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Abstract: Viscosity losses and high degradation factors have a drastic impact over hydrolyzed
polyacrylamides (HPAM) currently injected, impacting the oil recovery negatively. Previous studies
have demonstrated that biopolymers are promising candidates in EOR applications due to high
thermochemical stability in harsh environments. However, the dynamic behavior of a biopolymer
as scleroglucan through sandstone under specific conditions for a heavy oil field with low salinity
and high temperature has not yet been reported. This work presents the rock–fluid evaluation of the
scleroglucan (SG at 935 mgL−1) and sulfonated polyacrylamide (ATBS at 2500 mgL−1) to enhance
oil recovery in high-temperature for heavy oils (212 ◦F and total dissolved solid of 3800 mgL−1)
in synthetic (0.5 Darcy) and representative rock samples (from 2 to 5 Darcy) for a study case of a
Colombian heavy oilfield. Dynamic evaluation at reservoir conditions presents a scenario with stable
injectivity after 53.6 PV with a minimal pressure differential (less than 20 psi), inaccessible porous
volume (IPV) of 18%, dynamic adsorption of 49 µg/g, and resistance and residual resistance factors of
6.17 and 2.84, respectively. In addition, higher oil displacement efficiency (up to 10%) was obtained
with lower concentration (2.7 times) compared to a sulfonated polyacrylamide polymer.

Keywords: enhanced oil recovery (EOR); scleroglucan (SG); sulfonated polyacrylamide (ATBS); RF;
RRF; oil displacement

1. Introduction

Most oil mature fields are at an accelerated oil rate production and depletion due to high demand
and low global supply of hydrocarbons, where the need to develop and improve the conventional EOR
(enhanced oil recovery) techniques with tolerance to adverse conditions of high temperature and salinity
(HTHS) is growing [1–3]. Currently, the most used synthetic polymers in injection processes are partially
hydrolyzed polyacrylamides (HPAM). HPAM type is a copolymer, obtained by partial hydrolysis of the
polyacrylamide. Although these products are highly used in recovery processes due to their acceptable
performance, the viscosity of these polymer solutions is susceptible to reservoirs characteristics as
high-temperature conditions, salinity, hardness, and high shear stress [4]. Despite the efforts and
continuous improvement, synthetic polymers, specifically hydrolyzed polyacrylamides (amide groups)
without modification as anionic monomers (replaced by AMPS (2-Acrylamido-2-methylpropane
sulfonic acid), ATBS (2-acrylamido-tertbutylsulfonic acid), and NVP (N-Vinylpyrrolidone)) needs to
improve the performance in high salinity and high temperature due to disadvantages that limit their
application in heavy oil reservoirs [1–3], with high temperatures, hardness (TDS) greater than 5% w/w,
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high shear rates (
.
γ > 20,000 s−1), and high retention [5–7]. All these factors have been tested with many

modified polymers with ATBS and NVP monomers where high tolerance is reached at higher ions
and temperatures with higher concentrations [8,9]. Thomas et al. [10], provide some critical features
to polymers based on acrylamides for EOR applications at high temperature, high total dissolved
solids, lower permeabilities, and high oil viscosities. Temperature and salinity are parameters that
involve the addition of sulfonated and NVP monomers to impact the rheological behavior and stability
for long periods at reservoir conditions. Gaillard et al. [11], describes the selection and evaluation of
synthetic polymers for high temperature and low salinity case where ATBS monomer in polyacrylamide
increase the viscosity with a lower concentration and their tolerance to shear and thermal stability in
a soft brine. Recently, Seright et al. investigated viable polymers for EOR applications in carbonate
reservoirs at high temperature with hard brines. Results showed that ATBS, NVP, and scleroglucan have
moderated half-life time (until 17 years) and high polymer retention values (>200 µg/g) in carbonates
but Scleroglucan showed a plugging effect and viscosity losses (99 ◦C) in the porous medium due to
high retention and possible low hydration effect in the preparation of solution [12].

For this reason, there is a need to propose new alternatives and strengthen EOR methods
to be applied in reservoirs with adverse conditions and mitigate environmental impacts.
Numerous disadvantages presented by synthetic polymers make that biopolymer emerge as an
alternative for polymer flooding in EOR processes due to their viscosity capacity and high thermal,
mechanical, ionic, and saline tolerance. Different studies have highlighted biopolymers such as xanthan
gum (XG), schizophyllan (SPG), hydroxyethyl cellulose (HEC), and scleroglucan (SG), as possible
EOR candidates for the excellent properties at high salinity and temperature, high shear stresses,
and stability in the presence of various ions [13]. Polysaccharide as Xanthan gum has been widely in
many EOR processes with injectivity losses and hydrate problems are reported due to formation damage
and plugging caused by impurities and extracellular material from the production process [14,15].
Hydroxyethylcellulose (HEC) biopolymer has shown easily hydratable and high oil incremental with a
conventional implementation of a typical HPAM process [15]. Schizophyllan is another polysaccharide
with high viscosity potential and stability at high temperatures and salinities. This biopolymer has
shown a positive performance of pressure behavior at laboratory and field-scale with incremental
oil more than 20% compared with waterflooding [14,16,17]. In addition, Scleroglucan is a neutral
biopolymer that has aroused the interest of several researchers mainly in the evaluation of its
potential use in improved recovery [18]. Scleroglucan in aqueous phase presents a conformation
with a triple helix, semi-rigid rod-like structure [18–20], without the formation of aggregates due
to D-glycosidic side groups [21]. Due to its non-ionic nature, the viscosity of the solutions is stable
at high ionic forces and temperatures up to 130 ◦C [4,20]. Scleroglucan behavior establishes a
scenario with great potential compared to other biopolymers and polyacrylamides in terms of thermal,
chemical, mechanical stability, and oil recovery [22]. Recently, the Scleroglucan was evaluated at
reservoir conditions (K = 805 mD, 42 ◦API Oil, 8000 ppm TDS, and 82 ◦C) [14,23], where dynamic
behavior at field-scale showed that scleroglucan is thermally, chemically, and mechanically stable,
without injectivity losses. However, some authors have reported that Scleroglucan still presents few
corefloods data collections in sandstones (adsorption and propagation behavior) and critical limit
factors as temperature (95 ◦C), permeability (200 mD), and high energy during the dissolution to break
the aggregates to improve filterability [13]. In addition, Castro et al. [24], evaluated the fluid/fluid
behavior of Scleroglucan (SG) and a commercial sulfonated polyacrylamide (ATBS) in synthetic brine
where Scleroglucan shows promising properties for EOR applications, including heavy oil reservoirs
at high temperature, preserving the viscosity and stability at high salinities (0–5% w/w), ionic strengths
(Na+, Ca2+, and Mg2+), shear stresses (up to 300,000 s−1), temperatures (>80 ◦C), and wide pH
ranges (3–10).

This study compiles the evaluation of the scleroglucan (SG at 935 mgL−1) biopolymer with
high purity (>90%) compared with a widely used sulfonated polyacrylamide (ATBS at 2500 mgL−1)
considering a controlled environment with synthetic brine and rock samples (Berea and representative
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plugs) at Sorw conditions (residual oil saturation) for oil efficiency and Sw (water saturation)
condition for injectivity test. The objective of this study is to obtain the best injection scenario
of a scleroglucan solution in a specific case of Colombian field (212 ◦F and 3800 mgL−1 TDS) in terms
of injectivity, residual factor (RF), residual resistance factor (RRF), and oil displacement efficiency at
reservoir conditions.

2. Materials and Methods

2.1. Materials

The polymers employed were a commercial EOR grade scleroglucan (SG, purity > 90%) and a
commercial sulfonated polyacrylamide (ATBS-25%) with a molecular weight of 4–5 and 13 million
g/mol, respectively. The water used was synthetic brine. For the preparation of the synthetic brine
were used 2.9674 g/L NaCl, 0.13 g/L KCl, 0.239 g/L MgCl2·6H2O, and 0.583 g/L CaCl2·2H2O from
Sigma Aldrich (Merck KGaA, Darmstadt, Germany) in type II water (3800 mg/L TDS, ph ≈ 7 and
6.1 mS/cm). The oil used in the wettability restoration was extra-heavy oil (390 cP @ 212 ◦F and 8 ◦API)
dehydrated (BSW < 3%) and filtered (10, 5, and 2 µm). The porous media used in the dynamic test
were a Berea sandstone and representative plugs with dimensions of length and diameter of ~30 cm
and ~3.7 cm, respectively.

2.2. Methods

2.2.1. Preparation of Polymer Solutions

Synthetic polymer solutions at a fixed concentration of 2500 mg/L were prepared according to
the API-RP-63 [25]. Scleroglucan solutions were prepared following the practices recommended by
the supplier [26], considering the agitation, total solubility time, and complete hydration to ensure
homogeneity and injection stability. First, stirring the synthetic brine with a propeller-type agitator
at 500 rpm to generate a vortex of one-third of total volume, then sprinkle the SG in the vortex
shoulder continuously. Second, stir the mixture at 800 rpm for 10 min and heat the solution until it
reaches 40 ◦C. Third, stir the SG solution in an immersion blender (ultra-turrax) at 20,000 rpm for
5 min. Last, filtration test, turbidity, and transmittance measurements are required for biopolymer
quality control [24].

2.2.2. Injectivity Tests

For the injectivity tests, samples of high and low permeability were used at 100% water saturation
condition. Biopolymer was injected at a concentration of 935 ppm, at a temperature of 212 ◦F,
and confinement and pore pressure of 3100 and 600 Psi, respectively. These tests aim to determine
the resistance factor or reduction of mobility (RF) and the residual resistance factor or reduction
of permeability (RRF). The protocol consists of plug saturation under vacuum with synthetic brine
equivalent to water injection, brine injection at different flow rates (Kabs), polymer injection (RF),
and brine injection at the same flow rates (10, 15, and 17 mL/min), recording the pressure differential to
determine the reduction of permeability or residual resistance factor (RRF). Y-Error bars including
the statistical error (2%) associated to pressure sensor model H2 (low pressure) with a range of 0.1 to
7.2 psi.

2.2.3. Inaccessible Porous Volume (IPV) and Adsorption Test

For polymer adsorption and inaccessible porous volume at residual oil saturation condition (Sorw),
the sample is saturated with brine and restored to oil-wettability for 15 days until irreducible water
saturation condition (Swirr). Subsequently, brine is injected to calculate the effective permeability to
water (Kw) to proceed with the injection of the polymer solution dosed with tracer (5 PV of KSCN) and
previously pre-shared (50,000 s−1). The determination of the polymer concentration (polymer-tracer) is
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monitored at all times until reaching the plateau zone in the concentration. Then, synthetic brine (5 PV)
is injected until the injected solution is displaced, registering polymer and tracer concentration at all
times. Finally, a second polymer-tracer slug (5 PV) is injected until the plateau zone is reached again.
The determination of the polymer adsorption on the rock is carried out using the method proposed by
Zaitoun et al. [27], which relates the polymer concentration in the effluents to the initial concentration
injected as a function of the porous volumes injected (C/Co vs. PV). Scleroglucan concentration was
determined by the colorimetric method using sulfuric acid, acetic acid, and phenol following the Dubois
et al. methodology [28]. The procedure consists of add phenol solution and concentrated sulfuric acid
in a scleroglucan solution considering a rest and stirring times before measurements. Y-Error bars
are including to represent the statistical errors (3%) for data points associated with concentration test
measurements with a KSCN standard curve (465 nm and R2 = 0.9974) from 0 to 25 mgL−1 and phenol
standard curve (490 nm and R2 = 0.9890) from 0 to 80 mgL−1, respectively.

2.2.4. Oil Displacement Tests

Dehydrated and filtered dead oil (BSW < 5%) with a viscosity of 839 cP (20 s−1) at 212 ◦F
was used for the restoration and oil displacement efficiency test. Both polymer solutions were
evaluated in high permeability scenarios in concentrations of 2500 mgL−1 and 935 mgL−1 for ATBS
and biopolymer, respectively. These concentrations are based on fluid–fluid studies previously carried
out. The first step is the rock saturation and restoration until irreducible water saturation (Swirr)
and oil residual water saturation (Sorw) condition, monitoring the oil–water volume and differential
pressure. Fluid saturation (So and Sw) is calculated by distillation extraction using the Dean–Stark
method. Subsequently, the previously sheared polymer solution (0.7 PV) is injected and then brine
(up to 20 PV), monitoring oil volume and pressure differential at all times. All the dynamic tests
(injectivity, IPV, adsorption, and oil displacement test) were performed in a linear system that emulates a
producer-injector scenario (Figure 1). For this, a coreflooding equipment in a heating oven was suitable
with a confining pneumatic pump, storage, and injection cylinders, a pore pressure subsystem, and a
positive displacement pump at flow rate constant. Y-Error bars including the statistical error (2–3%)
associated to pressure sensor model H2 (low pressure) with a range of 0.1 to 7.2 psi, H3 (middle–low
pressure) with a range of 0.3 to 36 psi, and H5 (high pressure) with a range of 90 to 3625 psi, and further,
a percent error (2%) by the water/oil volume and weight effluent measurements by the collector.
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3. Results and Discussions

3.1. Injectivity Tests

Biopolymer flow behavior in a porous medium, depending on flow rates at a laboratory scale,
presents an increase in pressure differentials with higher flow rates and pore volumes injected.
The pressure profiles reflect possible mechanical retention in the pore throats, resulting in slightly
permeability reductions when the porous medium is a water saturation (Sw = 1). Figure 2 presents
the Scleroglucan behavior in a high and low permeability condition with 935 mgL−1 of biopolymer.
This flow behavior is useful to determine the best scenario of the injection rate of scleroglucan into
the reservoir without any associated problems or formation damage by high flow rates and pressure.
Scleroglucan presents good injectability in low and high permeability (between 2000 and 4000 mD) at
212 ◦F without differential pressure increase still at rates of up to 17 mL/min (351 ft /day). Additionally,
the resistance factor or mobility reduction (RF) and residual resistance factor or permeability reduction
(RRF) show the slight porous medium changes after polysaccharide effect and rock–fluid interaction at
a high flow rate without sand production. It demonstrated the stability of piston-like behavior and
steady flow of rod-like semirigid structure through interconnected porous in a consolidated sandstone
with a non-dependence of flow rate (See Table 1) [29].

Table 1. Resistance factor or mobility reduction (RF) and residual resistance factor or permeability
reduction (RRF) of biopolymer (Scleroglucan at 935 mgL−1) at 212 ◦F in representative core plugs at
water saturation condition (Sw = 1).

Gas Permeability (mD) * Porosity (%) RF RRF

4555 20.4 1.3 2
2155 18.8 1.4 1.9

* Correction to core measurement of permeability by Klinkenberg effect.
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The dotted lines indicate the flow range at 10, 15, and 17 mL/min.

3.2. Adsorption and Inaccessible Porous Volume (IPV) at Sor Condition

Rock–fluid interactions as retention, adsorption, and blockage occur between the polymer
molecules and the solid surface when the polymer solution flows through a porous medium, and its
effect depends on repulsion and attraction balance [30]. The polymer molecule adsorption on the
rock surface is governed by physical adsorption, electrostatic attraction force, Van Der Waals forces,
or hydrogen bonds, among other interactions [30,31]. Additionally, polymer adsorption will depend
on the components of the aqueous solution (ions, pH, and hardness), the rock nature (wettability
and reservoir state), polymer composition, the residence time, solid/liquid ratio, and solid–brine
interaction impact on the static and dynamic polymer adsorption [32]. These factors directly influence
the polymer’s ability to access and move through connected pores with minimum possible pressure.
For IPV or inaccessible pore volume, which indicates the porous volume (fraction of total rock
volume) that cannot be accessible by polymer molecules due to steric impediment and hydrodynamic
behavior. In extreme cases, the IPV can be between 20 and 30% of the total pore volume depend on
the polymer and rock nature [33]. Table 2 presents the adsorption and IPV values of the biopolymer
(SG) and the synthetic polymer (ATBS) at 470 and 2000 mgL−1 due to adsorption capacity phenomena.
Biopolymer behavior does not differ significantly from ATBS in terms of adsorption and IPV, with low
adsorptions and inaccessible porous volumes for both cases. Additionally, the adsorption and IPV
values are consistent with the structural characteristics and hydrodynamic configuration of scleroglucan,
which is lower molecular weight than the synthetic polymer. Its triple helix structure gives it more
rigidity or dense steady shape generating low chemical adsorption and hydrodynamic retention [18,22].

Table 2. Adsorption and inaccessible porous volume (IPV) of Scleroglucan (SG) and sulfonated
polyacrylamide (ATBS) at Sorw condition.

Parameters Rock Properties Retention

Sample mgL−1 µ at 50,000 s−1 Porosity Density Adsorption IPV
(%) (g/cm3) (µg/g) (%)

ATBS 2000 41.8 19.67 2.672 10.4 22
SG 470 15 21.93 2.676 15.4 23
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Figure 3 presents the polymers flow through a porous medium in the presence of a tracer (KSCN
at 30 mgL−1). For ATBS polymer, the first polymer slug slightly advances at the same time to the tracer.
Still, both tracer slugs do not break at the same time. This behavior is associated with the low polymer
adsorption on the rock surface. In the second polymer slug, cross faster the porous medium first than
the tracer due the adsorption sites are saturated, and adsorptive capacity is minimal by the polymer
molecules injected into the first slug and IPV effect counteracts its slight delay [34].

Energies 2020, 13, x FOR PEER REVIEW 7 of 11 

 

Table 2. Adsorption and inaccessible porous volume (IPV) of Scleroglucan (SG) and sulfonated 
polyacrylamide (ATBS) at Sorw condition. 

Parameters Rock Properties Retention 

Sample mgL−1 µ at 50,000 s−1 Porosity Density Adsorption IPV 
(%) (g/cm3) (µg/g) (%) 

ATBS 2000 41.8 19.67 2.672 10.4 22 
SG 470 15 21.93 2.676 15.4 23 

 
Figure 3. Normalized concentration of polymer and tracer (KSCN at 30 mgL−1) for (a) Scleroglucan 
(SG at 935 mgL−1) and (b) sulfonated polymer (ATBS at 2000 mgL−1) at Sorw conditions (2500 psi 
overburden pressure, 500 psi of backpressure and 212 °F) in a representative core plug. 

3.3. Oil Displacement Tests 

Figure 4 shows the oil recovery in a Berea core at a controlled environment for the injection of 
synthetic brine (3800 mgL−1 TDS), followed by the biopolymer injection (935 mgL−1 SG) at Sorw 

Figure 3. Normalized concentration of polymer and tracer (KSCN at 30 mgL−1) for (a) Scleroglucan
(SG at 935 mgL−1) and (b) sulfonated polymer (ATBS at 2000 mgL−1) at Sorw conditions (2500 psi
overburden pressure, 500 psi of backpressure and 212 ◦F) in a representative core plug.

3.3. Oil Displacement Tests

Figure 4 shows the oil recovery in a Berea core at a controlled environment for the injection of
synthetic brine (3800 mgL−1 TDS), followed by the biopolymer injection (935 mgL−1 SG) at Sorw
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conditions. Oil recovery percentages after 20 PV of brine injection (WF) and 53.6 PV of scleroglucan
(SG) correspond to 32% and 50%, respectively. The dynamic adsorption of scleroglucan of 49 µg/g,
inaccessible porous volume (IPV) of 18%, resistance factor (RF) of 6.17, and a residual resistance factor
(RRF) of 2.84 similar to reported in the literature [18,35]. The pressure behavior during oil displacement
is stable, and good injectivity of scleroglucan in the porous medium is presented with an oil recovery
percentage higher than 10% to waterflooding (WF). Oil displacement potential can be attributed to
the volumetric sweeping by piston-like behavior and the higher resistance factor of scleroglucan.
Additionally, its rigid rod-like structure could affect a mechanical entrapment consistent with the
adsorption data and observed resistance or “zigzag type” behavior of the pressure differential during
its injection. In this case, 20 PV was used to evaluate the potential oil efficiency and the maximum
pressure requirement but is not the real scenario in field-scale due to excessive polymer injection that
would limit the project technically, operationally, and economically.
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Figure 4. Oil displacement efficiency and differential pressure after waterflooding (3800 mgL−1 TDS) 
and biopolymer flooding (SG, 935 mgL−1). The porous media is composed of Berea Sandstone with 
porosity (ø) and permeability (k) of 22% and 585 mD, respectively. The dimensions of the plug are 
6.07 cm in length and 3.73 cm in diameter. Overburden pressure: 1300 psi, Backpressure: 300 psi, and 
Temperature: 212 °F. 

For a representative plug were used 0.7 PV of polymer slug, which represents a typical well 
injector scenario of polymer flooding project economically viable. The oil efficiency, in this case, was 
evaluated as a single well injector at a constant rate of 0.24 mL/min (equivalent to 1 ft/day) where 
waterflooding was in a range between 30 and 32% for both polymers. For both cases, the incremental 
oil after polymer injection is observed with the significant difference that Scleroglucan has the highest 
oil recovery with a 2.67 times lower concentration than that of ATBS. The ATBS presented a slightly 
lower displacement efficiency value due to thermal and mechanical degradation during polymer 
injection. Figure 5 shows the oil displacement efficiencies for biopolymer (SG) compared with the 
synthetic polymer (ATBS), evaluated under the same petrophysical and operative conditions. The oil 
recovery percentage after injection of 10 PV of brine and 0.7 PV of biopolymer followed by 20 VP of 
water (no more oil is recovery after 1 PV) correspond to 30% and 28%, respectively. Additionally, the 
differential pressure at the waterflooding endpoints before and after the biopolymer show a residual 
resistance factor (RRF) of 2.4 and 1.8 for ATBS polymer what is consistent with that reported in the 
literature for this type of molecule [7,22,34]. Differential pressure behavior during SG injection, 
determine the stable injectivity of the biopolymer into the formation with an oil incremental 

Figure 4. Oil displacement efficiency and differential pressure after waterflooding (3800 mgL−1 TDS)
and biopolymer flooding (SG, 935 mgL−1). The porous media is composed of Berea Sandstone with
porosity (ø) and permeability (k) of 22% and 585 mD, respectively. The dimensions of the plug are
6.07 cm in length and 3.73 cm in diameter. Overburden pressure: 1300 psi, Backpressure: 300 psi,
and Temperature: 212 ◦F.

For a representative plug were used 0.7 PV of polymer slug, which represents a typical well injector
scenario of polymer flooding project economically viable. The oil efficiency, in this case, was evaluated
as a single well injector at a constant rate of 0.24 mL/min (equivalent to 1 ft/day) where waterflooding
was in a range between 30 and 32% for both polymers. For both cases, the incremental oil after polymer
injection is observed with the significant difference that Scleroglucan has the highest oil recovery with
a 2.67 times lower concentration than that of ATBS. The ATBS presented a slightly lower displacement
efficiency value due to thermal and mechanical degradation during polymer injection. Figure 5 shows
the oil displacement efficiencies for biopolymer (SG) compared with the synthetic polymer (ATBS),
evaluated under the same petrophysical and operative conditions. The oil recovery percentage after
injection of 10 PV of brine and 0.7 PV of biopolymer followed by 20 VP of water (no more oil is recovery
after 1 PV) correspond to 30% and 28%, respectively. Additionally, the differential pressure at the
waterflooding endpoints before and after the biopolymer show a residual resistance factor (RRF) of
2.4 and 1.8 for ATBS polymer what is consistent with that reported in the literature for this type of
molecule [7,22,34]. Differential pressure behavior during SG injection, determine the stable injectivity
of the biopolymer into the formation with an oil incremental significantly higher than that generated
by the synthetic polymer. The drastic effect compared with synthetic polymer is immediately finished
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the waterflooding (post-biopolymer slug), due to the piston-like effect by the rod-like structure and the
hydrodynamic behavior of the scleroglucan molecules penetrating the pore throats as interconnected
rods [18,22,23]. In addition, the reduction in the oil/water mobility ratio for ATBS is based on its
high molecular weight and pseudo-plasticity, which in turn reduces rock permeability, whereas SG is
by high rheological behavior (triple-helix structure and shear-thinning strength), high viscosity (less
thermal and chemical degradation), reduction in mobility, and rock permeability.
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Figure 5. Oil recovery efficiency after waterflooding (3800 mgL−1 TDS) and biopolymer flooding (SG,
935 mgL−1) in a representative core plug. The porous media is a composite representative formation
with porosity (ø) and permeability (k) of 19–21% and 3580–4555 mD, respectively. The dimensions of
the composite are 6.6–7.5 cm in length and 3.77–3.79 cm in diameter. Overburden pressure: 3100 psi,
Backpressure: 600 psi, and Temperature: 212 ◦F.

4. Conclusions

Scleroglucan is presented as the best choice for a polymer flooding process due to the high
potential to increase the oil recovery efficiency (greater than 10%) with a lower concentration (up to
2.67 times) compared to sulfonated polyacrylamide, which would generate technical, operational,
and operational advantages. The oil displacement efficiency by injection of 0.7 VP of biopolymer
in environments with high permeability (4000 mD) and medium permeability (2000 mD) reflects a
high injectivity advantage and stability of piston-like behavior and steady flow of rod-like semirigid
structure through to Berea sandstones with non-dependence of flow rate. Additionally, the adsorption
behavior is consistent with the structural and hydrodynamic configuration where SG with a triple
helix structure gives it more rigidity or dense steady shape generating low chemical adsorption and
hydrodynamic retention compare to sulfonated polyacrylamide.
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