if a 3rd polynomial is
used in the fitting, the goodness of fit is much worse but still can provide similar control performance
to those shown in Figure 10. Therefore, the design result is not very sensitive to the solution inaccuracy
of xke(α).
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The H∞ controller design is performed at conditions of 0Hn  from 88% to 96% gridded with 
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4.2. H∞ Robust LPV Control

To control a general LPV plant, a linear time-invariant controller is required to be designed for a
corresponding possible value of α. For the turbofan engine in this paper, the gridding method is used.

In H∞ robust control, the system robustness and desired performance are achieved through
weighting function specifications. Weighting functions consist of a sensitivity weighting function WS(s)
and a complementary sensitivity weighting function WT(s). WT(s) should be large at low frequency,
to obtain good disturbance attenuation and a small steady state tracking error. WT(s) is shaped to
be large at high frequency, in order to guarantee system robustness to un-modeled high frequency
dynamics. WS(s) and WT(s) should be designed as first-order lags and leads, respectively.

Here, the unity-gain crossover frequency of WS(s) is 0.4 rad/s.WT(s)’s static gain needs to
be adequately small, and the unity-gain crossover frequency is 100 rad/s. Following the above
specifications, choose the weighting functions as

WS(s) =
0.02556s + 0.1
0.2556s + 1e−5

WT(s) =
0.01022s + 0.04

1e−5s + 1

The H∞ controller design is performed at conditions of nH0 from 88% to 96% gridded with
intervals of 0.5% for the extended LPV model Equation (19). As expected, the H∞ controller obtained
has an order of five, the same as that of the augmented system. The controller is then reduced to order
three while still providing acceptable performance. Then the controller is reformed to a controllable
canonical form with system matrices as

Ak =


0 1 0
0 0 1

Ak31 Ak32 Ak33


Bk =

[
0 0 1

]T
Ck =

[
Ck1 Ck2 Ck3

]
With this reformation, only six parameters are scheduled. The H∞ controller scheduled

conventionally does not provide acceptable step responses as shown in Figure 11. In the condition of
nH0 lower than 83% or higher than 95%, the system is unstable and the corresponding step responses
are not shown.
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Figure 11. Step responses with H∞ LPV controller.

Modification of this scheduled controller requires solving of the following equation according to
Section 3.1: 

0 1 0 0
0 0 1 0

Ak31 Ak32 Ak33 1
Ck1 Ck2 Ck3 0





∂xk1e
∂α
∂xk2e
∂α
∂xk3e
∂α
∂uke
∂α


=


0
0
0
∂ue
∂α

 (21)

The solution is
∂xk1e
∂α

= −
1

Ck1

∂ue

∂α

∂xk2e
∂α

= 0

∂xk3e
∂α

= 0

∂uke
∂α

= −Ak31
∂xk1e
∂α

For simplicity, xk2e(α) and xk3e(α) are set to be zeros. xk1e(α) and uke(α) are obtained in the
same way as in the modification for the PI-based scheduling controller. The resulting scheduled
H∞ controller is shown in Figure 12. Fitted results of ∂xk1e(α)/∂α and ∂uke(α)/∂α by 4th and 5th
polynomials, respectively, are plotted in Figure 13.
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This modified LPV controller provides desired performance as shown in Figure 14, nearly the
same as Figure 15 which is achieved by a group of H∞ controllers frozen at the corresponding operating
conditions. For the condition of nH0 at 91%, it seems to be a little slower. Detailed examination reveals
that the linearized model is not perfectly fitted by the LPV plant model in this condition. Therefore,
it is not a problem with the modified scheduling approach.Energies 2020, 13, x FOR PEER REVIEW 14 of 19 
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To avoid modification work, H∞ controllers should be designed and realized as in Figure 2.
The weighting function WS(s) is slightly changed to

WS =
0.02556s + 0.1

0.2556s

to produce a pure integrator in the H∞ synthesis result. Again 5th order H∞ controllers are
obtained. This time the controllers can only be reduced to 4th order without performance degradation.
The controller other than the pure integral part is again reformed to controllable canonical form with six
parameters to be scheduled. Satisfactory performance can be seen in Figure 16 with minor differences
from Figure 14.
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4.3. Discussion

In the above design examples, PI-based scheduling controller is a traditional gain scheduling
design, while the H∞-based LPV is a more advanced one. For both of them, it is shown that although
linear time-invariant controllers work well at any design point, a conventional scheduling of these
controllers may yield unacceptable performance or even instability. The failure owes to the parameter
variation in the controller. Although LPV synthesis can take the parameter variation into account,
the variation rate of α should be small enough. It can be verified that a constant Lyapunov matrix P
can always be found to satisfy

Acl(α)
TP + PAcl(α) PBcl(α) Ccl(α)

T

Bcl(α)
TP −1 Dcl(α)

T

Ccl(α) Dcl(α) −1

 < 0 (22)

for any small enough varying range of α. This implies that the result should guarantee required H∞
performance for arbitrary fast varying α according to the LPV synthesis. In fact even the stability is not
guaranteed as can be seen from the above simulations.

On the contrary, LTI controllers are designed separately during the above H∞ LPV design, i.e.,
the parameter-dependent Lyapunov function is used with no consideration of the variation of α.
With our improved design procedure, both stability and performance are achieved.

When LPV synthesis is implemented through the gridding method, it seems not much different to
the traditional gain scheduling. It is impressive that the PI controller can serve as a good structure for
gain scheduling design if special attention is paid to the arrangement of its components. Unfortunately,
this regularly used design method was not well discussed before our research.
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5. Conclusions

Gain scheduling is widely used as a nonlinear control strategy for aero-engines. The problem of
traditional gain scheduling has been well discussed and LPV synthesis comes to be a more promising
gain scheduling technique. For aero-engines, Jacobian linearization is adopted to build the LPV model
for LPV synthesis. Theoretical analysis and simulation study both reveal that the well-established
LPV synthesis may also fail to provide reliable stability and performance because it does not take the
variation rate of scheduling parameters into consideration.

To solve this problem, the paper describes the controller as a Jacobian linearization-based LPV
description and introduces two theorems to search for a solution to this nonlinear controller. The method
essentially describes equilibrium points as a function of varying scheduling parameters, and designs a
modified LPV controller around the varying equilibrium points.

Unlike traditional LPV controllers that only work well in a small region near a series of fixed
equilibrium points, the modified controller can provide satisfying performance in a successive wilder
operating region. It describes the nonlinearity of system more precisely.

The proposed method is applied to the controlling of a turbofan engine. Both the improved gain
scheduling controller and improved H∞ robust LPV controller achieve reliable performance, which the
proves effectiveness of the method.

Although the improved LPV synthesis proposed in this paper can attain a theoretical guarantee
on stability and performance, the modification procedure inevitably increases the design task. So,
the paper discusses some cases where the conventional gain scheduling method is mathematically
equivalent to the improved method. In these cases, traditional gain scheduling will also work well,
and gain scheduling control can be more easily implemented without modification work.
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Appendix A

Theorem A1. System {
∆

.
xk = Ak(α0)∆xk + Bk(α0)∆uk

∆u = Ck(α0)∆xk + Dk(α0)∆uk
(A1)

is a Jacobian linearization description of some nonlinear controllers at the equilibrium point (xke(α0), uke(α0),α0),
if and only if there exists a pair of functions xke(α) and uke(α) that satisfy

Ak(α)
∂xke(α)

∂α
+ Bk(α)

∂uke(α)

∂α
= 0 (A2)

Ck(α)
∂xke(α)

∂α
+ Dk(α)

∂uke(α)

∂α
=
∂ue(α)

∂α
(A3)

for any value of α. The corresponding nonlinear controllers can be described as{ .
xk = Ak(α)(xk − xke(α)) + Bk(α)(uk − uke(α))
u = ue(α) + Ck(α)(xk − xke(α)) + Dk(α)(uk − uke(α))

(A4)
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Proof. (Necessity) Consider a nonlinear controller{ .
xk = fk(xk, uk,α)
u = gk(xk, uk,α)

(A5)

Define

Ak(α0) =
∂ fk(xk, uk,α)

∂xk
|xke(α0),uke(α0),α0

Bk(α0) =
∂ fk(xk, uk,α)

∂uk
|xke(α0),uke(α0),α0

Mk(α0) =
∂ fk(xk, uk,α)

∂α
|xke(α0),uke(α0),α0

The linearization of (A5) at the equilibrium point (xke(α0), uke(α0),α0) gives

.
xk = Ak(α0)(xk − xke(α0)) + Bk(α0)(uk − uke(α0)) + Mk(α0)(α− α0) (A6)

If the controller (A5) has the linearization description (A1), then

Mk(α) = 0

must hold.
In a steady state, partial derivation of the steady state equation

fk(xke(α), uke(α),α) = 0 (A7)

to α gives

Ak(α)
∂xke(α)

∂α
+ Bk(α)

∂uke(α)

∂α
+ Mk(α) = 0 (A8)

So (A2) holds. (A3) can be proved in the same way.
(Sufficiency) Define

ξk(xk, uk,α) = Ak(α)(xk − xke(α)) + Bk(α)(uk − uke(α)) (A9)

Obviously
∂ξk
∂xk
|xke(α0),uke(α0),α0

= Ak(α0)

∂ξk
∂uk
|xke(α0),uke(α0),α0

= Bk(α0)

and
∂ξk
∂α =

∂Ak(α)
∂α ((xk − xke(α)) ⊗ In×n) +

∂Bk(α)
∂α ((uk − uke(α)) ⊗ In×n)

−Ak(α)
∂xke(α)
∂α − Bk(α)

∂uke(α)
∂α

Using (A2), we have
∂ξk
∂α
|xke(α0),uke(α0),α0

= 0

Therefore, at the equilibrium point (xke(α0), uke(α0),α0), nonlinear system

.
xk = Ak(α)(xk − xke(α)) + Bk(α)(uk − uke(α))

has a linearization description
∆

.
xk = Ak(α0)∆xk + Bk(α0)∆uk
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The second equation in Equation (A4) can be proved in the same way. Therefore when
Equations (A2) and (A3) are satisfied, Equation (A4) is the required nonlinear controller. �

Appendix B

Theorem A2. LPV controller { .
xk = Ak(α)xk + Bk(α)uk
u = Ck(α)xk + Dk(α)uk

(A10)

for a Jacobian linearization-based LPV system has the linearization description Equation (A10) at the equilibrium
point(xke(α0), uke(α0),α0) if and only if its parameterized steady state variable xke(α) anduke(α) satisfy the
Equations (A2) and (A3) for any value ofα.

Proof. (Necessity) Linearization of Controller Equation (A10) at equilibrium point (xke(α0),
uke(α0),α0) gives

.
xk = Ak(α0)(xk − xke(α0)) + Bk(α0)(uk − uke(α0)) + Mk(α0)(α− α0) (A11)

If controller Equation (A10) has a linearization description as Equation (A1), then

Mk(α) = 0

According to the Equations (A8), equation (A2) holds. Similarly, Equation (A3) holds.
(Sufficiency) According to Theorem 1, if Equations (A2) and (A3) hold for the LPV controller

Equation (A10), then nonlinear controller Equation (A4) have the linearization description Equation
(A9). Substituting the steady state equation{

0 = Ak(α)xke(α) + Bk(α)uke(α)
ue(α) = Ck(α)xke(α) + Dk(α)uke(α)

(A12)

into Equation (A4) yields Equation (A10), which means system Equation (A10) has a linearization
description as Equation (A1) at the equilibrium point (xke(α0), uke(α0),α0). �
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