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Abstract: As a renewable energy source, wind energy harvesting provides a desirable solution to
address the environmental concerns associated with energy production to satisfy the increasingly
global demand. Over the years, the penetration of wind turbines has experienced a rapid growth,
however, the impacts of turbine noise correspondingly become a major concern in wind energy
harvesting. Recent studies indicate that the noise emitted by turbine operating could increase the
risk of nuisance, which might further affect the well-being of local residents. However, the main
factors affecting turbine noise assessment and to what extent they contribute to the assessment are
still unclear. In this study, a survey-based approach is developed to identify these major factors and
to explore the interactions between the factors and assessment results. Principal component analysis
method was adapted to extract key factors; followed by reliability assessment, validity analysis,
descriptive assessment, and correlation analysis were conducted to test the robust of the proposed
methodology, as well as to examine the interactions between variables. Regression analysis was
finally employed to measure the impacts on results contributed by the key factors. Findings of this
study indicate that key factors including physical conditions, control capacity, and subjective opinions
are of significant impact on residents’ response to wind turbine noise, while the factor of subjective
opinions contributes predominately to the assessment results. Further validations also indicate that
the proposed approach is robust and can be extensively applied in survey-based assessments for
other fields.

Keywords: wind turbines noise; subjective opinions; physical condition; control capacity;
noise assessment

1. Introduction

Given the environmental impacts and sustainability concerns resulting from fossil-based energy
production such as wastes and associated greenhouse gas (GHG) emissions, wind energy harvesting has
been found to be a cleaner and sustainable solution to satisfy the increasing global energy demand with
lower marginal operating costs. Therefore, the wind turbine penetration has experienced significant
growth over the years to promote non-fossil energy production. A survey from the European Union
indicated that the capacity of global wind energy production has increased by 9.6% to 591 GW,
satisfying 14% of the electricity demanding in 2018 [1]. As the largest wind power market in the world,
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China is leading the wind energy harvesting in both cumulative installed wind power capacity and
newly installed wind power capacity over the past years [2]. According to a study conducted by the
International Energy Agency (IEA), the world wind energy harvesting could satisfy over 6% global
energy demand by 2023 [3].

With merits, such as cleaner, renewable, and sustainable, however, concerns raised over the
noise emission associated with wind turbine operations could not be overlooked. According to the
statement of the World Health Organization, health is defined as ‘a state of complete physical, mental,
and social well-being and not merely the absence of disease or infirmity’. Therefore, noise annoyance
and sleep disturbance result from wind turbine operations are widely discussed as a potential health
issue [4]. Studies conducted by Poulsen et al. found that people over 65 years old are more likely to fill
prescriptions for sleep medication when exposed to high levels of wind turbine noise [5]. This is further
supported by another study from Abbasi et al. claiming that noise exposure had a significant effect on
general health, sleep disturbance, and annoyance of people living near wind farms [6]. Another study
conducted by Michaud et al. indicated that annoyance might increase with the raising of noise levels
around the wind turbines [7]. Findings obtained by Onakpoya et al. also demonstrated that the odds of
sleep disturbance increased significantly with greater exposure to wind turbine noise [8]. Additionally,
Van Renterghem stated that wind turbine noises would become more annoying when mixed with local
road traffic noise [9]. However, on the other side, a study funded by the Denmark government claimed
that there is a lack of direct connection between cardiovascular disease (associated with short-term
exposure) and wind turbine noise [5]. Despite that wind turbine noise might increase the risk of
noise nuisances, the identification and validation of interactions between turbine noise exposure and
symptoms (e.g., tinnitus, hearing loss, dizziness, and headache) still suffer from scientific evidence [10].

Over the years, a considerable amount of studies has been implemented to examine the impacts
on local residents’ health results from turbine noise, with indicators including visual effect, self-control
of noise, physical condition, attitude, and subjective opinions, as well as sensory acuity and sensitivity
have been defined [7,11,12]. Among these indicators, individual sensitivity to turbine noise is a highly
controversial topic, as some survey-based studies indicate that people living in higher noise-exposed
areas are more sensitive to turbines noise [13,14], while others also argued that it is indeed the people
living in lower noise-exposed areas who have higher wind turbines noise sensitivity [15,16]. Visibility of
wind turbines was also found to be an important factor affecting the assessment of turbine noise.
A study from literature demonstrated that the distance away from wind farms is the essential visual
factor which is followed by the color of wind turbines and then the number of turbines installed [17].

This is further supported by a study conducted by Schäffer et al., which indicated that annoyance
level might increase with the visibility of wind turbines, however, that also could be relieved by the
increase of landscape visibility [5]. In addition, other factors such as attitude on turbine deployment
(including feedback on noise emission and visual landscaping), as well as the lifestyle preference and
expectation of local residents also play an important role in the noise assessment [18,19]. Findings from
an existing study revealed that even people from the same local community are of different attitudes
and responses to the turbine noise, due to diverse lifestyle preferences, demand, and expectations [12].
Therefore, a combination of noise experiments with questionnaires could contribute to a comprehensive
understanding of impacts on turbine noise response, as well as to identify the indicators which can be
employed in the assessment and quantitative analysis of turbine noise effects.

In light of the above, despite a considerable number of studies being conducted to identify the
indicators for the ecologic and sustainable assessments of wind energy harvesting with turbines, there
is still a gap in developing methods for quantitative analysis of turbine noise impacts. In this study,
an integrated modeling strategy was developed with three indicators, including physical condition,
control capacity, and subjective opinions were employed, to support the quantitative analysis of
turbine noise. The rest of this paper is organized as follows: establishment of the research method and
development of survey questions are introduced in Section 2; followed by the formulation of indicators
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presented in Section 3. After that, data analysis and discussions are conducted in Section 4; and finally
comes the concluding remarks and recommendations for future studies in Section 4.

2. Research Methodology

2.1. Study Setting and Framework

The survey has been conducted with 178 participants engaged in a random sampling manner.
Part of questions in some participants’ reports were submitted without response, and there are also some
reports of high similarity, 168 of the 178 reports were finally selected for further processing and case
studies. As shown in Figure 1, implementation of this research can be divided into six inter-linked phases.
Firstly, background analysis is conducted for an initial understanding of participants’ background
(e.g., age groups and relevant knowledge in wind turbine system and wind energy harvesting). At this
stage, participants’ personal factors which might affect the assessment would be eliminated. Phase 2
is developed to identify the exploratory factors and explore the interactions problem and factors.
The operations including factors identification use the PCA and maximum variance rotated tools,
integrated with KMO and Bartlett tests, followed by examination of interactions between problem
and factors with a SPSSAU tool. Reliability analysis and validity testing are conducted in Phase 3 to
validate the reliability of the sample data, as well as to assess whether the research items can effectively
interpret the conceptual situations of research variables. Factors passed the reliability validity tests
would be involved in Phase 4 for a descriptive analysis, which is designed to present data distribution,
as well as to identify outliers and typos. Correlation analysis is employed in Phase 5 to explore the
relationships among variables. While at the final stage, regression analysis is carried out to examine
the interdependent quantitative relationships among variables.
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Figure 1. A schematic representation of the noise assessment.

2.2. Questionnaire Development

In this study, a three-step data quality control strategy was applied to extract critical information
from the questionnaires, which can be detailed as: at the beginning of this survey, participants were
provided with a brief introduction of research background and the related examined requirements,
followed by a question and answer session conducted on condition that all engaged participants
fully understand the requirements. Finally, text clarity for the questionnaires was completed to avoid
misunderstanding and confusion. Contents of valid questionnaires are shown in Appendix A with the
response data from participants. The questionnaire is composed of two sections, the pre-experiments
section including Q1 to Q7 was developed to identify the potential critical factors reflecting turbine
noise impacts; while the after-experiments section involves Q8 to Q13 was designed to examine how



Energies 2020, 13, 5845 4 of 16

turbine noise affects participates’ wellbeing. During the survey, participants were required to score the
questions to evaluate the levels of impact.

The noise signal employed in this study for testing purposes was collected from a large wind farm
located at Hunan Province, China. The signal was recorded with normal operations of wind turbines.
Figure 2 presents the characteristics of this noise signal with an amplitude spectrum.
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Figure 2. Single-sided amplitude spectrum.

3. Analysis and Discussion

3.1. Background Analysis

Sample size and data quality assurance are critical features in survey-based assessments and
statistical analysis. A larger sample size generally results in precision improvement in unknown factors
identification and parameters estimation. However, it also leads to the increase of costs and is time
consuming. In light of the above, a sample size of 300 was selected based on a target confidence level of
99% and an effect size (known as the difference between the sample statistics divided by the standard
error) of 0.99. The 300 questionnaire copies were distributed to 257 contributors involved in this study.
While 178 responses were finally selected for further processing and analysis, considering the impacts
from errors such as lack of completion, high similarity, and selection bias in responses.

Followed by the initial selection of samples, the backgrounds of the 178 participates were
analyzed with the confirmations including: the age group of participants is mainly between 20 and
25 years old; and there is no participant of industrial experience or professional background in wind
energy harvesting.

3.2. Exploratory Factor Analysis

Exploratory factor analysis (EFA) is a statistical approach which is widely used in multivariate
statistics to explore the hidden interactions between a large number of measured variables [20]. Q1 to
Q7 involved in the questionnaire are not conventional questions with prior hypothesis about factors and
patterns of measured variables, therefore EFA was employed in this study to explore the interactions
between indicators. Since the current stage of this study is preliminarily focused on the identification
of indicators that might affect the response of local residents to turbine noise, leaving the quantitative
assessment of turbine noise elaborated in future studies.

In the questionnaire study, the principal component analysis (PCA) method was used to extract
key factors from samples, while the maximum variance method was employed for rotation processing.
PCA is a method widely used to extract the low dimensional features from a high dimensional
data access, while retaining trends and patterns [21]. By converting data set into limited dimensions
containing essential features, this method is considered more robust and desirable for one-way results.
The data processor SPSSAU can rotate the factor space corresponding to the factor rotation, and the
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normal factors then would be matched with actual factors in this manner. Literature review indicated
that there is a considerable number of methods developed for factor rotation. However, the maximum
variance method is the most popular way used in questionnaire research [22]. Therefore, SPSSAU has
been integrated with the maximum variance method for exploring in this research.

Table 1 andTable 2 combined with Figures 1 and 2 demonstrate the results of exploratory analysis.
Here, Table 1 presents the KMO and Bartlett testing results which aim to initially check whether Q1 to
Q7 are feasible for exploratory factor analysis. The KMO-value and p-value are the main indicators in
these tests. The involved variables would be independent when the KMO-value is over 0.6, while the
p-value is less than 0.05. In this case, the difference between samples results from the probability of
sampling error, thus, factor analysis can be applied. As shown in Table 1, the requirements for factor
analysis is fully satisfied with a KMO-value of 0.851 and the p-value approximate to 0.

Table 1. Results of KMO and Bartlett testing.

KMO 0.851

Bartlett test
Approx. Chi-Square 1452.580

DOF 21
p-value 0.000

Table 2. Assessment results of variable interpretation.

Factor
Eigen Values % of Variance (Unrotated) % of Variance (Rotated)

Eigen % of
Variance

Cum.% of
Variance Eigen % of

Variance
Cum.% of
Variance Eigen % of

Variance
Cum.% of
Variance

1 5.481 78.295 78.295 5.481 78.295 78.295 2.359 33.699 33.699
2 0.603 8.614 86.909 0.603 8.614 86.909 2.346 33.519 67.218
3 0.551 7.296 94.204 0.511 7.296 94.204 1.889 26.986 94.204
4 0.157 2.243 96.447 - - - - - -
5 0.103 1.468 97.915 - - - - - -
6 0.085 1.214 99.129 - - - - - -
7 0.061 0.871 100.000 - - - - - -

Table 2 gives the variance interpretation, which specified the number of extracted factors,
the characteristic root value of each factor, the ratio of variance interpretation, as well as the overall
ratio of variance interpretation. Here, the ratio of variance interpretation illustrates the amount of
information represented by a given factor (e.g., 30.234% means 30.234% of the overall information can
be reflected by the factor), while the overall ratio of variance interpretation gives the percentage of
total information can be interpreted by all the factors employed for analysis. It is widely accepted
that a value no less than 50% is acceptable, while greater than 60% is desirable. In practice, the initial
analysis often starts with a single factor. As shown in Table 3, with the single factor involved in the
analysis, all the characteristic root values are greater than 1, demonstrating high inconsistency with the
3 selected factors. In addition, the overall ratio of variance interpretation is 33.699%, less than 50%.
Thus, EFA is further implemented with 3 factors involved and result indicated that 94.204% of the total
information can be covered and interpreted. Therefore, 3 factors were finally selected as the indicators
for this study.

The scree plot shown in Figure 3 can further support the determination of indicators that need to
be extracted for analysis. As shown in the diagram, the line is flattened with the increase of the indicator
number, while the inflection point gives the number of indicators required for a full interpretation
of information with related precision in analysis [23]. In this study, a desirable number of indicators
included in assessment and analysis is three.
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Figure 3. Scree plot for indicator group size selection.

Figure 4 presents the factor loading metrics of the three selected indicators, which interprets the
internal-link between the selected factors and questionnaire items. The processing was based on the
analysis of the rotated result matrix, including exploration of the interdependency between factors and
items. In addition, the extracted factors are also finally named in this phase.
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The factor loading coefficients reflect the strength of relativities between items and factors, which are
normalized within the interval of [−1, 1]. Higher absolute value means a stronger relationship between
the item and factor. It is widely accepted that 0.4 is the threshold value, while greater than 0.4 represents
strong relatively. The factor loading coefficient can be formulated and calculated with the following
steps: firstly, a factor loading matrix L can be obtained by applying PCA with a model expressed as
Equation (1):

L =
[√
λ1η1,

√
λ2η2,

√
λ3η3, · · ·

√
λmηm

]
, (1)

where m is a common factor; λ1,λ2, · · ·λm is the eigenvalue of the sample correlation coefficient
matrix; η1, η2, · · · ηm is the standard orthogonal feature vector corresponding to the sample correlation
coefficient matrix.

After that, common factor variance (common degree) can be obtained from Equation (2):

h2
i = L2

i1 + L2
i2 + . . .+ L2

im. (2)

Finally, the variance ratio can be interpreted as Equation (3):

∧
2

L1 j +
∧

2

L2 j + . . .
∧

2

Lpj

tr(R)
=

λ j

tr(R)
, (3)

where tr(R) is the trace of the correlation matrix.
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As discussed in the previous section, there are three factors/indicators selected in this study for
questionnaire setting and analysis. Results indicate that Factor 1 is closely related to Q1, Q2, and Q7.
This factor is then termed as the physical condition according to the information presented by the
three questions. Similarly, Factor 2 and Factor 3 were termed as subjective opinions and control
capacity respectively.

3.3. Reliability Assessment

Reliability refers to the consistency of a measurement over time, across different observers,
and across parts of the test itself, playing a predominant role in case studies, especially for those survey
and statistics-based research [24]. Therefore, reliability analysis for the variables (including influence of
wind turbine noise and the three selected factors) were conducted after the EFA operation. Cronbach α

reliability coefficient is an indicator widely used to test data reliability. In this study, α-coefficients
of variables were calculated and summarized by the data processing program SPSSAU using a
standardized Cronbach model expressed as Equation (4). As shown in Table 3, all the α-coefficients are
greater than the acceptable threshold interval [0.6, 0.7], which demonstrates that the collected data is of
high reliability. CITC is an indicator representing the interaction between items with the threshold
often set as 0.4 [25]. In this study, all these CITC-values are significantly higher than the threshold,
which indicates a strong correlation between items. In addition, all these α values are over 0.6, showing
the collected data is of high reliability:

α = (k/(k− 1)) ∗ (1− (
∑

si2)/ST2), (4)

where k is the number of items involved in the questionnaire, si2 is the intra-question variance of the
score for each item, while ST2 is the total score variance of all items.

Table 3. Results of data reliability analysis.

Variable Items Corrected Item-Total
Correlation (CITC)

Cronbach α if
Item Was Deleted Cronbach α

Influence results

Q8 0.728 0.921

0.926

Q9 0.815 0.912
Q10 0.751 0.917
Q11 0.833 0.908
Q12 0.901 0.896
Q13 0.864 0.918

Physical condition
Q1 0.911 0.831

0.912Q2 0.848 0.887
Q7 0.873 0.920

Subjective opinions

Q3 0.809 0.928

0.936
Q5 0.892 0.904
Q6 0.892 0.912
Q7 0.869 0.921

Control capacity Q3 0.894 -
0.936Q4 0.894 -

3.4. Validity Assessment

Validity assessment refers to how accurately a method measures what it is intended to, is another
important method which is widely employed to evaluate the quality of research. Validity measurement
is conducted with testing of how well the results correspond to the established theories and other
measures of the same concept [26]. The practice of validity assessment can be generally classified as
content and structure validities. Where the content validity is empirically evaluated by researchers
to meet the requirements for following evaluations, while structure validity is achieved by applying
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statistical methods. In this study, exploratory factors were employed for the structure validity [27]
with the results summarized in Table 4.

Table 4. Results of structure validation.

Items
Factor Loading

Communalities
Factor 1 Factor 2 Factor 3

Q1 0.849 0.370 0.278 0.933
Q2 0.846 0.234 0.387 0.927
Q3 0.374 0.462 0.767 0.931
Q4 0.346 0.303 0.869 0.955
Q5 0.379 0.830 0.321 0.938
Q6 0.262 0.881 0.344 0.972
Q7 0.680 0.620 0.311 0.947

Eigen values (Unrotated) 5.481 0.603 0.511 -
% of Variance (Unrotated) 78.295% 8.614% 7.296% -
Cumulative % (Unrotated) 78.295% 86.909% 94.204% -

Eigen values (Rotated) 2.39 2.346 1.889 -
% of Variance (Rotated) 33.699% 33.519% 26.986% -
Cumulative % (Rotated) 33.699% 67.218% 94.204% -

KMO 0.851 -
Bartlett Test of Sphericity 1452.580 -

DOF 21 -
p-value 0.000 -

Despite the contents used in this section being similar to those involved in the EFA presented in the
previous section, the goal is different as the structure validity is indeed focused on whether the items
can truly and effectively reflect the measured information. Given that the strong correlation between
items and factors shown in the EFA results are also in line with professional knowledge, and each
item can effectively express the concept of a factor (namely, the factor loading coefficient is high),
the structure validity then can be confirmed. As shown in Table 4, the common degrees (the degree of
a factor to explain the variable information) presenting items of values over 0.4, which illustrates that
information can be effectively extracted from the studied research items. This is further supported by a
KMO value of 0.851 which is significantly higher than the threshold 0.6. Moreover, given the variance
interpretation rates of the three factors being 33.699%, 33.519%, and 26.986% respectively, and the
cumulative variance interpretation rates after rotation are 94.204% (over 50%), efficient extraction of
research information can also be validated. In light of the above, it is reasonable to conclude that a
questionnaire has been effectively developed by this research.

3.5. Descriptive Analysis

Descriptive analysis is the first and foremost step for conducting statistical analyses. As descriptive
analysis can help to present the data distribution, identify outliers and typos, as well as explore the
associations among variables, it is indeed the fundament for further statistical analyses. Moreover,
the attitude of samples can also be assessed by examining the overall score and mean value of the
quantitative data. In this study, the questionnaire was developed in the form of four-level rating
scale, with the options ranging from 1 to 4 indicating the attitudes of samples reflected as answers to
questionnaires from the worst to extremely good. Interpretation of the mean value and each individual
score are then achieved in this manner. As shown in Figure 5, the results of descriptive analysis
illustrate that participants of higher tolerance to wind turbine noise scored 3.10 to the item of influence
results after experiments, while the item of control capacity was scored as 2.60. This result indicates
that the participants’ ability to bear noise is poor, which might be attributed to the large body of
low-frequency elements in turbine noise resulting in loss of control capacity. That could also contribute
to the understanding of participants’ primary states.
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3.6. Correlation Analysis

As a feasible and simple operating method, correlation analysis is widely applied to measure
the relationship between quantitative data and examine the correlations between variables [28].
In this study, correlation analysis is employed to identify the relationships between variables and to
present the related strength of relationships. Scatter diagrams shown in Figures 6–8 are presented
initially to help with the understanding of the mutual situation among variables, followed by formal
correlation analysis.
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The above scatter diagrams Figures 6–8 present approximate linear positive correlations between
physical condition, control capacity, subjective opinions, and the influence results. The correlations
between variables can be reflected by the correlation coefficients with high precision. There are two
kinds of correlation coefficients widely employed in correlation analysis, the Spearman correlation
coefficient and the Pearson correlation coefficient [29]. Compared to the Spearman correlation coefficient,
the Pearson correlation coefficient (also known as product difference correlation or product-moment
correlation) proposed by a British statistician Pearson in the 20th century is more popular in correlation
analysis. Chok survey results showing that for continuous abnormal data (no obvious outliers),
the Pearson correlation coefficient may have a clear advantage [30]. In assessments with the Pearson
correlation coefficient, an interval [−1, 1] is set for evaluations, while results greater than 0 show positive
correlations, and negative values indicate negative correlations. In this study, Pearson correlation
coefficients were calculated using Equation (5), and the results listed in Table 5:

ρx,y =
cov(X, Y)
σxσy

=
E
(
(X − µx)

(
Y − µy

))
σxσy

=
E(XY) − E(X)E(XY)√

(E(X2) − E2(X))
√
(E(Y2) − E2(Y))

, (5)

where E is the value of mathematical expectation, while cov is the covariance.

Table 5. Pearson coefficient of correlation.

Influence

Physical condition 0.912 **
Control capability 0.855 **
Subjective opinions 0.960 **

** indicates p < 0.01, namely, the probability is greater than 99%.

Given the above correlation analysis results, it can be concluded that all the three selected factors
are of positive correlations with the influence results. In fact, all the values are close to the upper bound
of interval [−1, 1] which also indicates that the three factors and the influence results are correlated
strongly and positively.

3.7. Regression Analysis

Based on the reliability assessment, validity analysis, descriptive assessment, and correlation
analysis conducted to test the robustness of methodology as well as to examine the interactions between
variables, a regression analysis is presented in this section to measure the impacts on results from
the three factors. Over the years, a considerable number of methods were developed for regression
analysis, such as Linear regression, Logistic regression, and Poisson regression [31]. Among them,
linear regression is the most popular one due to its simple description of interactions between variables,
in which the line that most closely fits the data according to a specific mathematical criterion is found
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to present the relationships between variables. As numerical dependent and independent variables are
included for quantitative analysis, multiple linear regression is a desirable solution for the analysis in
this study [32].

A typical linear regression analysis requires the interpretation of the indicators from the F-test
(also known as ANOVA test), R-squared test, significance test of independent variables, as well as the
d-w and coefficient of variance expansion (VIF). The F test is applied to examine whether a dependent
variable is affected by any of the independent variables. In this way, the feasibility of a model is
evaluated with its physical meaning is explored [33]. In linear regression analysis, the determination
coefficient, which is employed to represent the explanatory ability of independent variables, can be
obtained by squaring the sample correlation coefficient [34,35]. The formulation and procedure can be
stated as: given a data set y1, y2, . . . yn and the corresponding model prediction values f1, f2, . . . , fn,
the residual then can be defined as ei = yi − fi and the mean observation value is determined by
Equation (6):

−
y =

1
n

n∑
i=1

yi. (6)

The summation of squares can be obtained by Equation (7):

SStot =
∑

i

(yi −
−
y)

2
. (7)

Then, the following regression summation of squares is determined by Equation (8):

SSreg =
∑

i

( fi −
−
y)

2
. (8)

Then, the summation of squared residuals can be expressed by Equation (9):

SSres =
∑

i

(yi − fi)
2
=

∑
i

e2
i . (9)

Further, the determination coefficient is finally identified by Equation (10):

R2 = 1−
SSres

SStot
. (10)

The t-test on regression coefficient is employed to measure the effects on dependent variables from
independent variables. Here, given the p-value obtained from the t-test is less than 0.05, the impacts on
the dependent variable from independent variables then cannot be overlooked [36]. In another side,
the multicollinearity issue of a regression model can be examined with its VIF value. A VIF value tends
to 1 means lighter multicollinearity. The model for VIF calculation can be formulated as Equation (11):

VIF =
1

1−R2 , (11)

where (1−R2) is the tolerability. Detailed results of the regression analysis with independent variables
including physical condition, control capacity, and subjective opinions, as well as dependent variable
of influence results, can be found in Table 6.
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Table 6. Results of regression analysis.

Regression Coefficient VIF Value

Constant 0.642 -
Physical condition 0.246 5.172
Control capacity 0.080 4.112
Subjective opinions 0.566 8.512
R2 0.936
F-value F (3.164) = 800.389; p = 0.000 **

Dependent variable: Influence results

** means p < 0.01, namely, the probability is greater than 99%

The R-squared value of the model is 0.936 in Table 6, therefore, the selected factors including
physical condition, control capacity, and subjective opinions can interpret 93.6% of the changes in
influence results. This can be further supported by a study conducted in literature, where the involved
non-acoustic factors presented 92% influence on results [14]. Indeed, this result is also consistent
with the observations from earlier Swedish and Dutch cross-sectional studies. Results also show
that the multicollinearity between independent variables is weak. In addition, the model passed
the F-test successfully with an F value of 800.389 and a p-value of 0.000, which shows that there are
at least one of the factors that would affect the influence results. The model for influence results
calculation can be formulated as: Influence results = 0.642 + 0.246 * Physical condition + 0.080 * Control
capacity + 0.566 * Subjective opinions; while the final analysis indicates that the regression coefficients
of all the three selected factors show significant position impacts on the influence results. A larger
regression coefficient means a stronger impact on the results.

As shown in Figure 9, it can be concluded that physical condition, control capacity, and subjective
opinions are all of positive influence on people’s evaluation of wind turbine noise, while the factor
subjective opinions affected the results more significantly.

Energies 2020, 13, x FOR PEER REVIEW 12 of 16 

 

Table 6. Results of regression analysis. 

 Regression Coefficient VIF Value 

Constant 0.642 - 

Physical condition 0.246 5.172 

Control capacity 0.080 4.112 

Subjective opinions 0.566 8.512 

𝑅2 0.936 

F-value F (3.164) = 800.389; p = 0.000 ** 

Dependent variable: Influence results 

** means p < 0.01, namely, the probability is greater than 99% 

The R-squared value of the model is 0.936 in Table 6, therefore, the selected factors including 

physical condition, control capacity, and subjective opinions can interpret 93.6% of the changes in 

influence results. This can be further supported by a study conducted in literature, where the 

involved non-acoustic factors presented 92% influence on results [14]. Indeed, this result is also 

consistent with the observations from earlier Swedish and Dutch cross-sectional studies. Results also 

show that the multicollinearity between independent variables is weak. In addition, the model passed 

the F-test successfully with an F value of 800.389 and a p-value of 0.000, which shows that there are 

at least one of the factors that would affect the influence results. The model for influence results 

calculation can be formulated as: Influence results = 0.642 + 0.246 * Physical condition + 0.080 * Control 

capacity + 0.566 * Subjective opinions; while the final analysis indicates that the regression coefficients 

of all the three selected factors show significant position impacts on the influence results. A larger 

regression coefficient means a stronger impact on the results. 

As shown in Figure 9, it can be concluded that physical condition, control capacity, and 

subjective opinions are all of positive influence on people’s evaluation of wind turbine noise, while 

the factor subjective opinions affected the results more significantly. 

 

Figure 9. Regression coefficient model diagram (* indicates p < 0.05 while ** means p < 0.01) 

4. Conclusions and Future Studies 

Noise emission is a major concern on the well-being of local residents, which further affected the 

deployment of wind turbines and wind energy harvesting. This paper presented a survey-based 

approach for the identification of major concerns/factors based on the response of participants. A 

questionnaire was developed with 178 participants involved in the wind turbine noise listening 

experiments. In this study, three factors, physical condition, control capacity, and subjective opinions 

are selected for modeling and assessment based on a method combining EFA, PCA, and scree plot 

analysis by the data processing program SPSSAU. After that, reliability and validity assessments 

were integrated with descriptive and correlation analysis to explore the correlations among factors. 

R-square regression analysis indicates that the three selected factors can explain 93.6% of the response 

to turbine. While compared with the other two factors, the correlation between subjective opinions 

and noise evaluation is much stronger. That means subjective opinions is the major element on 

turbine noise assessment. 

Figure 9. Regression coefficient model diagram (* indicates p < 0.05 while ** means p < 0.01)

4. Conclusions and Future Studies

Noise emission is a major concern on the well-being of local residents, which further affected
the deployment of wind turbines and wind energy harvesting. This paper presented a survey-based
approach for the identification of major concerns/factors based on the response of participants.
A questionnaire was developed with 178 participants involved in the wind turbine noise listening
experiments. In this study, three factors, physical condition, control capacity, and subjective opinions
are selected for modeling and assessment based on a method combining EFA, PCA, and scree plot
analysis by the data processing program SPSSAU. After that, reliability and validity assessments
were integrated with descriptive and correlation analysis to explore the correlations among factors.
R-square regression analysis indicates that the three selected factors can explain 93.6% of the response
to turbine. While compared with the other two factors, the correlation between subjective opinions
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and noise evaluation is much stronger. That means subjective opinions is the major element on turbine
noise assessment.

Since both objective and human subjective factors might involve diverse aspects, meanwhile,
due to the lack of in-detail and sufficient data, impacts of wind turbine noise on health with medical
and mental related investigations are not covered in depth at the current stage. These aspects also
remain as part of the focus for the further research and model refinement. It would be meaningful
to conduct future studies to identify how the factors affect the turbine noise assessment through a
combination of noise listening experiments and questionnaires. This would be helpful in exploring
factors that might be most relevant to target-oriented noise assessment and mitigation strategies.
Besides, the subjective factor is the result of the main influencing factors, which also explains the
controversy over wind turbine noise. Different survey groups have various subjective factors about
wind turbines, thus, there are different evaluation results on wind turbine noise. Future studies on
turbine noise assessment considering multiple subjective factors is also highly recommended for a
more objective view of turbine noise impacts on local residents’ wellbeing.

Author Contributions: Conceptualization and methodology, L.L. and Y.L.; programming and experiment,
L.L., Y.L., H.L., P.X. and J.H.; writing—original draft preparation, L.L., Y.L. and B.H.; resources and project
administration, B.H., X.Z. and Y.W.; writing—review and editing, B.H. All authors have read and agreed to the
published version of the manuscript.

Funding: Funding that permitted this research was granted by the National Natural Science Foundation of China
(Grant No. 51908064), Key Laboratory of Renewable Energy Electric-Technology of Hunan Province (Grant No.
2015ZNDL007), Key Laboratory of Efficient & Clean Energy Utilization at Changsha University of Science &
Technology (Grant No.2013NGQ009), “International Collaborative Research Underpinning Double-First-Class
University Development” (Grant No. 2019IC17), the Education Department of Hunan Province (Grant No.
19B021), as well as Technology Practice Innovation and Entrepreneurship Enhancement Project at Changsha
University of Science & Technology (Grant No. SJCX202063).

Acknowledgments: The authors would like to acknowledge the National Natural Science Foundation of China,
the Education Department of Hunan Province, Changsha University of Science & Technology, and University of
South Australia for the funding opportunities and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A answer
cov covariance
CITC corrected item-total correlation
DOF degrees of freedom
E mathematical expectation value
en residual
EFA exploratory factor analysis
fn corresponding model prediction values
hn common factor variance (common degree)
K number of items in the questionnaire
KMO-value simple correlation coefficients between comparison variables
Ln factor loading matrix
P statistical significance
PCA principal component analysis
Q question
R2 determination coefficient
Si2 intra-question variance of the score for each item
SPSSAU statistical product and service software automatically
SStot summation of squares
SSreg regression summation of squares
SSres summation of squared residuals
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ST2 the total score variance of all items.
tr(R) the trace of the correlation matrix
VIF variance inflation factor
y mean observation value
yn data set
ρ Pearson correlation coefficients
λn eigenvalue of the sample correlation coefficient matrix
ηn standard orthogonal feature vector

Appendix A

Table A1. Questionnaire survey of people’s influence on wind turbines.

Questions
Item Content with Response Results

Pre-Experiments

Q1
A1

The condition of your body at this moment?
A. very poor (0) B. poor (9) C. good (109) D. perfect (50)

Q2
A2

Your hearing status in the current environment?
A. very poor (0) B. poor (3) C. good (106) D. perfect (59)

Q3
A3

You can control your annoyances when exposed in a noisy environment.
A. disagree (0) B. neutral (9) C. agree (109) D. strongly agree (50)

Q4
A4

Can you please endure the influence of noise in your daily life?
A. absolutely no (2) B. less (73) C. neutral (87) D. significant (6)

Q5
A5

Your attitude on wind turbine deployment around residential zones?
A. very negative (3) B. negative (73) C. positive (65) D. very positive (27)

Q6
A6

Do you get angry when you are exposed in noise in your daily life?
A. extremely (2) B. a little (28) C. neutral (120) D. no at all (18)

Q7
A7

Do you agree that wind turbine noise is a kind of hazard?
A. agree (22) B. neutral (94) C. to some extent (33) D. disagree (19)

After-Experiments

Q8
A8

Did you feel dizzy during the testing?
A. strongly agree (0) B. agree (4) C. to some extent (45) D. not at all (119)

Q9
A9

How did you feel about your hearing at this moment?
A. very poor (0) B. poor (10) C. good (117) D. perfect (41)

Q10
A10

Did you feel annoyed during the noise testing?
A. extremely (1) B. a little (4) C. normal (75) D. no at all (88)

Q11
A11

How did you feel about your mental state at this moment?
A. very poor (3) B. poor (14) C. normal (125) D. good (26)

Q12
A12

Your attitude wind energy harvesting at this moment?
A. very negative (3) B. negative (35) C. positive (104) D. very positive (26)

Q13
A13

Do you agree that wind turbine noise is a kind of hazard after the testing?
A. agree (30) B. neutral (21) C. to some extent (87) D. disagree (30)
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13. Pawlaczyk-Łuszczyńska, M.; Dudarewicz, A.; Zaborowski, K.; Zamojska-Daniszewska, M.; Waszkowska, M.
Annoyance related to wind turbine noise. Arch. Acoust. 2014, 39, 89–102. [CrossRef]

14. Radun, J.; Hongisto, V.; Suokas, M. Variables associated with wind turbine noise annoyance and sleep
disturbance. Build. Environ. 2019, 150, 339–348. [CrossRef]

15. Leventhall, G. Low Frequency Noise. What we know, what we do not know, and what we would like to
know. Journal of Low Frequency Noise. Vib. Act. Control. 2009, 28, 79–104.

16. Arezes, P.M.; Bernardo, C.A.; Ribeiro, E.; Dias, H. Implications of wind power generation: Exposure to wind
turbine noise. Procedia-Soc. Behav. Sci. 2014, 109, 390–395. [CrossRef]

17. Moorhouse, A.T.; Waddington, D.C.; Adams, M.D. Proposed Criteria for the Assessment of Low Frequency
Noise Disturbance. Available online: http://usir.salford.ac.uk/id/eprint/491/1/NANR45-criteria__rev1_23_12_
2011_(2).pdf (accessed on 10 April 2020).

18. Pedersen, E.; Van den Berg, F.; Bakker, R.; Bouma, J. Can road traffic mask sound from wind turbines?
Response to wind turbine sound at different levels of road traffic sound. Energy Policy 2010, 38, 2520–2527.
[CrossRef]

19. Maffei, L.; Iachini, T.; Masullo, M.; Aletta, F.; Sorrentino, F.; Senese, V.P.; Ruotolo, F. The effects of vision-related
aspects on noise perception of wind turbines in quiet areas. Int. J. Environ. Res. Public Health 2013, 10,
1681–1697. [CrossRef] [PubMed]

20. Norris, M.; Lecavalier, L. Evaluating the use of exploratory factor analysis in developmental disability
psychological research. J. Autism Dev. Disord. 2010, 40, 8–20. [CrossRef]

21. Lever, J.; Krzywinski, M.; Altman, N. Points of significance: Principal component analysis. Nat. Methods
2017, 14, 641–642. [CrossRef]

22. Yong, A.G.; Pearce, S. A beginner’s guide to factor analysis: Focusing on exploratory factor analysis.
Tutor. Quant. Methods Psychol. 2013, 9, 79–94. [CrossRef]

23. Cattell, R.B. The scree test for the number of factors. Multivar. Behav. Res. 1966, 1, 245–276. [CrossRef]
24. Taherdoost, H. Validity and Reliability of the Research Instrument; How to Test the Validation of a

Questionnaire/Survey in a Research. Available online: https://ssrn.com/abstract=3205040 (accessed on
10 April 2020). [CrossRef]

25. Chi, C.G.Q.; Qu, H. Examining the structural relationships of destination image, tourist satisfaction and
destination loyalty: An integrated approach. Tour. Manag. 2008, 29, 624–636. [CrossRef]

26. Glynn, S.M.; Brickman, P.; Armstrong, N.; Taasoobshirazi, G. Science Motivation Questionnaire II: Validation
with Science Majors and Nonscience Majors. J. Res. Sci. Teach. 2011, 48, 1159–1176. [CrossRef]

http://dx.doi.org/10.1007/s40857-017-0115-6
http://dx.doi.org/10.1289/EHP3909
http://dx.doi.org/10.1186/s40201-015-0225-8
http://www.ncbi.nlm.nih.gov/pubmed/26464802
http://dx.doi.org/10.1121/1.4942391
http://www.ncbi.nlm.nih.gov/pubmed/27036283
http://dx.doi.org/10.1016/j.envint.2015.04.014
http://www.ncbi.nlm.nih.gov/pubmed/25982992
http://dx.doi.org/10.1016/j.scitotenv.2013.03.095
http://dx.doi.org/10.1002/we.124
http://dx.doi.org/10.1016/j.landurbplan.2019.01.014
http://dx.doi.org/10.2478/aoa-2014-0010
http://dx.doi.org/10.1016/j.buildenv.2018.12.039
http://dx.doi.org/10.1016/j.sbspro.2013.12.478
http://usir.salford.ac.uk/id/eprint/491/1/NANR45-criteria__rev1_23_12_2011_(2).pdf
http://usir.salford.ac.uk/id/eprint/491/1/NANR45-criteria__rev1_23_12_2011_(2).pdf
http://dx.doi.org/10.1016/j.enpol.2010.01.001
http://dx.doi.org/10.3390/ijerph10051681
http://www.ncbi.nlm.nih.gov/pubmed/23624578
http://dx.doi.org/10.1007/s10803-009-0816-2
http://dx.doi.org/10.1038/nmeth.4346
http://dx.doi.org/10.20982/tqmp.09.2.p079
http://dx.doi.org/10.1207/s15327906mbr0102_10
https://ssrn.com/abstract=3205040
http://dx.doi.org/10.2139/ssrn.3205040
http://dx.doi.org/10.1016/j.tourman.2007.06.007
http://dx.doi.org/10.1002/tea.20442


Energies 2020, 13, 5845 16 of 16

27. Moghaddam, M.B.; Aghdam, F.B.; Jafarabadi, M.A.; Allahverdipour, H.; Nikookheslat, S.D.; Safarpour, S.
The Iranian Version of International Physical Activity Questionnaire (IPAQ) in Iran: Content and construct
validity, factor structure, internal consistency and stability. World Appl. Sci. J. 2012, 18, 1073–1080.

28. MacCallum, R.C.; Zhang, S.; Preacher, K.J.; Rucker, D.D. On the practice of dichotomization of quantitative
variables. Psychol. Methods 2002, 7, 19. [CrossRef]

29. De Winter, J.C.; Gosling, S.D.; Potter, J. Comparing the Pearson and Spearman correlation coefficients across
distributions and sample sizes: A tutorial using simulations and empirical data. Psychol. Methods 2016,
21, 273. [CrossRef]

30. Chok, N.S. Pearson’s Versus Spearman’s and Kendall’s Correlation Coefficients for Continuous Data.
Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2010.

31. Tonidandel, S.; LeBreton, J.M. Relative importance analysis: A useful supplement to regression analysis.
J. Bus. Psychol. 2011, 26, 1–9. [CrossRef]

32. Nimon, K.F.; Oswald, F.L. Understanding the results of multiple linear regression: Beyond standardized
regression coefficients. Organ. Res. Methods 2013, 16, 650–674. [CrossRef]

33. Wooldridge, J.M. Introductory Econometrics: A Modern Approach, 6th ed.; Cengage Learning: Melbourne,
Australia, 2016.

34. Glantz, S.A.; Slinker, B.K.; Neilands, T.B. Primer of Applied Regression and Analysis of Variance; McGraw-Hill:
New York, NY, USA, 1990.

35. Devore, J.L. Probability and Statistics for Engineering and the Sciences, 8th ed.; Cengage Learning: Melbourne,
Australia, 2011.

36. Altman, N.; Krzywinski, M. Points of significance: P values and the search for significance. Nat. Methods
2017, 14, 3–4. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1037/1082-989X.7.1.19
http://dx.doi.org/10.1037/met0000079
http://dx.doi.org/10.1007/s10869-010-9204-3
http://dx.doi.org/10.1177/1094428113493929
http://dx.doi.org/10.1038/nmeth.4120
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Research Methodology 
	Study Setting and Framework 
	Questionnaire Development 

	Analysis and Discussion 
	Background Analysis 
	Exploratory Factor Analysis 
	Reliability Assessment 
	Validity Assessment 
	Descriptive Analysis 
	Correlation Analysis 
	Regression Analysis 

	Conclusions and Future Studies 
	
	References

