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Abstract: Decision-making for the condition-based maintenance (CBM) of power transformers is
critical to their sustainable operation. Existing research exhibits significant shortcomings; neither
group decision-making nor maintenance intention is considered, which does not satisfy the needs
of smart grids. Thus, a multivariate assessment system, which includes the consideration of
technology, cost-effectiveness, and security, should be created, taking into account current research
findings. In order to address the uncertainty of maintenance strategy selection, this paper proposes
a maintenance decision-making model composed of cloud and vector space models. The optimal
maintenance strategy is selected in a multivariate assessment system. Cloud models allow for the
expression of natural language evaluation information and are used to transform qualitative concepts
into quantitative expressions. The subjective and objective weights of the evaluation index are derived
from the analytic hierarchy process and the grey relational analysis method, respectively. The kernel
vector space model is then used to select the best maintenance strategy through the close degree
calculation. Finally, an optimal maintenance strategy is determined. A comparison and analysis of
three different representative maintenance strategies resulted in the following findings: The proposed
model is effective; it provides a new decision-making method for power transformer maintenance
decision-making; it is simple, practical, and easy to combine with the traditional state assessment
method, and thus should play a role in transformer fault diagnosis.

Keywords: smart grid; cloud model; kernel vector space model; condition-based maintenance;
power transformers

1. Introduction

The power transformer greatly affects the stability and security of electrical power systems (EPS).
In order to enhance maintenance efficiency and lower costs, it is necessary to improve transformer
operation and maintenance strategy. Traditional maintenance strategies usually consist of regular
maintenance, which takes into account time but ignores the specific state of the equipment, causing the
over-repair or lack of repair of the transformer. This affects the cost and also does not satisfy the need
of smart grids [1]. The condition-based maintenance (CBM) of power transformers commonly includes
condition monitoring, condition assessment, and maintenance decision-making. During condition
monitoring, the electrical and chemical parameters are monitored to evaluate the condition of the
voltage transformer insulation [2–4]. Dissolved gas analysis (DGA) is used in the actual field diagnosis
of engineering to assess the condition of a transformer. Classical machine-learning methods related
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to DGA, such as support vector machine (SVM) and particle swarm optimization (PSO) are used to
classify and identify failures of the oil-immersed transformer [5].

Decision-making based on CBM has been gradually developing in the power grid in recent
years. CBM is a transformer maintenance strategy that has low costs, short outage times, and high
equipment-utilization rates, all of which are favored by domestic and foreign power enterprises [6].
CBM requires tracking and forecasting the state of the equipment. When the equipment has a potential
fault state, the potential fault point can be determined by means of state evaluation, prediction of the
development trend, and fault diagnosis, in order to clarify the location and time of maintenance and to
ensure timely measures to avoid functional failure. The mathematical model and the heuristic model
have been investigated extensively to determine the maintenance type or maintenance interval. Sim
put forward a Markov model, which achieves the best maintenance spaces by comparing different
maintenance cost rates [7]. Khac Tuan Huynh et al. espoused a deterioration-based maintenance (DBM)
model based on proportional-resonant integrators to reduce costs [8]. In addition, on the basis of life
cycle cost calculation, a genetic algorithm and other artificial intelligence methods have been used
to compare different maintenance types [9]. There are several deficiencies in this research: it mainly
considers reliability, economy, and unilateral research results, without taking into account security
and the maintenance intention of decision-makers. This leads to inaccurate modeling processes and
decision results. Therefore, multiple-attribute decision-making (MADM) [10] should be developed for
risk management and cost–benefit control to aid in decision-making.

MADM can be characterized as a process of selecting the best strategy among all feasible
alternatives based on multiple attributes [11,12]. The persistent problem with MADM is that it is
not able to accurately express the preferences of decision experts for the alternatives under different
attributes. There are various ways to evaluate the state of a power transformer, including fuzzy overall
judgment, cloud model theory, evidence theory, association rules, and neural networks (NNs) [13–15].
The fuzzy sets theory and NN model were developed to solve the problem of MADM. The fuzzy sets
theory proposed by Zadeh has made great progress in many areas [16–18], but it has no set standard for
identifying suitable membership functions. The cloud model was therefore developed as an offshoot of
the fuzzy sets theory and is able to integrate both fuzziness and randomness into the concept extraction
process [19–23].

The NN model proposed by Rosenblatt is one of the most famous artificial intelligence methods
currently in use. The NN model approximates any continuous function infinitely and performs
well in response to decision-making problems [24–26]. However, NN training usually requires
a large amount of manually labeled data; thus, the process can be time-consuming, expensive,
and inefficient in engineering application. Consequently, the SVM model was proposed. Considering
both experience risk minimization and the complexity of the learning machine, it is effective for less
sample optimization [27,28].

The kernel vector space model put forward in this paper was inspired by SVMs. It seeks to map
the input data from low-dimensional space to high-dimensional space through the kernel function,
and to realize a linearization method for settling the nonlinear questions in low-dimensional space.
Thus, the computational problem of NNs can be effectively solved, and the calculation speed can be
increased [29].

This paper proposes an integrated evaluation model composed of the cloud and kernel vector
space models. The assessment system consists of three factors and six indices. The cloud model is
used to convert qualitative linguistic concepts into quantitative expression for the purpose of obtaining
quantitative decision information. The kernel vector space model maps low-dimensional input spaces
to high-dimensional spaces and uses the weighted cosine calculation to produce evaluation results.
The maintenance decision-making resulting from the proposed model is verified by the consistency of
the on-site results.
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2. Establishment of the Transformer Condition Maintenance Evaluation System

2.1. Comprehensive Evaluation Index System

The maintenance strategy for a power transformer is determined by many factors. Following the
scientific, independence, and operability principles, a comprehensive evaluation index system was set
up according to technical, economic, and security considerations. The selected assessment indices are
shown in Figure 1.
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Figure 1. The comprehensive evaluation index system.

Six indicators are used: c1 to c6 represent the required technical level for maintenance,
the maintenance effect, the total cost, the economic impact of the loss of load due to maintenance,
the potential security risk, and the impact of maintenance on system security, respectively.

2.2. Cloud Model

The cloud model, proposed by Li et al. [19], is a mathematical model of fuzzy exchange between
a qualitative concept and its numerical expression; this model combines the uncertainty of fuzzy
theory with the randomness of probability theory, the mathematical characteristics of which can be
denoted by three indices: Ex, En, and He. Ex is central to the concept of attributes in the discourse
domain and represents the concept of the attributes. En is a measurement metric of the blurring level
of property concept and represents the numerical region of intervals in which the property concept is
applicable. He represents the degree of dispersion of cloud droplets and reveals the association of the
concept of natural language properties between randomness and fuzziness. For example, if Ex = 0.5,
En = 0.15, and He = 0.01, the quantitative concepts represented by the cloud model can be described as
C(0.5, 0.15, 0.01).

There are many qualitative indicators in the comprehensive evaluation index system that need
to be converted into quantitative indicators for subsequent analysis and calculation. The qualitative
indicators c1 to c6 are classified in accordance with the following levels: very good, good, average,
bad, and very bad. These levels can be represented by five classes under the golden section method.
Assuming that C0(E0
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With He set as constant 0.006 and a valid discourse domain defined as [0, 1], the calculation
outcomes are listed in Table 1. The corresponding cloud model image is shown in Figure 2.

Table 1. The corresponding cloud model of the qualitative indicators.

c1, c3 c2 c4–c6 Cloud Model

Lower Very Good Smaller C(1, 0.104, 0.015)
Low Good Small C(0.691, 0.064, 0.009)

Average Average Average C(0.5, 0.039, 0.006)
High Bad Big C(0.309, 0.064, 0.009)

Higher Very Bad Bigger C(0, 0.104, 0.015)
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Figure 2. Normal cloud model image.

Assuming that the qualitative indicators are evaluated by h experts, the language-based evaluation
information given by each expert has a corresponding cloud model. The individual cloud models of
each expert are combined as an integrated cloud model in Formulas (4) and (5).

Ex =
Ex1En1 + Ex2En2 + . . .+ ExhEnh

En1 + En2 + . . .+ Enh
(4)

En = En1 + En2 + . . .+ Enh (5)
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3. Determination of Evaluation Index Weight

3.1. Grey Correlation Analysis

The weight coefficient of each assessment indicator in the comprehensive assessment index system
of maintenance decision-making greatly affects the final evaluation results. It is important to establish
an objective and comprehensive decision-making process. The grey relational method, originating
from the grey system theory, can resolve issues related to fuzzy information, less data, and data
shortage [30–33]. Grey correlation analysis can determine different information between sequences
and can calculate the degree of correlation by establishing the different information intervals.

The comprehensive evaluation system of the CBM consists of numerous evaluation indicators.
The grey correlation analysis method can be used to objectively determine the principal contradiction
of the system. It is therefore used to calculate the objective weight of evaluation indicators.

Assuming that Gi (i = 1, 2, . . . , m) is the selected maintenance strategy, and G0 = (g01, g02, . . . , g0n)
is the best reference strategy, Gij and G0j denote the quantified evaluation indicators of the maintenance
strategy and the corresponding indicator value of the best reference strategy, respectively. Thus,
the selection criteria of the benefit indicators can be calculated using Formula (6):

g0 j = max
1≤i≤m

{
gi j

}
, j = 1, 2, . . . , n (6)

Moreover, the selection criteria of the cost indicators can be calculated using Formula (7):

g0 j = min
1≤i≤m

{
gi j

}
, j = 1, 2, . . . , n (7)

The correlation coefficient matrix (ζij)m×n between the maintenance strategy Gi and the best
strategy G0 can be calculated using Formulas (8) and (9):

ζi j =
∆(min) + ρ∆(max)

∆i j + ρ∆(max)
(8)

∆i j =
∣∣∣g0 j − gi j

∣∣∣ (9)

where ∆ij is the absolute difference between gij and g0j, ∆(min) is the minimum difference between
the two levels, ∆(max) is the maximum difference between the two levels, and ρ is the resolution
coefficient, which was set to 0.5 in this paper as an optimal value.

The objective weight vector wj is calculated by Formulas (10) and (11) based on the correlation
matrix (ζij)m×n and the correlation coefficient rj:

r j =
1
m

m∑
i=1

ζi j (10)

w j =
r j

n∑
j=1

r j

(11)

3.2. Determination of the Comprehensive Index Weight

The analytic hierarchy process (AHP) is combined with grey correlation analysis, and the
comprehensive weight of the assessment index is calculated by the principle of additive integration.
The AHP introduces the subjective prior knowledge of experts as well as their preference information
to reach the subjective weight, while grey correlation analysis reflects the inherent correlation of
maintenance decision-making for power transformers in an objective and comprehensive manner.
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Assuming that WS represents the subjective weight vector and WO represents the objective weight
vector, according to the additive integration principle, the comprehensive weight can be expressed as
specified in Formulas (12) and (13):

W = aWs + bWO (12) a = P1+2P2+···+mPm
m−1 −

m+1
m2−m

a + b = 1
(13)

where Pi is the value of subjective weight sorted from small to large, and m is the whole number
of indicators.

4. Kernel Vector Space Model

In this paper, the kernel vector space model derived from the support vector machine theory was
applied to map the input data from low-dimensional space to high-dimensional space through kernel
function. This model increases the difference and distance between samples to gain more objective and
scientific evaluation results.

At present, there is no theory that can explain the selection of kernel functions perfectly, though
the Gaussian kernel function is commonly used. The expression of the function is as specified in
Formula (14):

Ker(x, y) = exp

−‖x− y‖2

2δ2

 (14)

where σ is the radial basis parameter of the Gaussian kernel function and the parameters x and y are
the corresponding space vectors.

By calculating the cosine of the angle of the vectors, the proximity between the vectors can be
calculated using Formula (15):

cosθ =
Ker(R, R0)√

Ker(R, R)
√

Ker(R0, R0)
(15)

where R and R0 are the quantitative indicator and the best quantitative index mentioned in Section 2,
respectively. The angle between the space vector R and R0 is defined as θ.

Considering the difference between the factors and the weight distribution of each evaluation
index, the space vector affected by the combined weight should be taken into account, and the
comprehensive weight should be added before each space vector, as specified in Formula (16):

Q = cosθ′ =
Ker(WR, WR0)√

Ker(WR, WR)
√

Ker(WR0, WR0)
(16)

where cosθ′ is the weighted cosine of the space vector after the allocation of the index weights in the
kernel space.

The calculated weighted cosine value can be regarded as the proximity of each decision candidate
and the optimal decision. Thus, the maintenance decision evaluation result of a power transformer
should be based on a close degree of proximity.

5. Case Analysis

The case analysis was based on the equipment failure of a 110 kV transformer. Monitoring of the
transformer showed that the total amount of hydrocarbon oil exceeded the alert value.

Three kinds of maintenance strategies were developed according to the results of the fault diagnosis
and production planning arrangement, denoted as M1 to M3. M1 overhauls in advance; maintenance
items are established by the relevant guidelines. M2 uses targeted overhauling; the maintenance
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schedule is arranged by the fault diagnosis and the trend forecasting results. M3 tracks and monitors
the transformer continuously; it does not arrange the overhauling until the overhauling cycle.

After analysis and comparison, four experts published their own viewpoint of the alternative
strategy according to the indices mentioned in Section 2. The evaluation of the qualitative indices is
shown in Table 2, with each row of M1, M2, and M3 corresponding to the evaluation of the qualitative
indicators of one expert.

Table 2. Evaluation results of qualitative index c1–c6.

Strategy c1 c2 c3 c4 c5 c6

M1

High Very Good Higher Bigger Bigger Bigger
Higher Very Good Higher Bigger Bigger Bigger
High Very Good Higher Big Bigger Big

Higher Good Higher Bigger Big Big

M2

High Good High Medium Big Bigger
Low Very Good Average Big Big Bigger
High Very Good Average Medium Big Big

Average Good Good Small Big Bigger

M3

Average Very Bad Low Small Smaller Bigger Bigger
Average Bad Low Smaller Smaller Bigger

High Very Bad Low Smaller Small Bigger
High Bad Average Medium Small

The determination process of the optimal maintenance strategy is described as follows:
The natural language evaluation information of the experts should first be pre-processed.

The quantification of the of technical, economic, and security qualitative indices should be calculated
using Equations (1)–(5), and the initial decision matrix (D) of the three strategies should be composed
of six indicators, as follows:

D =


0.8823 0.9474 1.0000 0.9474 0.7821 0.8823
0.5529 0.8823 0.6588 0.6919 0.6910 0.9474
0.6187 0.1177 0.3412 0.1023 0.1177 1.0000


According to the criterion of the best program as established in Section 2, the best quantitative

sequence was constructed as follows:

(1) Based on the influence of maintenance in power transformers, the expected results of qualitative
index c2 were calculated using Equation (6), as follows:

g02 = max
i=1≤i≤3

j=2

{
gi j

}
= g12 = 0.9474

(2) The expected results of qualitative indicators c1 and c3 to c6 were calculated using Equation (7),
as follows:

g01 = min
i=1≤i≤3

j=1

{
gi j

}
= 0.5529

g03 = min
i=1≤i≤3

j=3

{
gi j

}
= g33 = 0.3412

g04 = min
i=1≤i≤3

j=4

{
gi j

}
= g34 = 0.1023
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g05 = min
i=1≤i≤3

j=5

{
gi j

}
= g35 = 0.1177

g06 = min
i=1≤i≤3

j=6

{
gi j

}
= g16 = 0.8823

Therefore, the best decision-making vector of the six quantitative indices (De) can be expressed
as follows:

De =
[

0.5529 0.9474 0.3412 0.1023 0.1177 0.8823
]

Additionally, the augmented matrix (Mz) can be expressed as:

Mz =


0.5529 0.9474 0.3412 0.1023 0.1177 0.8823
0.5529 0.8823 0.6588 0.6910 0.6910 0.9474
0.6187 0.1177 0.3412 0.1023 0.1177 1.0000
0.5529 0.9474 0.3412 0.1023 0.1177 0.8823


According to the process mentioned in Section 2, the final weight coefficients are shown in Table 3,

and a bar diagram of the comprehensive weight is shown in Figure 3.

Table 3. Weight of the evaluation indices.

Index Subjective Weights Objective Weights Combined Weights

c1 1.169× 10−1 1.912× 10−1 1.420× 10−1

c2 7.590× 10−2 1.769× 10−1 1.100× 10−1

c3 4.960× 10−2 1.560× 10−1 8.550× 10−2

c4 2.067× 10−1 1.315× 10−1 1.813× 10−1

c5 2.067× 10−1 1.335× 10−1 1.820× 10−1

c6 3.441× 10−1 2.109× 10−1 2.991× 10−1
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The weighted proximity (Q) between decision vector R and R0, as calculated by Equations (14)–(16),
is listed in Table 4, with σ set to 1.12.

Table 4. The proximity of evaluation strategies.

Maintenance Strategy Proximity

M1 0.9836
M2 0.9906
M3 0.9963
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The optimal membership degrees of each maintenance strategy were sorted, and the result was
Q3 > Q2 > Q1. The third maintenance scheme, Q3, was the relative optimum strategy, which is the
same as the results of [34,35].

The above example takes the technical, economic, and security aspects into consideration. It can
also be concluded that M1, M3, and M2 are the relative optimum strategies for the technical, economic,
and security aspects, respectively, where aspects are considered individually. Decision-makers
should consider various evaluation indicators and the potential risk of loss comprehensively,
synthetically, and systematically before making the final decision to avoid unnecessary economic
loss. The model proposed in this paper offers a good interpretation of the psychology of power
enterprise decision-makers, and thus reflects expected human behavior in the selection of the
maintenance strategies.

Table 5 and Figure 4 show comparisons of the results obtained based on the strategies in [34,35]
and those obtained by the proposed strategy in this paper.

Table 5. Comparison of the evaluation results.

Strategy Ref. [34] Ref. [35] Proposed Strategy

M1 0.3624 0 0.9829
M2 0.3857 0.1685 0.9908
M3 0.6317 1 0.9962
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According to the results of Table 5 and Figure 4, although in both [34,35] the third maintenance
strategy was used as a relatively optimal scheme, the degree of uncertainty in [34] was still relatively
high and the determination of the strategy in [35] was too absolute, which resulted in a deviation
from reality. In comparison to the conclusions in [34,35], the model put forward in this paper is
more suitable for practical engineering applications. The results obtained by the proposed model
reflect the psychology of decision-makers in power companies when choosing maintenance strategies.
More importantly, the implementation of the model is achieved with a solid mathematical foundation.

6. Conclusions

This paper proposed an integrated evaluation model for decision-making for power transformers
that includes the cloud and kernel vector space models. It also suggested a comprehensive evaluation
system based on technical, economic, and security indices. The cloud model allows for the quantitative
expression of the qualitative language assessment index. The subjective weight of the assessment
index is calculated by the analytic hierarchy process, while the objective weight is calculated by
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the grey relational analysis method. In terms of the principle of the additive synthesis method,
the comprehensive weight, including the influence of subjective judgment and objective information,
can be obtained.

The results of the case analysis show that the proposed strategy is applicable. It is characterized
by a simple model and practical method, and it is convenient to combine with traditional condition
assessment method to play a greater role in the CBM of power transformers. The constructed
comprehensive evaluation system is able to reflect the complexity of the maintenance decisions in the
field and provides scientific and reasonable evaluation results. The model outlined above is considered
an efficient model for maintenance decision-making of the power transformer and offers a new means
of CBM decision-making for power enterprises.

Author Contributions: Validation, W.P.; Writing—original draft, S.L.; Writing—review & editing, R.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (61561007), and in part
by the Natural Science Foundation of Guangxi (2017GXNSFAA198168).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lösch, A.; Schneider, C. Transforming power/knowledge apparatuses: The smart grid in the German energy
transition. Innov. Eur. J. Soc. Sci. 2016, 29, 262–284. [CrossRef]

2. Fofana, I.; Hemmatjou, H.; Meghnefi, F. Effect of thermal transient on the polarization and depolarization
current measurements. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 513–520. [CrossRef]

3. Wada, J.; Ueta, G.; Okabe, S. Method to evaluate the degradation condition of transformer insulating
oil-establishment of the evaluation method and application to field transformer oil. IEEE Trans. Dielectr.
Electr. Insul. 2015, 22, 1266–1274. [CrossRef]

4. Abu-Siada, A.; Lai, S.P.; Islam, S.M. A novel fuzzy-logic approach for furan estimation in transformer oil.
IEEE Trans. Power Deliv. 2012, 27, 469–474. [CrossRef]

5. Shintemirov, A.; Tang, W.; Wu, Q.H. Power transformer fault classification based on dissolved gas analysis
by implementing bootstrap and genetic programming. IEEE Trans.Syst. Man Cybern. Part C 2008, 39, 69–79.
[CrossRef]

6. Singh, J. The influence of service aging on transformer insulating oil parameters. IEEE Trans. Dielectr.
Electr. Insul. 2012, 19, 421–426. [CrossRef]

7. Sim, S.H.; Endrenyi, J. A failure-repair model with minimal and major maintenance. IEEE Trans. Reliab. 1993,
42, 134–140. [CrossRef]

8. Huynh, K.T.; Grall, A. A condition-based maintenance model with past-dependent imperfect preventive
repairs for continuously deteriorating systems. J. Risk Reliab. 2020, 234, 333–358. [CrossRef]

9. Hinow, M.; Mevissen, M. Substation maintenance strategy adaptation for life-cycle cost reduction using
genetic algorithm. IEEE Trans. Power Deliv. 2010, 26, 197–204. [CrossRef]

10. Tang, W.H.; Spurgeon, K.; Wu, Q.H. An evidential reasoning approach to transformer condition assessments.
IEEE Trans. Power Deliv. 2004, 19, 1696–1703. [CrossRef]

11. Li, D. A fuzzy closeness approach to fuzzy multi-attribute decision making. Fuzzy Optim. Decis. Mak. 2007,
6, 237–254. [CrossRef]

12. Bisoi, R.; Chakravorti, T.; Nayak, N.R. A hybrid Hilbert Huang transform and improved fuzzy decision tree
classifier for assessment of power quality disturbances in a grid connected distributed generation system.
Int. J. Power Energy Convers. 2020, 11, 60–81. [CrossRef]

13. Sivaperumal, P.; Subranhsu-Sekhar, D.; Saravanan, K. Enhancing the power of quality issues using
superconducting magnetic storage devices—Based dynamic voltage restorer—Aided switched coupled
inductor inverter with space vector pulse width modulation techniques. Meas. Control. 2019, 52, 1329–1343.
[CrossRef]

14. Xiang, Z.; Ji, V.; Hai, Z.; Jie, D.; Fang, C.; Xin, Z. Very short-term prediction model for photovoltaic power
based on improving the total sky cloud image recognition. J. Eng. 2017, 2017, 1947–1952. [CrossRef]

http://dx.doi.org/10.1080/13511610.2016.1154783
http://dx.doi.org/10.1109/TDEI.2011.5739457
http://dx.doi.org/10.1109/TDEI.2015.7076830
http://dx.doi.org/10.1109/TPWRD.2012.2186986
http://dx.doi.org/10.1109/TSMCC.2008.2007253
http://dx.doi.org/10.1109/TDEI.2012.6180234
http://dx.doi.org/10.1109/24.210285
http://dx.doi.org/10.1177/1748006X19884210
http://dx.doi.org/10.1109/TPWRD.2010.2065247
http://dx.doi.org/10.1109/TPWRD.2003.822542
http://dx.doi.org/10.1007/s10700-007-9010-1
http://dx.doi.org/10.1504/IJPEC.2020.104810
http://dx.doi.org/10.1177/0020294019858169
http://dx.doi.org/10.1049/joe.2017.0669


Energies 2020, 13, 5948 11 of 11

15. Yang, J.B.; Singh, M.G. An evidential reasoning approach for multiple-attribute decision making with
uncertainty. IEEE Trans. Syst. Man Cybern. 2002, 24, 1–18. [CrossRef]

16. Rodriguez, R.M.; Martinez, L.; Herrera, F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans.
Fuzzy Syst. 2012, 20, 109–119. [CrossRef]

17. Bovea, M.D.; Wang, B. Identifying environmental improvement options by combining life cycle assessment
and fuzzy set theory. Int. J. Prod. Res. 2003, 41, 593–609. [CrossRef]

18. Dixit, V.; Chaudhuri, A.; Srivastava, R.K. Assessing value of customer involvement in engineered-to-order
shipbuilding projects using fuzzy set and rough set theories. Int. J. Prod. Res. 2019, 57, 6943–6962. [CrossRef]

19. Li, D.; Liu, C.; Gan, W. A new cognitive model: Cloud model. Int. J. Intell. Syst. 2009, 24, 357–375. [CrossRef]
20. Lv, P.; Yuan, L.; Zhang, J. Cloud theory-based simulated annealing algorithm and application. Eng. Appl.

Artif. Intell. 2009, 22, 742–749. [CrossRef]
21. Li, W.; Zhao, J.; Xiao, B. Multimodal medical image fusion by cloud model theory. Signal Image Video Process

2018, 12, 437–444. [CrossRef]
22. Shi, Y.; Zhou, H. Research on monthly flow uncertain reasoning model based on cloud theory. Sci. China

Technol. Sci. 2010, 53, 2408–2413. [CrossRef]
23. Wang, J.Q.; Wang, P.; Wang, J. Atanassov’s interval-valued intuitionistic linguistic multicriteria group

decision-making method based on the trapezium cloud model. IEEE Trans. Fuzzy Syst. 2015, 23, 542–554.
[CrossRef]

24. Gleue, C.; Eilers, D. Decision support for the automotive industry: Forecasting residual values using artificial
neural networks. Wirtschaftsinformatik 2019, 61, 385–397. [CrossRef]

25. Zhao, B.; Chen, S. Maintenance decision methodology of petrochemical plant based on fuzzy curvelet neural
network. Appl. Soft Comput. 2018, 69, 203–212. [CrossRef]

26. Saeed, Y.; Ahmed, K.; Zareei, M. In-vehicle cognitive route decision using fuzzy modeling and artificial
neural network. IEEE Access 2019, 7, 20262–20272. [CrossRef]

27. Tan, Y.; Niu, C.; Tian, H. A one-class SVM based approach for condition-based maintenance of a naval
propulsion plant with limited labeled data. Ocean Eng. 2019, 193, 106592.1–106592.12. [CrossRef]

28. Nie, F.; Zhu, W.; Li, X. Decision tree SVM: An extension of linear SVM for non-linear classification.
Neurocomputing 2019, 11, 153–159. [CrossRef]

29. Liu, Q.; Lu, H.; Ma, S. Improving kernel Fisher discriminant analysis for face recognition. IEEE Press 2004,
14, 42–49. [CrossRef]

30. Fang, Z.; Wang, Q.; Wei, H. Functional analysis model for selecting leading industry under grey information.
Kybernetes Int. J. Syst. Cybern. 2013, 41, 851–859. [CrossRef]

31. Javanmardi, E.; Liu, S. Exploring grey systems theory-based methods and applications in analyzing
socio-economic systems. Sustainability 2019, 11, 4192. [CrossRef]

32. Tsai, M.S.; Hsu, F.Y. Application of grey correlation analysis in evolutionary programming for distribution
system feeder reconfiguration. IEEE Trans. Power Syst. 2010, 25, 1126–1133. [CrossRef]

33. Liu, S.; Guan, Y.; Song, D. Correlation analysis of bearing track using grey system theory. Kybernetes 2012, 41,
945–952.

34. Yang, L.J.; Xiong, X.F.; Zhang, Y. Research on condition-based maintenance policy of electric power equipment
based on grey correlation degree and TOPSIS. Power Syst. Prot. Control 2009, 18, 74–78.

35. Yuan, Z.; Sun, C.; Li, A. Assessment on condition based maintenance policy of transformer using fuzzy
multiple attribute decision making. High Volt. Eng. 2004, 30, 33–35.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/21.259681
http://dx.doi.org/10.1109/TFUZZ.2011.2170076
http://dx.doi.org/10.1080/0020754021000033878
http://dx.doi.org/10.1080/00207543.2019.1572928
http://dx.doi.org/10.1002/int.20340
http://dx.doi.org/10.1016/j.engappai.2009.03.003
http://dx.doi.org/10.1007/s11760-017-1176-6
http://dx.doi.org/10.1007/s11431-010-4048-7
http://dx.doi.org/10.1109/TFUZZ.2014.2317500
http://dx.doi.org/10.1007/s12599-018-0527-3
http://dx.doi.org/10.1016/j.asoc.2018.04.043
http://dx.doi.org/10.1109/ACCESS.2019.2895832
http://dx.doi.org/10.1016/j.oceaneng.2019.106592
http://dx.doi.org/10.1016/j.neucom.2019.10.051
http://dx.doi.org/10.1109/TCSVT.2003.818352
http://dx.doi.org/10.1108/03684921211257702
http://dx.doi.org/10.3390/su11154192
http://dx.doi.org/10.1109/TPWRS.2009.2032325
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Establishment of the Transformer Condition Maintenance Evaluation System 
	Comprehensive Evaluation Index System 
	Cloud Model 

	Determination of Evaluation Index Weight 
	Grey Correlation Analysis 
	Determination of the Comprehensive Index Weight 

	Kernel Vector Space Model 
	Case Analysis 
	Conclusions 
	References

