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Abstract: Solar photovoltaic (PV) power generation has strong intermittency and volatility due to 

its high dependence on solar radiation and other meteorological factors. Therefore, the negative 

impact of grid-connected PV on power systems has become one of the constraints in the 

development of large scale PV systems. Accurate forecasting of solar power generation and flexible 

planning and operational measures are of great significance to ensure safe, stable, and economical 

operation of a system with high penetration of solar generation at transmission and distribution 

levels. In this paper, studies on the following aspects are reviewed: (1) this paper comprehensively 

expounds the research on forecasting techniques of PV power generation output. (2) In view of the 

new challenge brought by the integration of high proportion solar generation to the frequency 

stability of power grid, this paper analyzes the mechanisms of influence between them and 

introduces the current technical route of PV power generation participating in system frequency 

regulation. (3) This section reviews the feasible measures that facilitate the inter-regional and wide-

area consumption of intermittent solar power generation. At the end of this paper, combined with 

the actual demand of the development of power grid and PV power generation, the problems that 

need further attention in the future are prospected. 

Keywords: PV power generation; PV output forecasting; frequency regulation; electric vehicle 

charging and discharging station; balancing of whole network 

 

1. Introduction 

Energy plays a significant role in economic development and prosperity. Driven by 

environmental degradation, resource shortage, and fuel price fluctuations, governments of all 

countries have placed great importance on the development and consumption of renewable energy. 

Since the beginning of the 21st century, the global photovoltaic (PV) power generation capacity has 

been increasing rapidly, with an average annual growth rate of 50%. According to the statistics 

released by the International Renewable Energy Agency (IRENA) in 2019, the scale of PV plants in 

operation worldwide has reached 580 GW, and PV power generation accounts for nearly 3% of the 

total generating capacity, of which the newly installed capacity has reached 97.1 GW in 2019, and the 

increase in PV power generation accounts for 55.2% of the increase in renewable energy. In addition, 

China ranks first in the world in terms of installed capacity, with the cumulative installed capacity 

reaching 205.7 GW, followed by the USA (62.3 GW), Japan (61.8 GW), Germany (48.9 GW), and India 

(34.8 GW). IRENA predicts that PV power generation will account for 25% of total power generation 

by 2050, which is also the target of PV installation in 2050 proposed by the analysis report “the Future 
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of PV” released by IRENA at the 2019 World Solar Congress held in Lima, Peru. PV power generation 

is expected to become one of the main resources of electric generation in the future. 

Many large-scale PV grid-connected demonstration projects and plans have been launched 

around the world. Germany, one of the first countries in the world to use, advocate, and encourage 

PV power generation, began to promote and use PV power generation technology on a large scale as 

early as 1999; most famous is the “100,000 Roof Power Generation Plan” implemented by the German 

government [1]. In the late 1990s, the USA launched a similar “Million Roof PV” program, which was 

completed by the end of 2003. In addition, the USA Department of Energy formulated a five-year PV 

plan starting in 2000 and a 10-year PV development plan from 2020 to 2030. Japan has successively 

launched “Sunshine Plan”, “New Sunshine Plan”, and “Solar Power Popularization Action Plan”, 

etc. The Netherlands, Switzerland, Finland, Austria, the United Kingdom, Canada, and other 

developed countries have also launched similar PV power generation projects or plans [2]. India also 

announced that by the end of 2020, 500,000 solar rooftop power generation systems will be completed 

[3]. In December 2018, China’s first large-scale affordable grid connected PV project, “PV front-

runner”, was officially connected to the grid in Golmud, Qinghai, with a total installed capacity of 

500 MW. Work has begun on three solar energy storage projects in Clark County and Story County, 

Nevada, which will build 555 MW PV plants and 800 MWh battery storage systems. The above 

policies make the proportion of PV access to the network increase rapidly. 

With the increased proportion of grid-connected PV, how to improve the trust of operational 

and scheduling personnel on large-scale PV power generation forecasting results and effectively 

utilize PV power generation forecasting information, how to cope with the possibility of instability 

of power grid with the integration of large-scale PV generation, and how to further improve the 

consumption of large-scale PV power generation are the key issues nowadays for engineers and 

researchers of renewable power systems. 

There are some previous reviews with also a wide range, but most of them only focused on a 

specific aspect of the key operational issues on the integration of large-scale solar power generation, 

such as advanced forecasting methods [4], or impacts of grid integration of PV and electric vehicle 

(EV) on energy economics [5]. Therefore, this paper presents a comprehensive review of the state-of-

the-art techniques to integration of large-scale solar power generation, and the following aspects are 

discussed emphatically: (1) this paper comprehensively expounds the research on forecasting 

techniques of PV power generation output. Firstly, the state-of-the-art development forecasting 

techniques of PV power system are reviewed, and the main factors affecting the solar power output 

of the system are analyzed. Then, the prediction methods are sorted and classified according to the 

forecasting time frame, and the evaluation indexes of the prediction effect are summarized and 

commented on. Finally, according to the current status and development trend of the PV industry, 

the future research direction of PV power prediction is discussed. (2) In view of the new challenge 

brought by the integration of high proportion solar generation to the frequency stability of power 

grid, this paper analyzes the influence mechanism between them and introduces the current technical 

route of PV power generation participating in system frequency regulation. At the end of this section, 

combined with the actual demand of the development of power grid and PV power generation, the 

problems that need further attention in the future are prospected. (3) This section reviews the feasible 

measures that facilitates the inter-regional and wide-area consumption of intermittent solar power 

generation. For example, at the distribution level, the inter-regional consumption of solar power can 

be achieved through the coordinated scheduling of PV power generation and electric vehicle 

charging and battery-swapping infrastructure. Based on the research background of PV charging and 

swapping station for electric vehicles, this paper analyzes the basic principles of collaborative 

scheduling of PV power supplies and energy storage devices. Then, the dynamic programming 

theoretical model of collaborative scheduling is discussed and the effectiveness of cooperative 

scheduling strategy is evaluated. In view of the electric market mechanism, the trans-provincial 

transaction mechanism based on the balancing of whole network is established to break the barrier 

of the wide-arear consumption of intermittent solar power. This paper not only has certain reference 
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value to solve the problems caused by grid-connected large-scale PV generation, but also promotes 

the application and development of large-scale PV generation system to a certain extent. 

The paper is organized as follows: the various factors that affect the actual output of PV power 

station and the output characteristics of PV power are summarized in Section 2. Section 3 

comprehensively expounds the research results of PV power generation forecasting technology based 

on different classification standards, summarizes the forecasting performance in different 

applications, and concludes the focus of PV generation forecasting technology in the future. Section 

4 presents the technical route and different ways of PV power generation participating in system 

frequency regulation from the aspects of primary frequency regulation, frequency regulation by 

installing energy storage system, frequency regulation by demand side management technology, and 

frequency regulation by virtual synchronous generator technology. Promising research directions of 

PV power generation frequency regulation technology are given. Section 5 summarizes the study on 

improving the absorption of intermittent PV generation and reducing the PV generation curtailment 

locally and through wide-area balancing mechanisms. Section 6 summarizes and concludes the 

paper. 

2. Factors Affecting the Generation and Efficiency of PV Generation Systems 

PV power stations convert solar energy into electrical energy and feeds it into the power grid 

through three coupling processes, including solar energy collection, photoelectric conversion, and 

electrical energy transmission. There are many factors that affect the operation and efficiency of the 

PV plants [6], which are mainly divided into physical factors, external environmental factors, and 

human related factors [7], such as scheduling constraints and operation maintenance [8]. The detail 

is given in Figure 1. 

 

Figure 1. Influencing factors of PV generation. 

The physical factors involve: (1) generation efficiency, including the efficiency of PV modules, 

convergence boxes, cables, and other equipment, (2) electrical characteristics of the primary 

equipment in the power station, and (3) the type of PV modules. 

External environmental factors refer to meteorology, climate, and geographical factors, and 

affect PV generation differently in different environments. The climatic conditions of a region are the 

comprehensive performance of general atmospheric status and weather process of a long time scale, 

which determines the grade of solar resources; specific meteorological conditions such as cloudy or 
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less cloudy conditions mainly affect the short-term fluctuation frequency of PV power, therefore, the 

short-term fluctuation of PV power is more frequent under cloudy weather. Taking the above factors 

into consideration, the total PV array conversion efficiency is about 10–15% when the irradiance of 

sunny day is greater than 400 W/m2 [9]. 

In addition, human factors will also have a certain impact on the PV station’s output power. 

The above-mentioned factors determine that the PV generations systems have the following 

characteristics: 

(1) Strong diurnal and seasonal periodicity. As solar irradiance and ambient temperature are the 

principal environmental factors affecting the performance of PV modules, the PV power 

generation shows strong diurnal and seasonal periodicity. 

(2) Strong volatility and randomness, which is due to (1) the gradual decrease in PV power 

generation efficiency because of dust coverage and aging of PV module equipment; (2) the rapid 

change of PV output due to frequent bird passing and cloud cover; (3) the frequent abnormal 

climate change in recent years. 

3. PV Power Forecasting Techniques 

The predictability and controllability of conventional power generation are of great importance 

to maintain the system’s supply–demand balance and stability under disturbance [10]. However, the 

output power of a PV system dynamically changes with time due to the variability of available solar 

resources [11]. Its curtailment, although some extent of control is obtained, damages the operating 

economy and runs counter to the vision of green power [12]. Accurate forecasting of the generation 

of a PV system can reduce the impact of the uncertainty in the generation of a PV system on the grid, 

maintain power quality, and increase the accommodation capability of the power grid with the PV’s 

integration; therefore, it is always challenging but non-negligible for researchers and engineers at this 

moment and in the future. 

3.1. Classification of Forecasting Models and Forecasting Methods 

Different classification standards make the PV power generation forecasting methods classified 

in the following ways: (1) physical modeling method, data-driven method, and hybrid method 

according to different modeling methods; (2) direct forecasting and indirect forecasting according to 

different forecasting targets [13]; (3) single field forecasting and regional forecasting according to 

spatial scales [14]; (4) ultra-short term forecasting (0–4 h), short term forecasting (0–72 h) and mid-

long term forecasting (1 month–1 year) according to different forecasting time scales. The forecasting 

of different time scales has its specific application. As given in Figure 2, the ultra-short-term 

forecasting result are used by dispatching management and for setting real-time electricity prices. 

Short-term horizons are adopted in optimizing the daily generation schedule of conventional power 

sources, adjusting maintenance schedules, load following, and day-ahead power markets. Medium 

and long-term horizon provides information for the planning of new PV plants and the evaluation of 

solar resources. 
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Figure 2. Classification of forecasting methods for PV power output. 

3.1.1. Forecasting Techniques Based on Modeling Methods 

Physical Modeling Forecasting Methods 

Forecasting by a physical modeling method relies on the modeling of the conversion process 

from solar energy to electric energy. The improvement of forecasting accuracy depends on weather 

forecasting with higher temporal–spatial resolution, and more accurate photoelectric conversion 

models [15]. The advantage of the physical modeling method is that it does not require a large amount 

of historical data for the training of the forecasting model [16]. Therefore, it is a suitable method for 

newly built PV power station. The shortcoming is that it is difficult to simulate the impact of 

environmental conditions and operation time on the photoelectric conversion, such as dust cover, 

influence of rain and snow, and the deterioration of module’s parameters. The model does not have 

enough robustness, unless all possible influencing factors are physically modeled. Meanwhile, due 

to the requirement for some parameters and expensive equipment (such as solar simulator, thermal 

controlled test stage, environmental and reliability, etc.), the implementation of physical models is 

generally difficult, as these are not always available in many areas of the world. 

Statistical Modeling Forecasting Methods 

Data-driven forecasting methods refers to forecasting based on the processing of historical 

measured data of weather conditions, solar resources, or PV generations. It includes forecasting 

techniques based on statistical methods and forecasting by machine learning and artificial 

intelligence methods. 

• Statistical or probabilistic method based on the statistical laws between the inputs and outputs 

of the forecasting model 

The forecasting accuracy relies on the volume of historical data. The modelling does not need to 

consider the complex photoelectric conversion process; therefore, knowledge of multiple curricula is 

not necessary [17]. Common statistical methods include time series method [18], regression analysis 

method [19], grey theory [20], fuzzy theory [21], and spatial-temporal correlation method [22]. 
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Attempts were tried in order to deal with the non-linearity in the forecasting process; for example, 

seasonal time series ensemble are treated specially for PV forecasting in [23]. 

• Advanced methods based on artificial intelligence and machine learning 

These methods [24] include K nearest neighbor (KNN), support vector machine (SVM), artificial 

neural networks (ANNs), extreme learning machine (ELM), etc. These methods are data-driven 

methods and do not require information of the generation systems. In this way, it is similar to the 

statistical approaches. They are applied in conditions when historical and real-time measurements of 

the PV generation system are available, and basically are used for short-term applications [25]. For a 

detailed review please go to [26]. 

Hybrid Forecasting Approaches 

Hybrid approaches are performed with the physical method and one or several statistical 

approaches [27]. This type of technique usually presents a better forecasting accuracy as they benefit 

from the combination of two well-performing techniques [28]. 

3.1.2. Single Field Forecasting Method and Regional Forecasting Method 

Single field forecasting refers to the forecasting of a single PV power station, which only 

provides power forecasting information of a single PV power station for power generation operators 

or the owner of the PV station, and it is mainly used for the optimized operation of PV plants and 

control of PV power generation, while regional forecasting refers to the forecasting of the total output 

of multiple PV plants in a certain region, which can provide PV output value within the region for 

grid operators, help the power dispatching department to estimate the PV power fluctuations, and 

formulate multiple power coordinated dispatch plans. 

3.1.3. Direct Forecasting Method and Indirect Forecasting Method 

The direct forecasting method directly performs power forecasting based on the historical data 

of PV generation, while the indirect forecasting method firstly predicts the solar irradiance received 

by the ground or PV panels, and then predicts the PV power. The flow chart of the two forecasting 

methods is shown in Figure 3. 

 

Figure 3. Flow chart of direct and indirect forecasting methods. 

Obviously, the direct forecasting method is difficult in modelling, and the change of mapping 

relation in different time scales and working conditions may cause model performance degradation 

or even failure. The indirect forecasting method may require the establishment of multiple forecasting 

models during the entire forecasting process, which is more complicated. 
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3.1.4. Ultra-Short-Term and Short-Term Forecasting Methods 

Ultra-short-term and short-term forecasting are of great importance because their performances 

are closely related to the economic and safe operation of the power system. 

Ultra-Short-Term Forecasting Methods 

The methods of ultra-short-term forecasting of PV power include basic forecasting method, 

cloud images-based forecasting method and data-driven forecasting method. This part mainly 

introduces the first two kinds of methods. 

• Basic forecasting method 

The basic forecasting methods include a continuous forecasting method and clear sky 

forecasting method. The former assumes that the weather, radiation, and other conditions at the 

forecasting time are consistent with the current time, and the extrapolation method is used to forecast 

the PV output power. The latter is used under clear sky condition when the irradiance is taken 

advantage to the greatest extent by the photo-electric conversion devices, and the fluctuation of PV 

power is small. Therefore, it is often used as the basic calibration model. The main clear sky model 

include Bird and Hulstrom model, and Ineichen model. The above two basic forecasting models are 

suitable when historical data are partial missing or with poor quality. Because the fluctuation and 

randomness of irradiance cannot be considered, the forecasting accuracy of the models is low, and 

the forecasting effect is worse when the weather conditions change dramatically or the forecast time 

scale is long. 

• Cloud images-based forecasting methods 

Cloud moving and shading of buildings are the main reasons for the volatility and uncertainty 

of radiation intensity and PV output power. Therefore, the forecasting of PV generation based on 

cloud images is an important research direction. Commonly used cloud images are ground-based 

cloud images and meteorological satellite cloud images from sky imager and satellite. Image 

processing is needed to identify cloud clusters, predict cloud cluster movement, form cloud index 

maps, and predict cloud cluster occlusion through methods such as block matching technology and 

cross-correlation algorithms, etc. Table 1 compares the two forecasting methods based on satellite 

cloud images or ground-based cloud images. 

Peng et al. proposed a model for short-term solar irradiance prediction through the proposed 

3D cloud detecting and tracking (D&T) system based on multiple total sky imagers (TSIs). The 

resolution of the D&T system are pixel-level. The above model improved all irradiance forecasts by 

at least 26% in 1 to 15 min compared with the persistent model [29]. 

Fei et al. [29] improved the traditional Fourier phase correlation theory (FPCT) method, and 

proposed an image-phase-shift-invariance (IPSI) based cloud motion displacement vectors (CMDVs) 

calculation method. The accuracy and reliability under different circumstances is superior to the gray 

scale information-based methods, and it overcomes the shortcoming of the original FPCT method 

[30]. 

In addition, a single independent model can obtain considerable forecasting effects to some 

extent, but it also inevitably loses some important information of the data itself. Ensemble methods 

are presented to enhance their accuracy and to solve the weakness of individual methods [31]. The 

ensemble model has more advantages in data interpretation and fitting forecasting. At present, 

ensemble forecasting methods are mainly classified into two categories: competitive ensemble 

forecasting and cooperative ensemble forecasting. The competitive ensemble forecasting model uses 

multiple forecasting factors with different weights to build an integrated forecasting model. Ref. [32] 

proposed a model based on Hilbert Huang Transform (HHT), Improved Empirical Mode 

Decomposition (IEMD), feature selection, and Support Vector Regression (SVR). The forecasting 

performance is improved to some extent, but modal aliasing problem still exists. Cooperative 

ensemble forecasting method decomposes the historical PV data into multiple subsequences, and 

then use different forecasting methods to predict the subsequences, respectively, and finally, the PV 



Energies 2020, 13, 5951 8 of 27 

power generation output forecasting is obtained by superposition of the predicted values of the 

subsequences [33]. 

Table 1. A comparison between satellite images based and sky images based forecasting models 

[34]. 

Forecasting 

Methods 

Spatial 

Resolution 

Temporal 

Resolution 

Temporal 

Scale 

Update 

Frequency 

Space 

Range 

Applicati

on Time 

Satellite Images 

[35] 
2.5/km2 30.0/min 6/h Low Big Early 

Ground-based 

Images  
1.0/km2 0.5/min 0–0.5/h High Small Late 

Short-Term Forecasting Methods 

The main algorithms used for short term irradiance and PV power forecasting are as follows: 

• ANN 

ANN has the characteristics of distributed parallel processing, nonlinear mapping, and strong 

robustness. It has self-learning, self-organization, and self-adaptation capabilities, and is suitable for 

solving some random nonlinear problems. At present, based on the neural network algorithm, many 

researchers adapt to the actual forecasting problems by establishing the combination model, 

optimizing the structure of input neurons, and improving the internal algorithm of the network [36]. 

In addition, some scholars use back propagation neural networks (BPNN) [37], feedback neural 

networks, and self-organizing neural networks [38], etc., to predict the output of PV power 

generation. 

A high-precision neural network forecasting model requires high-precision input data [39]. 

When the samples are complex and scattered, the neural network may not be able to effectively learn 

the rules between input and output, resulting in low forecasting accuracy. At the same time, the 

algorithm has the defects of over learning and easy to fall into the local optimal solution. 

• Classification regression algorithm 

Based on the periodicity and regularity of PV power, the classification regression algorithm 

firstly establishes the characteristic index system, divides the data samples, obtains the similar daily 

samples, then establishes the forecasting model according to the characteristics of the samples, and 

uses the sample training model with high similarity with the predicted target period to carry out the 

forecasting. Support vector machines (SVR/SVM) [40] and decision trees (Classification and 

Regression Tree, CART) [41] are typical representatives of classification and regression algorithms. 

The establishment of a classification feature index system is the key to this kind of method, and there 

is still a lack of in-depth research in this aspect. Literature [42] uses the SVM method based on the 

weather classification model to forecast the short-term PV generation, and finds that SVM performs 

well in small sample scale; while the data sample is large enough, the forecasting accuracy is difficult 

to satisfy the requirements. 

• Time series algorithm 

The time series algorithm can be used for both short-term and ultra-short-term PV power 

forecasting, and it is applicable to the case of low requirement for forecasting accuracy and 

insignificant weather change [43]. Literature [44] studies the short-term (1 h) statistical time series 

forecasting method, and proposes a multivariable forecasting model combining different 

meteorological variables, which achieves good forecasting effect with the help of Long Short-Term 

Memory (LSTM) unit. 

• Random forest (RF) Algorithm 

RF is a statistical learning theory, which firstly draws multiple samples through re-sampling 

method, then builds a decision tree, and finally combines multiple decision trees to predict the result. 
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It has a strong tolerance for outliers and noise, and is not prone to overfitting problems [45]. Literature 

[46] selects factors of the forecasting model based on RF sequencing of feature factors and eliminates 

factors that have less influence on PV generation, thus simplifying the model and improving the 

accuracy of forecasting. 

• Probability forecasting algorithm 

The probability forecasting method can give the value of all possible PV power generation and 

the probability of its occurrence at the next moment. It has a significant advantage in the forecasting 

accuracy and provides an important reference for the operation risk assessment and risk decision-

making of the power system containing PV plants [47]. Literature [48] applies the probabilistic 

method combining the bootstrap method and the quantile regression method to the hybrid intelligent 

model for output power prediction, which effectively quantifies the uncertainty of PV power. 

• Combination forecasting algorithm 

This kind of algorithm can integrate the advantages of various forecasting methods and improve 

the forecasting accuracy to a certain extent, which is one of the research hotspots [26]. In [49], the 

hybrid method of clear sky model or ANN has been verified in actual PV plant. Literature [39] 

combines satellite imagery with ANN, using a minimum number of input variables to forecast PV 

output. As a result, the normalized root mean square error under all sky conditions is less than 26%, 

achieving high forecasting accuracy. 

3.2. Metrics Assessment of PV Power Forecasting Techniques 

Appropriate error indicators are of great significance to evaluate the rationality and reliability 

of the prediction results. For different prediction methods, the accuracy index of prediction can be 

used to judge the advantages and disadvantages of prediction methods. Generally, the accuracy of 

solar forecasting is quantified by solar irradiance in terms of W/m2, while the error of output of PV 

station is quantified by kW. 

The unified and effective prediction accuracy evaluation index is conducive to the comparison 

of different research results. The commonly used forecasting and evaluation indexes are presented 

in Table 2. 

The most recent research on PV power are reported in Table 3. 
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Table 2. Metrics assessment of solar PV power forecasting techniques. 

Statistical 

Indicators 
Computational Formula Implication and Application 

Mean Square Error 

(MSE) [50] 

2

fore meas

1
MSE ( )

N

i

W W
N

= −
 

where foreW
, measW

refer to the forecasted PV power at each 

time point, the measured PV power at each time point, 

respectively. N is the number of data sample for the time scale. 

MSE is the expected value of the squared difference between 

the predicted values and the measured values, which evaluates the 

variation degree of data. The smaller MSE value is, the better 

accuracy the prediction model has in describing experimental data. 

Root Mean Square 

Error (RMSE) [51] 
2

fore meas

1
RMSE ( )

N

i

W W
N

= −
 

RMSE is the arithmetic square root of MSE. RMSE measures 

the deviation between the forecasted values and the measured 

values. 

Mean Absolute 

Error (MAE) [52] 
fore meas

1
MAE

N

i

W W
N

= −
 

MAE is the average distance between the forecasted values and the 

measured values, which is suitable for reflecting the actual situation 

of the forecasted value errors. 

Mean Absolute 

Percentage Error 

(MAPE) [53] 

fore meas

meas

1
MAPE 100%

N

i

W W

N W

−
= 

 
MAPE is used to assess uniform prediction errors. 

cvMAE, cvMBE 

[54] 
mean mean

MAE MAE
cvMAE ,  cvMBE=

W W
=

 

Where mean
W indicates the mean of measured PV power. 

cvMAE and cvMBE are proposed to evaluate market models 

that penalize the hourly or daily energy error. 

Mean Bias Error 

(MBE) [54] 
fore meas

1
MBE ( )

N

i

W W
N

= −
 

MBE is appropriate to evaluate the forecast bias. 

Correlation 

Coefficient [43] 

2

fore meas

fore

cov( )

var( )

W W
r

W

−
=

 

The metric studies the degree of linear correlation between 

actual values and forecasted values 

Standard Deviation 

Error (SDE) [47] 
2

1

1
SDE ( MBE)

N

fore meas

i

W W
N =

= − −
 

SDE measures the dispersion of the error. 
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Pearson’s 

correlation 

coefficient [43] 

ˆ(cov( , ))
( )

ˆ( ) ( )

 


   
=

 

where 


 and 
̂

 define the actual and forecasted solar 

output, respectively. 

The metric measures the correlation between two parameters 

or two groups of data, the greater the value is, the better the 

forecasting effect is. 

Maximum absolute 

error (MaxAE) [47] 
fore measMaxAE=max{ }W W−  

MaxAE indicates the biggest forecasting error and affects the 

economic operation of power grid. 

Mean Absolute 

Scaled Error 

(MASE) [55] 
meas, meas, 1

1

MAE
MASE

1
( )

1

N

i i

i

W W
N

−

=

=

−
−


 

The small values of MASE indicate good forecasting effect. 

Brier Score (BS) [56] 

2

1

1
BS ( )

N

n n

i

p o
N =

= −
 

where np
 and no

 represent the predicted probability of the 

occurrence and observation of category, respectively; N is 

known as the total number of the 
( , )n np o

 pairs. 

BS is developed for probabilistic analysis, which is applicable to 

measures the distinction between the distribution of predicted 

probability and actual occurrences. Generally, the smaller the BS 

value, the better the performance of the forecasting model. 

Table 3. Recent papers on PV power forecasting. 

Author (Year) 
Forecast 

Horizon 

Direct forecasting/Indirect 

Forecasting 
Forecasting Model Forecast Error 

Zhu et al. (2015) [57] 1 d ahead Direct forecasting 
Hybrid model: ANN-wavelet 

decomposition (WD) 
RMSE = 7.193%−19.663% 

Li et al., (2016) [58] 24-h ahead Direct forecasting 
Multivariate Adaptive Regression Splines 

(MARS) 

Testing data: 

RMSE = 119.0 

MAD = 89.8 

MAPE = 69.2% 

Sanjari et al. (2017) [59] 15-min ahead Direct forecasting Higher-order Markov Chain Average value of MAE is 2.18% 

Mahmou et al. (2017) [60] 1 h ahead Direct forecasting Deep LSTM network RMSE = 82.15 

Hossain et al. (2017) [61] 
Day ahead; 

1-h ahead 
Direct forecasting ELM algorithm 

Day ahead: 

RMSE = 13.83–21.84%(training) 
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RMSE = 17.89–35.39%(testing) 

1-h ahead: 

RMSE = 55.32–89.55%(training) 

RMSE = 54.96–90.1%(testing) 

Al-Dahidi (2018) [62] 24 h ahead Direct forecasting ELM-ANN MAE = 1.08% 

Liu et al. (2018) [63] 1 h ahead Indirect forecasting SVM and ANN MRE = 11.61% 

Han et al. (2019) [64] 
Few hours 

interval 
Direct forecasting ELM MAE = 2.13% 

Lee et al. (2019) [65] 1 h ahead Direct forecasting RNN-LSTM DNN MAE = 0.23% 

Yao et al. (2019) [66] 1 h ahead Direct forecasting ESN MAPE = −0.00195% 

Wang et al. 2020[67] 10 min ahead Indirect forecasting BPNN-SVM-ARIMA 

Blocky clouds: MAPE = 22.66%; 

RMSE = 92.72; MBE = −1.26% 

Thin clouds: MAPE = 20.44%; 

RMSE = 132.15; MBE = −1.06% 

Thick clouds: MAPE = 18.82% ; 

RMSE = 120.78; MBE = −0.98% 

Mei et al. (2020) [68] 1 d ahead Direct forecasting LSTM-QRA MAE = 34.89 
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4. Frequency Regulation of System with Large-Scale PV Power Generation 

A PV power station working under the maximum power point tracking (MPPT) strategy often 

does not have the ability to respond to frequency regulation orders. The drastic fluctuation of PV 

array output caused by weather change will be mitigated by adjusting the output of conventional 

generators, which directly affects the economic operation of conventional generators. Frequency 

instability caused by insufficient frequency regulation capacity under the integration of large-scale 

PVs will be inevitable if no further measures are taken. 

The primary frequency regulation is differential regulation, which can only adapt to mitigate 

the load variation with small amplitude for a short period of time. For large-scale grid connected PV 

power generation, it is necessary to deal with the system frequency fluctuation caused by PV power 

fluctuation through the secondary frequency regulation by conventional units in the power system. 

If the secondary regulation fails to meet the needs caused by PV power fluctuation, the greater the 

PV active power change rate, the greater the system frequency deviation, which further deepens the 

degree of system frequency deviation. With the increasing penetration of PV generation, the system’s 

inertia is further reduced, and the frequency stability of the system is seriously threatened. Therefore, 

it is necessary to study the frequency regulation mechanism and potentials of the power system with 

the integration of large-scale PV generations. 

4.1. The Primary Frequency Regulation 

By controlling the actual working voltage of the PV array to be slightly higher than the voltage 

at strategy of maximum power tracking point, PV system does not operate under maximum 

generation status, and the PV system is able to respond to system’s frequency regulation commands 

at any time [69]. Ref. [70] proposes a control strategy based on power–frequency function to smooth 

the frequency deviation of a high permeability PV power generation system. In [71], aiming at the 

limitation of frequency regulation of droop control strategy with fixed coefficient, different methods 

are adopted to adjust droop control parameters in two-stage PV grid connected system under over-

frequency and low-frequency modes, so as to give full play to the frequency regulation ability of PV. 

Reference [72] studies the primary frequency regulation control strategy based on the frequency drop 

of PV power frequency static characteristics, which eliminates the energy storage system and reduces 

the cost in the PV power generation system. 

The above-mentioned literature studies the primary frequency regulation characteristics of PV 

systems from a similar perspective of conventional units. Since a PV system uses different generation 

technology from that of conventional units, in order to maximize the frequency support capability of 

the PV generation system, the impact of other constraints such as reserve capacity and conventional 

primary frequency regulation on the PV system’s frequency regulation capability should also be 

considered. For this reason, reference [73] analyzes the operational characteristics of PV under two 

different regulation modes, meaning PV’s participating in frequency regulation alone and PV’s 

participating in frequency regulation together with conventional units. 

The volatility and uncontrollability of PV output increases the difficulty and complexity of PV 

systems participating in system frequency regulation. How to realize the optimal dynamic matching 

between the control parameters of PV power-frequency characteristics and the reserve capacity, so 

that the PV system can effectively participate in the system frequency regulation and reasonably 

share the frequency regulation pressure of conventional generators, remains to be further studied. In 

addition, when the PV system is considered in the frequency regulation, the withdrawal of the PV 

power station from the primary frequency regulation due to weather condition may cause frequency 

instability due to the lack of enough rotary reserve, and this issue needs to be studied. 

4.2. Additional Energy Storage System Participates in System Frequency Regulation 

Energy storage system (ESS) has the advantages of fast response speed, two-way regulation, and 

high regulation accuracy, which can effectively suppress the random fluctuation of the power output 
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of renewable generation systems [74], and is suitable for providing frequency regulation service. The 

comparison of frequency regulation characteristics between energy storage unit and conventional 

unit is shown in Table 4. 

Table 4. Comparison of frequency regulation characteristics between battery energy storage system 

and conventional unit. 

Frequency 

Regulation 

Equipment 

Frequency Regulation Characteristics 

Thermal power 

unit 

The adjustment speed is slow, the accuracy is low, and the adjustment 

output is limited. Frequent frequency adjustment of the unit will reduce the 

utilization rate of thermal power units, accelerate equipment wear, increase 

maintenance costs, and increase coal consumption [75]. 

hydropower unit 

The adjustment speed is fast, the adjustment range is large, the frequency 

adjustment effect is better than the thermal power unit, there is the problem 

of unit wear, and the adjustment is limited by region and season [76]. 

energy storage 

unit 

The response is fast and accurate, the capacity is adjustable, and it does not 

directly produce pollutants [77]. The frequency adjustment effect is 1.7 times 

that of hydropower units, 2.5 times that of gas-fired units, and more than 20 

times that of coal-fired units [78]. 

PV stations equipped with energy storage devices can use the ESS to rapidly release or absorb 

electric power [79], so as to smooth the PV output power curve and reduce the impact of the 

fluctuation of active power on system frequency and ultimately assist traditional units to improve 

the overall frequency regulation capability of the grid [80]. At present, ESS’ integration can be divided 

into two ways: Direct Current (DC) side access and Alternating Current (AC) side access. At the AC 

side, the integration is divided into low-voltage side access and high-voltage side access, as shown in 

Figure 4. 

 

(a) 

 

(b) 

Figure 4. Schematic of PV-energy storage system: (a) PV energy storage system configured on the AC 

low-voltage side; (b) PV energy storage system configured on the AC high voltage side. 

The configuration of additional EES in PV station for frequency regulation increases the 

operating cost of PV power station and reduces the economy of system operation. Therefore, it is 

necessary to comprehensively evaluate the reliability, safety, and economy of system operation to 

seek the optimal capacity configuration scheme. Reference [81] proposes the battery energy storage 

system (BESS) and PV parallel model to mitigate the negative impact of PV access on the distribution 
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network in terms of load change rate, frequency, and voltage fluctuation, but the configuration cost 

is not considered. Reference [82] determines the goal of PV fluctuation mitigation by analyzing the 

ramping characteristics of PV power generation, and establishes an energy storage optimization 

model aiming at the optimal economic performance of the system in combination with the power 

generation capacity and load demand of the system. Most of the existing optimal configuration 

models for ESS adopt mathematical modeling. With the continuous improvement of the power 

market, the uncertainty factors of demand response in different scenarios increase the difficulty of 

mathematical modeling. Therefore, it is necessary to further study the impact of demand response on 

the optimal configuration of energy storage systems under the environment of power market. 

4.3. Demand Side Management (DSM) Technology Participates in System Frequency Regulation 

The production, transmission, distribution, and consumption of electric energy are carried out 

simultaneously, and the system frequency is not only affected by the fluctuation of large-scale PV 

output, but also affected by the fluctuation of load. Therefore, in addition to installing the ESS on the 

generation side to smooth the PV output fluctuation, it is also feasible to pay attention to demand 

side management (DSM). DSM dynamically balances the system by adjusting the load demand in the 

power system, which also contributes to system frequency stability. 

Since DSM are in distribution level, study of DSM’s participating in frequency regulation mainly 

focuses on the distribution level. Reference [83] discusses the feasibility to use demand response (DR) 

to follow the variation of PV generation in low-voltage distribution network, and proposes a 

centralized model predictive control algorithm, which is used to calculate the optimal hourly DR. 

The precise control of the output provides a primary frequency adjustment function for the power 

grid, effectively suppressing the frequency fluctuation of the power grid. Reference [84] added a DR 

control loop to the microgrid in the conventional load frequency control model to balance the power 

between generation and consumption and stabilized the frequency by using a certain proportion of 

the available response load auxiliary control. 

4.4. Virtual Synchronous Generator Technology 

Virtual synchronous generator (VSG) technology enables PV systems to have an external 

characteristic similar to conventional units by controlling interface inverter and realizes active 

frequency regulation control. It is becoming one of the effective schemes to improve the stability of 

the system with the integration of large-scale PV grid-connected [85]. In [86], with the help of solar-

storage virtual synchronous generator technology, the integrated renewable generation system is 

basically equivalent to the synchronous generator physically and mathematically. Reference [87] 

studies the proportional control of DC link capacitor voltage and grid frequency variation to realize 

system frequency regulation. Reference [88] introduces adaptive virtual inertial control into a PV 

array, which makes the PV array have the ability to provide virtual inertial response similar to 

conventional units, and successfully realizes a reasonable power sharing among PV arrays. 

5. Research on Promoting PV Power Consumption 

In 2018, wind power curtailment in China reached 27.7 billion kWh, while PV power curtailment 

rate reached 5.49 billion kWh. In Xinjiang and Gansu, which are rich in renewable energy resources, 

the wind curtailment reached 23% and 19%, respectively, and the solar curtailment was 16% and 10%, 

respectively [89]. 

Consumption of large amounts of PV generation is not only a matter of planning, but also a 

problem of coordination between source, grid, and demand. At present, in China, there is an 

imbalance between the development of generation systems and the development of power 

consumption, and the latter determines the consumption space, which leads to the problem of how 

to share the benefits between renewable generation system and traditional thermal, hydro, and 

nuclear generation system. 
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Therefore, how to consume PV in an effective way is of great research significance for improving 

the accommodation capacity of the power system for PV generation, and is also the hotspot in PV 

system related research in recent years. Based on the existing research, this paper will review the PV 

consumption measures through operational strategy and cross-region consumption by market 

mechanism. 

5.1. Operation Strategy 

5.1.1. The Strategy of Incorporating Renewable Energy into the Day-Ahead Generation Scheduling 

Along with the increase in wind power and PV power generation integrated into power system, 

challenges are brought to the active power scheduling of the grid. 

The traditional method of the optimal scheduling of renewable energy is to minimize the 

generation cost with consideration of the forecasted renewable generation under specific scenarios. 

The priority is given to the renewable generation units due to the lowest generation cost. The 

adjustable conventional fossil fuel power plants take the responsibility of load following and 

frequency restoration that could be needed in real time operation. 

The main problem is how to minimize the deviation of forecasted base case and real-time, for 

the deviation will cause the increase in operational cost [90] and sometimes cause reliability issues 

[91]. Study [92] shows that the predictability of renewable generation and the reliability of the system 

is increasing when the renewable generation is balancing across a wider area, and the correlation of 

wind generation and solar generation is considered. Reference [93] proved by their study that the 

variation of wind and PV generation present complementary characteristics. This correlation is 

modeled by Copula theory in [94] in the proposed stochastic coordinated scheduling model. 

5.1.2. The Strategy of Incorporating Renewable Energy Generation into Reserve 

The inclusion of intermittent renewable energy into the reserve capacity has a promoting effect 

on the consumption of renewable generation, but the difficulty of renewable generation’s forecasting 

and strong volatility restrict its reliability as a reserve. Therefore, with a higher integration proportion 

of PV and wind generation, how to balance the power supply and renewable energy consumption, 

and scientifically arrange the reserve capacity, have become a problem worth studying. 

In recent years, some researchers have carried out relevant studies on reserve optimization of 

power systems with a high proportion of renewable energy. Considering the uncertainty of the 

system load forecasting and wind power forecasting, a general model for calculating reserve demand 

of power system was proposed in [95]. Optimal spinning reserve capacity of power grid considering 

the relevance of renewable energy sources was studied by Nataf Transform in [96]. Through the cost–

benefit analysis, an optimal spinning reserve capacity allocation model is proposed. In [97], an 

expression of the system’s reliability is derived and considered as part of the objective function by 

taking the generator failure rate, load, and wind energy forecasting errors into account to quantify 

the reserve capacity system required. The above literature has conducted in-depth studies on the 

backup optimization of power system with high proportion renewable energy from different aspects. 

However, the renewable generation is, in general, not considered as reserve capacities. 

In the actual scheduling operation of a power grid, there are two common methods for 

renewable energy to be included into reserve: (1) the probability distribution of the renewable 

generation is obtained by statistical analysis of the historical output of renewable energy, and then 

the output of renewable energy is included into the reserve following a certain reliability requirement 

on its generation. This method does not consider the real-time prediction of the renewable generation, 

but only uses the statistical law obtained from historical data, and a fixed value of generation is 

considered into the reserve. The method tends to be conservative. (2) the probability distribution of 

the forecasting error is obtained through the statistical analysis of the forecasting error of renewable 

generation, then the confidence interval of the predicted value is obtained, and the renewable 

generation is considered in the reserve according to the lower boundary of the confidence interval. 

This method does not consider the impact of load forecasting bias. Therefore, although the impact of 
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renewable energy forecasting bias is considered, the total risk of load loss is not controllable [98]. 

Based on the above analysis, literature [99] analyzed the influence of reserve on power grid 

scheduling and operation from the aspects of power grid security and renewable energy 

consumption. Based on the error analysis of load and renewable energy forecasting, a method of 

considering renewable energy into reserve with regard to the risk of load loss was proposed. Aiming 

at maximizing the consumption of renewable energy, a flexible standby mechanism was put forward, 

which considered both the safety of power grid and the consumption of renewable energy. 

5.1.3. The Strategy of Renewable Energy Participating in Grid Depth Peak Regulation 

The integration of large-scale renewable energy has brought great pressure on the peak shaving 

of thermal power units in specific periods of time, for it reduces the output space of thermal power 

units. The conventional way of peak shaving by thermal power units cannot mitigate the generation 

fluctuation due to the increase in the installed capacity of wind power and solar power, and the 

reduction in renewable energy generation due to the lack of peak regulation capacity from thermal 

power units will lead to a waste of resources. The shortage of peak regulation resources not only 

restrains the capacity of clean energy consumption, but also adversely affects the economy of power 

grid operation and flexibility of peak load regulation. Therefore, the impact of deep peak regulation 

operation of the power grid system under the integration of large-scale renewable energy need to be 

excavated to quantify the direct correlation between renewable energy consumption and units’ peak 

regulation operation indicators. With an understanding of this correlation, the optimal operation 

strategy of power grid units can be further studied and analyzed. 

Reference [100], aimed at a regional power grid in East China, proposed an optimal strategy for 

the configuration of peak-regulating power supply according to the characteristics of regional power 

supply structure, configuration strategy of peak-regulating power, DC links and inter-regional peak-

regulating capacity. 

Energy storage system provides a certain degree of flexibility related to peak regulation. The 

application of a hybrid storage system by a new type of liquid compressed air energy storage and 

electrochemical storage installed in a wind farm is studied in [101]. By optimal operation of the 

integrated energy storage system and wind farm, the operational economy of the wind farm can be 

effectively improved; therefore, the accommodation of wind power into the system is improved. In 

[102], the coordinated operation of hydropower and renewable energy in a provincial power grid is 

explored to alleviate fluctuation and aid peak regulating. Furthermore, the distribution of forecasted 

error of wind and solar power is analyzed with kernel density estimation. Then, based on the 

principles of using hydropower to compensate for fluctuating wind and solar power, a day-ahead 

peak regulating model with an objective of minimizing peak-valley difference is built, which 

introduces chance constraints for forecast errors and coordinates hydropower operation with wind 

and solar power. 

5.1.4. The Consumption Improvement through the Coordination of Renewable Energy and Load 

Developing renewable energy and vigorously promoting electric vehicles (EV) have become 

important ways to ensure energy security, energy conservation and emission reduction in the world. 

In the future, the charging demand of large-scale EVs will bring a large amount of load growth to the 

distribution network, which will cause the negative impact on the distribution network, such as the 

intensification of peak and valley load difference and line overload [103]. Adopting the quick 

charging station of EV with PV power generation, the complementary characteristics of EV charging 

load and PV output can be utilized to absorb as much PV power as possible to reduce consumption 

pressure. As a new type of energy storage device, the coordinated scheduling of EV and PV has 

become a research hotspot for scholars all over the world. At present, the research on joint scheduling 

of EV and renewable energy mainly focuses on the premise of large-scale grid connection of 

distributed clean energy such as wind generation and PV generation, making full use of the 

controllability of EV’s battery, and regulating the charging of EV by means of demand side 

management such as price policy stimulation, so as to improve the spatial and temporal distribution 
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of load, increase the utilization rate of clean energy and ensure the stability of power grid to operate 

effectively. 

Reference [104] analyzes the charging stations equipped with energy storage equipment and PV 

power generation devices, classifies charging users according to their sensitivity to charging prices, 

and proposes different satisfaction functions for each category. Then, it is solved according to the 

non-cooperative Stackelberg game. Reference [105] also analyzes the charging station equipped with 

PV power generation and energy storage equipment. Under the background of implementing time-

of-use tariffs in power grid, aiming at minimizing the sum of power purchase cost, PV power 

generation energy cost and charge–discharge loss cost of energy storage device, the corresponding 

energy management strategy is proposed and solved based on linear programming. In [106], a 

stochastic model of conditional value at Risk (CVaR) is established based on the market risk brought 

by the randomness of EV charging load and electricity trading price. Under the random environment, 

the benefits and risks of renewable energy participating in market transactions can be effectively 

controlled. 

Taking PV power as the main body, the PV-equipped charging station is constructed and the 

intelligent energy scheduling of the charging station is carried out, so that the generation curve of 

clean energy and the EV’s charging curve can be effectively matched; therefore, the operation of 

distributed clean energy can be effectively combined with operation of the EV’s charging station. In 

this way, the energy transmission loss as well as the operation and maintenance costs can be reduced, 

and the effective consumption of PV power generation is promoted. Meantime, from the perspective 

of the power grid, the coordination of PV’s generation and EV’s charging behavior can reduce the 

volatility on both the power generation and electricity consumption side, and relieve the pressure of 

peak regulation and frequency regulation. 

5.2. Cross-Regional Consumption of Renewable Generation 

Cross-regional consumption becomes a feasible solution to accommodate the increasing amount 

of volatile renewable generations due to the following reasons: (1) with the rapid development of 

renewable energy and the insufficiency of local consumption, the inter provincial, transnational, and 

even transcontinental power grid interconnection need to be implemented to improve the flexibility 

of the power system by taking advantage of the spatial-temporal complementary characteristics of 

power sources and loads in different regions and countries; (2) Under the background of global 

energy Internet, the interconnection of transnational power grids has opened up new possibility to 

contribute to mitigate the imbalance of regional economic development, such scenarios are mainly 

reflected in the cross-border interconnection of China’s Xinjiang and Central Asia power grids: 

Xinjiang wind power has the characteristics of large installed capacity, being far away from the load 

center and suffering high rate of power curtailment, which hinders the efficient utilization and 

further development of clean energy; however, the slow growth of power generation in Central Asian 

countries cannot meet the needs of rapid social and economic development, and the supply gap of 

power demand will continue to grow in the future. Therefore, reasonable and feasible interconnection 

framework from the planning level should be studied to reduce the curtailment of wind and solar 

generation and find room for the accommodation of newly installed renewable energy units in the 

future. 

With the upsurge of global energy Internet, the cross-regional absorption of renewable energy 

has aroused the research enthusiasm of many scholars. Taking the development of interconnection 

among Gulf countries (Kuwait, Saudi Arabia, Bahrain, Qatar, and Oman) as an example, literature 

[107] introduces the establishment of GCC interconnection bureau, cost-sharing and financing and 

other problems that must be solved during the initial construction of power grid interconnection. By 

analyzing the correlation between the maturity value of key transmission technologies and the 

development status of power grids, literature [108] illustrates that regional power grid 

interconnection will be the inevitable trend of power grids in the future. Literature [109] takes the 

inter-regional interconnection of power grids in Arab countries as an example, proving that inter-

regional consumption of power grids can significantly improve economic benefits and environmental 
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costs. Literature [110] proposes a statistical method to evaluate the voltage distribution changes of 

the whole system before and after large-scale power network interconnection, which can effectively 

estimate the dynamic stability and economy after power network interconnection. 

Aiming at gaining the maximum profit, literature [111] uses stochastic production simulation 

method to establish the probabilistic model of the outgoing of wind-coal-fired combined generation. 

Literature [112] establishes a cross-regional consumption model of renewable energy based on the 

sequential production simulation method. 

Foreign countries generally combine renewable energy with other types of power supply to 

achieve the effect of energy saving and emission reduction through power trading in a larger region 

and market. The current situation of China’s resources and economic development also requires 

renewable energy to be consumed across different regions and provinces in order to realize the 

optimization of resource allocation. In the process of electricity marketization in China, it is also 

necessary to innovate and establish a trans-regional and trans-provincial market consumption 

mechanism that adapts to the characteristics of renewable energy generation, encourage end users to 

purchase green electricity generated by renewable energy through marketization, gradually break 

down the barriers of trans-regional and trans-provincial market, and promote the consumption of 

renewable energy in a wider range. Zhou et al. [113] studied the trans-provincial consumption and 

compensation mechanism of clean energy based on generation right transaction, and presented the 

operation characteristics of the market by constructing the intelligent agent simulation model. 

Aiming at the problem of “wind and PV power curtailment” in Northwest China, Zheng et al. [114] 

established a cross-provincial generation right trading revenue model based on the minimum coal 

consumption and pollutant emission. Li et al. [115] analyzed the allowable installed capacity of wind 

generation of the Northeast regional power grid of China and the external economic influence of 

wind power trans-provincial consumption, then proposed a model to realize middle-long term wind 

power transaction through trans-provincial generation right transaction. In order to promote the 

development of clean energy and its optimal allocation, Gao et al. [116] proposed a new trading 

mechanism of transferring provincial base-charge electricity through cross-regional generation right 

trading. 

In conclusion, to facilitate the development of renewable energy, policy makers, researchers, and 

engineers should take measures from the side of power supply, power grid, end users, and market 

simultaneously. Comprehensive implementing policies are needed. 

6. Conclusions and Future Research Topics 

Due to climate change and global warming in recent years, grid-connected solar power 

generation has become a research hotspot. This paper mainly focuses on how to improve the trust of 

operation personnel in large-scale solar power generation forecasting and effectively use solar power 

forecasting information, how to deal with the stability of power grids with the integration of large-

scale solar generation, and how to further improve the consumption of large-scale solar power 

generation. 

6.1. Conclusions 

In light of detailed overview presented in this paper, the main contents are summarized as 

follows: 

• It summarizes the various influencing factors of solar power generation and summarizes the 

power characteristics of solar power generation; based on different classification standards, it 

comprehensively expounds the research results of solar power generation prediction 

technology. 

• From the aspects of primary frequency regulation, additional energy storage systems 

participating in system frequency regulation, demand-side management technology 

participating in system frequency regulation, and virtual synchronous generator technology, the 
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technical route of current solar power generation participating in system frequency adjustment 

is introduced, combined with the current grid and solar power generation. 

• Critical issues to facilitate the accommodation of large amount of intermittent solar power 

generation are introduced, including the inclusion of renewable energy into the day-ahead 

dispatch plan, the inclusion of renewable energy into the system’s reserve capacity, the deep 

peak regulation strategy of the grid, the mining of source-load coordination, and the cross-

regional absorption of renewable energy. 

6.2. Future Research Topics 

By comprehensively reviewing the state-of-the-art technologies of large-scale solar power 

integration, the research prospect and future development direction of these subjects are further 

discussed. 

6.2.1. Future Research Topics of PV Generation Forecasting Technology 

• Monitoring the data quality from the measurement and transmission stage, selecting more 

reliable transmission protocols, and utilizing the data pretreatment technology to eliminate 

abnormal data and reconstruct the missing data set in order to improve the credibility of the 

input data. 

• Conducting the evaluation and analysis of various models. Defining and identifying extreme 

weather conditions, and therefore determining the accurate prediction models for those weather 

conditions. 

• Excavating new evaluation indicators, and building a more practical evaluation index system, 

to improve the prediction performance. 

• Establishing forecasting model with updating capabilities. 

6.2.2. Future Research Tasks of PV Generation Participate in System Frequency Regulation 

• In view of the current power grid development pattern and the requirements of renewable 

energy consumption, the rapid PV frequency response under the complex and large power grid 

structure such as ultra-high voltage (UHV) AC–DC hybrid connection is further studied in the 

coordinated operation strategy of conventional units, DC system frequency regulation, and 

demand-side load management in the system. 

• Considering the constraints of PV operation conditions, performance of various types of ESS, 

frequency regulation requirements of the system, and optimal operation efficiency under 

different weather conditions, the operation modes of different types of energy storage assisted 

PV frequency regulation under disturbance scenarios such as system failure and load switching 

require further study. Then, it is necessary to propose the optimal energy storage selection 

scheme and system parameter configuration principle, and improve the coordination 

mechanism and control strategy of energy storage assisted renewable power system. 

• Comprehensively considering the factors such as frequency regulation demand, VSG grid-

connected stability, fault suppression, multi-machine parallel operation, and operation 

economy, the influence of system control parameters on the performance of VSG needs to be 

further clarified, and the coordinated optimization control strategy among VSGs and between 

VSG and conventional units needs to be put forward. 

• A data service platform that supports PV participating in frequency regulation and stable 

operation of power grid is needed by making full use of advanced information technologies 

including big data, cloud computing, edge computing, etc. 

6.2.3. To Facilitate the Development of Renewable Energy, the Specific Measures Are as Follows 

• On the power supply side: emphasizing the construction of flexible capacity, increasing the 

proportion of flexible power supply such as pumped storage and gas turbine, promoting the 
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transformation of peak regulation capacity of thermal power units, and improving the peak 

regulation depth of thermal units. 

• On the power grid side: speeding up the construction of trans regional and trans provincial 

transmissions, expanding the scope of renewable energy allocation, and giving full play to the 

allocation and balance capacity of larger power grids. 

• On the users’ side: utilizing the market method to guide the users to participate in peak-

frequency regulation and respond to the change of renewable energy output actively. 

• On the market side: improving the compensation mechanism for peak shifting of thermal power, 

speeding up the construction of a unified national power market, and building a price 

mechanism and renewable energy quota system that are conducive to break inter-provincial 

barriers and promoting the consumption of clean energy across regions and provinces. 
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Nomenclature 

Acronyms 

PV photovoltaic 

IRENA International Renewable Energy Agency 

EV electric vehicle 

KNN K Nearest Neighbor 

SVM Support Vector Machine 

ANN Artificial Neural Network 

ELM Extreme Learning Machine 

D&T Detecting and Tracking 

TSIs Total sky imagers 

FPCT Fourier Phase Correlation Theory 

CMDVs Cloud Motion Displacement Vectors 

HHT Hilbert Huang Transform 

IEMD Improved Empirical Mode Decomposition 

SVR Support Vector Regression 

BPNN Back Propagation Neural Network 

CART Classification and Regression Tree 

LSTM Long Short-Term Memory 

RF Random Forest 

MSE Mean Square Error 

RMSE Root Mean Square Error 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MBE Mean Bias Error 

SDE Standard Deviation Error 

MaxAE Maximum Absolute Error 

MASE Mean Absolute Scaled Error 

BS Brier Score 

WD Wavelet Decomposition 

MARS Multivariate Adaptive Regression Splines 

MR-ESN echo state network 

ARIMA Autoregressive Integrated Moving Average 

QRA Quantile Regression Averaging 
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MPPT Maximum Power Point Tracking 

ESS Energy Storage System 

DC Direct Current 

AC Alternating Current 

BESS Battery Energy Storage System 

DSM Demand Side Management 

DR demand response 

VSG Virtual Synchronous Generator 

UHV ultra-high voltage 

CVaR conditional value at Risk 

GCC Gulf Cooperation Council 

Parameters and Variables 

foreW
 

the forecasted PV power at each time point 

measW
 

the measured PV power at each time point 

N the number of data sample for the time scale. 

meanW
 

the mean of measured PV power 

r Correlation Coefficient 


 the actual solar output 

̂
 

the forecasted solar output 

np
 

the predicted probability of the occurrence 

no
 

the predicted probability of the observation 

M 
the total number of the 

( , )n np o
 pairs 
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