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Abstract: In Saudi Arabia, residential buildings are one of the major contributors to total energy
consumption. Even though there are abundant natural resources, it is somewhat difficult to apply
them to building designs, as design variables, due to slow progress and private issues in Saudi
Arabia. Thus, the present study demonstrated the development of sustainable residential building
design by examining the daylighting and energy performance with design variables. Focusing on
the daylighting system, the design variables were chosen, including window-to-wall ratios (WWR),
external shading devices, and types of glazing. The illuminance level by these design variables in a
building was evaluated by using daylight metrics, such as spatial daylight autonomy and annual
sunlight exposure. Moreover, the building energy consumption with these design variables was
analyzed by using energy simulation. As a result, the daylighting was improved with the increase
in WWRs and the tinted double glazing, while these design options can cause overheating in a
residential building. Among types of glazing, the double pane windows with a low-E coating showed
better energy performance. Based on the results, it is necessary to find the proper design variables
that can balance the daylighting and energy performance in residential buildings in hot climates.
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1. Introduction

Energy has become a global concern in developed, as well as developing, countries.
The International Energy Agency (IEA) indicated that 81% of the world’s total energy was primarily
supplied by fossil fuels, which are depletable resources [1]. Buildings have consumed a large share of
global energy and they have contributed to about 33% of the greenhouse gas (GHG) emissions [2].
The GHGs emitted by buildings have a detrimental impact on the environment. Subsequently, this issue
has attracted the attention of scientists as well as public attention [3,4]. Energy conservation has also
received great attention in Saudi Arabia. The building industry in Saudi Arabia has experienced major
developments with a rapidly escalating population [5]. In addition, a high level of economic growth in
Saudi Arabia has caused a vigorous expansion of infrastructure, in that buildings, including residential,
commercial, and governmental buildings over the last two decades, were highly demanded [6].
Eventually, Saudi Arabia needs to pay more attention to energy, both in terms of energy resources and
energy usage in buildings.

In Saudi Arabia, the building sector comprised 79% of the total electricity consumption [7].
Specifically, about 50% of the total building energy was consumed by residential sectors [8]. As the
main contributor to the total energy consumption in Saudi Arabia, the energy efficiency in residential
buildings has become a main concern. Several studies have been conducted to improve energy efficiency
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in buildings, in that a number of strategies have proposed. These strategies have mainly dealt with the
different building systems, including envelope, HVAC (Heating, ventilation, and air- conditioning),
and lighting. These were: (1) improvement of thermal resistance in building envelopes [9–11];
(2) application of advanced window systems [12,13]; (3) application of more efficient lighting
bulbs [14,15]; (4) and the use of energy-efficient mechanical systems [16]. Other strategies included
the utilization of renewable energy technology [17], daylight systems [18,19], and natural ventilation
techniques [20]. Since most buildings in Saudi Arabia are heavily dependent on mechanical systems to
maintain thermal comfort, as well as to provide lighting, it is necessary to find a proper strategy to
reduce building energy consumption.

In addition to the strategies above, several studies have performed investigations to improve
energy efficiency in residential buildings in Saudi Arabia. In a study by Taleb and Sharples, energy use
patterns in apartment buildings were analyzed, and energy efficiency was improved by applying
various measures, such as improved building thermal insulation and external shading devices [5].
In the case of the retrofitting project for villas by Mejjaouli and Alzahrani, they applied various types of
mechanical systems and building envelope components as retrofitting measures to improve the energy
efficiency of villas [21]. In addition, Waleed et al. performed experiments and simulations to investigate
the thermal performance of building materials for walls of residential buildings [22]. A similar study
was conducted by Alaidroos and Krarti [23]. In their study, the impact on energy consumption by
various components of building envelopes, including thermal insulation, window shading, and glazing
types, was investigated to develop an optimum building envelope system for residential buildings.
Moreover, the advanced air-conditioning system was applied to residential buildings to reduce
the energy consumed by mechanical systems [24]. As can be shown, most studies focused on the
improvement of building envelopes or high energy-efficient mechanical systems for energy-efficient
residential buildings. Considering the reduction of greenhouse gas emission, passive design solutions
should be implemented more than active design strategies.

Among passive design strategies, daylighting is one of the effective design solutions for improving
building energy efficiency. According to the study by Li and Liam, daylighting in a building can
satisfy the human visual response, and it can make a more attractive and pleasing environment [25].
By installing daylight responsive control systems in an office building, considerable energy savings
were achieved [26]. Furthermore, Do et al. proposed the use of semi-transparent solar cell window
systems with daylight dimming systems for residential buildings to obtain the opportunity of energy
saving [27]. A similar study for utilizing daylighting systems was conducted by Reffat and Ahmad [28].
In their study, energy performance by various daylighting systems in an office building was extensively
investigated to reduce energy consumption for cooling. To summarize, the use of a daylighting
system in buildings can provide benefits regarding visual comfort as well as potential for energy
consumption reduction.

Daylighting is one of the most abundant natural resources in Saudi Arabia. If the admitted
daylighting in the building is well-controlled, it can provide great potential for energy-saving by
reducing energy consumption for artificial lighting, heating, etc., while uncontrolled daylighting can
cause overheating and glare [29–31]. Considering the substantial advantage of daylighting, there were
a few studies for the investigation of both daylighting and energy performance in residential buildings
in Saudi Arabia. For the present study, the daylighting and energy performance by the design variables
of residential buildings were investigated. The outcomes of the study were used to develop an
energy-efficient residential building design considering daylighting performance.

2. Principal Design Variables for Daylighting in a Residential Building

There have been many design factors influencing daylighting performance in buildings.
The daylighting performance is highly influenced by the geometries of buildings and rooms. One of
the most important parameters is a window-to-wall ratio (WWR) that is designed to increase daylight
admission. In general, higher WWRs can increase the quantity of daylight in the buildings, while it
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can cause unwanted heat gains. According to the study by Abel et al., WWRs should be properly
designed in the early design stage to prevent overheating in buildings [32]. In addition to their study,
the function of WWRs can be varied by the shading design. A similar point was observed in the
study of Li et al [33]. In their study, daylighting and energy performance of key design variables,
including shading devices, window areas, and glass types in a residential building, were investigated.
Another study for the daylighting performance with a shading device, such as a solar screen,
was conducted by Sherif et al. [30]. The illuminance levels by the solar screen were measured and
some design suggestions were proposed. Based on the literature, the design variables, such as
WWRs, shading devices, and windows, are the most influential key features of the daylighting system.
Moreover, they can play a significant role in thermal behaviors in buildings. To prevent overheating
through the daylighting system, as well as improve energy efficiency in a residential building under hot
climate conditions, it was suggested to conduct both daylighting and energy simulations to optimize
the design of WWRs, shadings, and the glazing types [34,35]. Thus, the daylighting and energy
performance by design variables for the present study were evaluated by the simulation tools.

As mentioned above, it is imperative to mention the importance of the selection of glazing
since the quality of daylighting and thermal behaviors in a building can be significantly altered by
glazing types of window systems. In general, the application of energy-efficient glazing, such as
double-pane windows, has been used in buildings under hot climate conditions, to reduce heat gain
by about 15–20% [36]. In addition, a higher reduction for heat gain can be achieved by low-E coated
glass. Focusing on daylighting and thermal performance, several glazing types were tested by Taleb
and Antony [37]. Based on their results, tinted glazing can lower the cooling load by about 20%.
Special gases, such as krypton and xenon between the layers of double glazing, can also lower the
additional cooling load. In case of the study of Liu et al., thermal and daylight performance of triple
glazing was also investigated [38]. Even though the energy consumption by triple pane windows is
always lower than that by double glazing units, the triple-pane windows are not practically used due to
the high initial costs. Thus, it is crucial to select the proper glazing for window systems, considering a
balance between daylighting and energy aspects [12]. Based on the previous studies, various types of
glazing were selected for the present study.

3. Methodology

3.1. Building Description

In Saudi Arabia, there are three types of residential buildings: apartments, villas, and traditional
houses. Among these buildings, apartment buildings and villas have become the most popular
residential buildings, accounting for about 80% of total residential buildings. For the present study,
a typical villa was chosen as a reference building in the eastern region of Saud Arabia, in which the
latitude and longitude are 26.2361◦ N and 50.0393◦ E, respectively. The highest temperature was
observed in July (about 44 ◦C). In addition, the average global horizontal irradiance in the eastern area
was 5874 W/m2. For the reference building, the total floor area was 590 m2 and the window-to-wall
area ratio (WWR) was 15%. The floor to floor height was 3.5 m and the building area for the ground
floor and the first floor were 300 m2 and 290 m2, respectively. Moreover, the reference building had
14 rooms and two kitchens. This reference building was occupied for a whole year, from 8 a.m. to
6 p.m. on all weekdays. The specification of the building envelopes is presented in Table 1. For the
air conditioning system, a single packaged rooftop electric cooling unit was used to provide 15 tons
of nominal cooling. For the building envelopes system, the lower thermal transmittance value was
considered for the roof system than the wall system to reduce heat gain by the sun.
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Table 1. The specification of building envelopes and the systems for the reference building.

Component and System Specification

Walls U-value: 0.54 W/m2K

Roof U-value: 0.24 W/m2K

Window systems Single clear glazing (U-value: 6.08 W/m2K, SHGC:0.8, visible transmittance: 0.9)

Shading No external shading

Air infiltration 0.57 ACH @ 50 PA

Internal heat gain
8 occupants
Lighting: fluorescent lamps (lighting power density: 27.3 W/m2)
Equipment: 13 W/m2

Design temperature 19 ◦C for cooling and 20 ◦C for heating

HVAC Packaged unit air-conditioning system
(Capacity: 15 tons, COP: 3.28)

3.2. Design Variables

Since the admitted sunlight is highly influenced by the design features of window systems,
the design variables of window systems were chosen for the analysis of daylighting and energy
performance in a residential building. Table 2 presents three different design variables of window
systems. The first variable is the WWR. Since the WWR of the reference building was about 15%,
three different WWRs (25%, 50%, and 70%) were used to assess the daylighting and energy performance.
Another important design variable is a shading device. To admit sunlight effectively, it is imperative to
use external shading devices. Focusing on external shadings, the impact on the daylighting and energy
performance by overhangs and fins were investigated. As can be shown in Table 2, two different
projection lengths of overhangs, and overhangs with fins, were designed for the analysis. For the
reference building, a single clear glazing was used and the basic properties of the single clear glazing
are presented in Table 1. The third design variable was the glazing types To figure out the improvement
of daylighting and energy use in a residential building, four different types of glazing were selected.

Table 2. The design variables.

Design Variable Specification

WWR (1) 25%, (2) 50%, (3) 70%

External shading device
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Table 2. Cont.

Glazing

(1) Tinted single glazing
(2) Air-filled double glazing
(3) Air-filled double glazing with a low-E coating
(4) Tinted double glazing

3.3. Assessment of Daylighting and Energy Performance

For the present study, the design variables were tested by using the building performance analysis
software provided by AUTODESK (Version 2019, New York, NY, USA) for a residential building
satisfying both daylighting and energy performance [39]. This software is a plug-in module for Revit,
enabling the assessment of both daylighting and energy consumption in a building [39]. Figure 1
shows a model of the reference building created by Revit.
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Figure 1. The reference building created by Revit.

To evaluate the daylighting performance, two daylighting metrics were implemented:
annual Sunlight Exposure (aSE) and spatial Daylight Autonomy (sDA). Specifically, aSE is the
percentage of the area in the space where the direct sunlight illuminance is greater than a specified
level, while sDA is the percentage of the area in the space where the daylight illuminance is greater
than the target level for more than a specified number of occupied hours in a year [40]. The illuminance
threshold for the aSE was set to 1000 lux, while the number of annual operation hours exceeding
1000 lux should be lower than 250 h to prevent glare [41]. For the sDA metrics, the target illuminance
was set to 300 lux, in which the value should be retained about 50% of the occupied hours (8 a.m. to
6 p.m.) from January 1 to December 31 [40]. For the present study, the simulation for the daylighting
performance was evaluated by using these two measures. In addition, the suggested values for these
two measures were presented in Table 3.

Table 3. The suggested values for aSE1000,250h and sDA300/50%.

Metrics Value Ref.

aSE1000,250h

<10%: Accepted
[40–42]<7%: Neutrality

<3%: Preferred

sDA300/50%
>75%: Preferred [40,42,43]

55–74%: Nominally accepted
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For the evaluation of the energy performance by design variables, the energy analysis module of
the Revit was employed. Before the analysis, it is essential to validate the computational conditions of
energy simulation. Using the weather file of Saudi Arabia provided by EnergyPlus and the specified
building condition in Table 1 [44], the energy simulation with the reference villa was conducted
through the energy analysis module of Revit. The monthly energy consumption obtained from
the simulation was compared with the energy consumption of the reference building by using the
coefficient of variation of the root mean squared error (CV(RMSE)) provided by ASHRAE Guideline
14 [45]. The models will be declared calibrated if they produce CV(RMSE)s within ± 15% with monthly
energy data.

RMSE =

√ ∑n
i=1 (Mi − Si)

2

n
(1)

CV(RMSE) =
RMSE
Mavg

× 100 (2)

where Mi is the energy consumption of the residential building, while Si is the monthly energy
consumption by energy simulation. N is the period and Mavg is the average for the energy consumption
of the residential building. After the validation, the annual and artificial lighting energy consumption
of each design variable was compared.

4. Result

4.1. Assessment of Daylighting Performance

Using the values for aSE1000,250h and sDA300/50%, the daylighting performance of design variables
was assessed. For this assessment, three WWRs, four different external shading designs, and four
different types of glazing were applied.

4.1.1. WWRs

The reference building had a WWR of 15% with a sing pane glass. As with the WWR (15%) of the
reference case, it was difficult to reach the preferred or accepted levels of daylight metrics, in which
sDA300/50% was less than 20%, while the value of aSE1000,250h was about 5% (Figure 2). When the
WWR was increase by 25%, 50%, and 70%, the values of sDA300/50% were increased to 38%, 58%,
and 75%, respectively. Among them, only the WWR of 70% reached the preferred range of sDA300/50%.
In addition, the WWR of 50% reached the nominally accepted range of sDA300/50%. For the values of
aSE1000,250h, it increased gradually, as with the increase in the WWRs. However, the WWR of 70%
exceeded 10% of the value of aSE1000,250h. Even though the WWR of 70% can provide a reliable daylight
level, there is also a risk of glare or overheat due to the excessive admitted daylight in a building.
Considering the results, the WWR of 50% can thus provide reliable daylight by preventing glare.
While the increase in the WWRs showed improvement by satisfying with the accepted or preferred
ranges of sDA300/50%., it also has potential for glare.
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4.1.2. External Shadings

Generally, shading devices have been used to control daylighting in a building to prevent glare
and overheat by blocking direct sunlight. It is designed externally for building design in the early
design stage as an essential design variable. In this view, the daylighting performance of four different
designs of external shading devices was evaluated, as shown in Figure 3. For this analysis, the WWR
of 50% with a single pane glass was used as a reference case to figure out whether the daylighting
level by the shading device was satisfied with the accepted values of sDA300/50% and aSE1000,250h.
Largely, the values of sDA300/50% were decreased when applying four shading devices. Consequently,
all the cases were not satisfied with the accepted range of sDA300/50%. Specifically, about 8% to 10%
of the decrease in sDA300/50% was observed when two horizontal overhang designs were applied
(Type A and Type B). When the overhang with fins was used, more than 15% of the sDA300/50% was
decreased compared with the reference case. For the aSE1000,250h, all external shading designs showed
that the illuminance level was within the accepted ranges. Moreover, the best performance regarding
the aSE1000,250h was observed with the shading designs of Type C and Type D. Even though the use
of external shading devices can decrease the illuminance level, it can prevent glare and overheat.
Considering the results, Type A showed the best overall performance.Energies 2020, 13, x FOR PEER REVIEW 8 of 17 
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4.1.3. Types of Glazing

In general, the double-glazed windows with low-E coating have been applied to buildings to
reject heat in buildings. However, most residential buildings in Saudi Arabia have equipped with
a single pane of glass. For the present study, the daylighting performance of four different types of
glazing was compared with that of a single pane glass in the reference villa, where the WWR was 50%.

As shown in Figure 4, each glazing showed different values of sDA300/50% and aSE1000,250h.
Among them, about 5% of the decrease in sDA300/50% was observed, when a tinted single glazing was
used. In addition, a similar trend was observed, when a low-E coated double glazing was used. In the
case of the air-filled double-glazed clear windows, there was a little impact on sDA300/50%. The lowest
illuminance level was observed by the air-filled tinted double glazing among all the cases, which was
about 10% decrease in sDA300/50%. A similar trend was observed among all the cases regarding the
values of aSE1000,250h. In sum, a single tinted glass and the double-glazed clear windows provided a
somewhat accepted illuminance level for the sDA300/50%, while the illuminance by all the cases was
within the accepted range of the aSE1000,250h.Energies 2020, 13, x FOR PEER REVIEW 9 of 17 
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4.2. Energy Performance Assessment of Design Variables

4.2.1. The Monthly Energy Consumption Comparison between the Data of the Reference Villa and
Energy Simulation

Before the energy performance assessment of the design variables, the computational conditions
of energy simulation should be validated. For the validation, the monthly energy consumption of the
reference villa was compared with the energy consumption prediction by the simulation. The total
energy consumption of the residential building was about 76.2 MWh, while about 84 MWh of the
energy consumption was predicted by the energy simulation, in which the difference between them
was about 9%. As shown in Table 4, the largest difference was observed in the winter from November
to February, and the root-mean-squared errors (CV(RMSEs) ranged from 0.46 to 3.64. Since these
results were within the acceptable range, the predicted results by the simulation met the requirement
by ASHRAE Guideline 14 [45].
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Table 4. The monthly energy consumption comparison.

Month
Energy Consumption (MWh)

CV(RMSE) (%)The Reference
Villa, 2019

Energy
Simulation Difference

January 4.1 5.0 −0.9 2.05
February 3.9 5.5 −1.6 3.64

March 4.9 5.7 −0.8 1.82
April 6.0 6.5 −0.5 1.14
May 7.6 7.4 0.2 0.46
June 7.7 7.9 −0.2 0.46
July 8.6 8.3 0.3 0.68

August 8.9 8.6 0.3 0.68
September 7.8 8.4 −0.6 1.46

October 7.2 7.9 −0.7 1.59
November 5.1 6.5 −1.4 3.19
December 4.4 6.0 −1.6 3.64

4.2.2. The Energy Performance of Design Variables

One of the most important considerations for the design features of the daylighting system is to
control thermal performance in buildings. Considering this point, energy consumption for the annual
energy consumption, artificial lighting, and the HVAC system were presented.

As shown in Figure 5, the energy consumption in the reference residential building for each WWR
was presented. The reference building was equipped with a single pane window without external
shading devices and the WWR was 15%. The other conditions were specified in Table 1. As the WWR
increased, the energy consumption for the HVAC system operation increased due to the increase
in cooling demand. With the WWR of 75%, about 30% of energy for the HVAC system increased
compared with the energy consumption of the reference building. Consequently, the total energy
consumption also increased with the WWR increase. However, some energy consumption was offset
by the energy consumption reduction of artificial lighting due to daylight. Comparing the artificial
lighting energy consumption for the reference case, the energy consumption for artificial lighting was
decreased to 30% and 40% for the WWR of 50% and 70%, respectively. Even though the annual energy
consumption increased with the increase of the WWRs, the smallest increase in the annual energy
consumption was about 5% with the WWR of 25%. In addition, only a 2% difference in the annual
energy consumption was observed between the WWR of 25% and 50%.

Figure 6 showed the energy consumption comparisons in the reference building with the
application of four different shading devices. For the reference building, no shading device was
equipped. As can be shown, the annual energy consumption and energy consumed by artificial lighting
and HVAC systems were reduced as the projection lengths of the overhang was increased. In addition,
better energy performance was observed when the overhang with fins was applied (Type C and Type
D), which was about a 30% decrease in annual energy consumption. Among the cases, Type D showed
the best overall energy performance, in which about 25% of the HVAC system load was reduced,
compared with the reference case. Moreover, the highest reduction for the annual energy consumption
was observed. For all of the cases, a slight energy consumption difference was observed for artificial
lighting energy consumption.

Moreover, the energy performance by the different types of glazing was also investigated as
shown in Figure 7. For this analysis, the reference building equipped a single pane glass with a
WWR of 15%. With the use of the double-glazed windows with low-E coating, the annual energy
consumption decreased by about 35%, which was the lowest annual energy consumption among the
cases. The second-lowest annual energy consumption was observed when the tinted double glazing
was used (about 27% decrease). However, only a 5% difference in the annual energy consumption was
observed between the tinted double glazing and the air-filled double glazing. Considering this point,
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it can be seen that the low-E coating has a significant impact on thermal performance. A similar trend
was observed for HVAC energy consumption by different types of glazing. In addition, there was little
difference in artificial lighting energy consumption among the cases.
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In sum, more than 30% of the annual energy consumption was reduced by applying the overhang
with fins and the air-filled double low-E glazing. For the WWRs, the annual energy consumption
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was increased as with the increase in the WWRs. Based on the result of the daylighting performance
analysis, the WWR of 50% provided the acceptable range of both sDA and aSE. Thus, the WWR of 50%
was chosen. By applying the selected design variables, the energy consumption was compared with
that of the reference building (Figure 8). As a result, about 35% of annual energy consumption was
reduced compared with that of the reference villa. In addition, 17–20% of the energy consumption was
reduced for the artificial lighting and HVAC system.Energies 2020, 13, x FOR PEER REVIEW 12 of 17 

 

 
Figure 7. The energy consumption by different types of glazing. 

In sum, more than 30% of the annual energy consumption was reduced by applying the 
overhang with fins and the air-filled double low-E glazing. For the WWRs, the annual energy 
consumption was increased as with the increase in the WWRs. Based on the result of the daylighting 
performance analysis, the WWR of 50% provided the acceptable range of both sDA and aSE. Thus, 
the WWR of 50% was chosen. By applying the selected design variables, the energy consumption was 
compared with that of the reference building (Figure 8). As a result, about 35% of annual energy 
consumption was reduced compared with that of the reference villa. In addition, 17%–20% of the 
energy consumption was reduced for the artificial lighting and HVAC system. 

 
Figure 8. The energy consumption comparison between the reference villa and the villa with energy-
efficient design strategies. 

Figure 7. The energy consumption by different types of glazing.

Energies 2020, 13, x FOR PEER REVIEW 12 of 17 

 

 
Figure 7. The energy consumption by different types of glazing. 

In sum, more than 30% of the annual energy consumption was reduced by applying the 
overhang with fins and the air-filled double low-E glazing. For the WWRs, the annual energy 
consumption was increased as with the increase in the WWRs. Based on the result of the daylighting 
performance analysis, the WWR of 50% provided the acceptable range of both sDA and aSE. Thus, 
the WWR of 50% was chosen. By applying the selected design variables, the energy consumption was 
compared with that of the reference building (Figure 8). As a result, about 35% of annual energy 
consumption was reduced compared with that of the reference villa. In addition, 17%–20% of the 
energy consumption was reduced for the artificial lighting and HVAC system. 

 
Figure 8. The energy consumption comparison between the reference villa and the villa with energy-
efficient design strategies. 

Figure 8. The energy consumption comparison between the reference villa and the villa with
energy-efficient design strategies.



Energies 2020, 13, 5836 12 of 16

5. Discussion

For the present study, the daylighting and energy performance of design variables for residential
buildings under hot climates were investigated. Contrary to typical residential buildings in other
countries, the residential buildings in Saudi Arabia have relatively small WWRs to reduce cooling
loads, and for other reasons, such as cultural characteristics [46]. Subsequently, it is, thus, difficult to
find out daylighting systems in current residential buildings. As mentioned previously, the important
functions of daylighting systems are to control the quality of admitted daylight as well as reduce heat
gain in buildings. In this view, the daylighting performance of various sizes of WWRs, shading devices,
and types of glazing was examined by using daylighting metrics. In addition, the energy performance
of these design variables was evaluated. Among these design variables, windows with higher WWR
can provide more illuminance and more daylighting distribution in the room [47]. Thus, higher WWRs
have shown more acceptable daylighting performance, while the potential for glare or overheating
was also increased. Similarly, the result of the present study showed that the daylighting performance
was improved as the WWR increased. However, the energy consumption also increased. A similar
result was observed in the study of Alghoul [48] et al. An increase in WWRs can cause significant
cooling loads. In the case of the study of Xue et al., they investigated the cooling energy performance
by increasing WWRs [49]. Their result showed that the cooling load was increased as with the increase
in WWRs. According to the study of Mangkuto et al., larger WWR can cause increasing cooling loads
and rising glare in a building [50]. They pointed out that different energy consumption and daylighting
performance can be caused by the same WWR through different window configurations. For the
present study, a similar trend was observed that there was a difference in daylighting and energy
performance by same design variables. For example, the annual energy consumption increased as
the WWR increased, while the increased WWR can provide better daylighting performance. It can be
seen that the evaluation result of either daylighting or energy performance can cause visual or thermal
discomfort for occupants. The daylighting performance in the current study was only analyzed by
two daylighting metrics: sDA and aSE. Due to insufficient information on daylighting performance, it
is difficult to find the proper design variables satisfying both energy and daylighting performance.
Moreover, the other difficulty was from the limitation of the range of design variables. Based on
the obtained results, the daylighting and energy performance was sensitive to the design variables.
Therefore, it is necessary to apply various daylighting metrics into the daylighting analysis. It also
requires to have more configurations of design variables for further study to design more proper
daylight systems.

Regarding the assessment results for various types of glazing, the windows with low-E coating
showed better performance for preventing heat gain than other windows. This was also investigated
by the study of Huang et al. [36]. In their study, low-E glazing was the best design option for reducing
cooling loads, while maintaining a satisfactory daylighting level compared with double-pane clear
glazing. According to the study of Leung et al., the aerogel glazing showed better performance than
the windows with low-E coating regarding the thermal performance in buildings [51]. Moreover,
krypton or xenon gas-filled double-glazing systems can improve lighting performance in building
under hot climate conditions [37]. Some studies mentioned the importance of the selection of the color
of the glazing since it affects significantly overall comfort in buildings [52]. According to the study
by Chen et al., the color of the tinted glazing had an impact on occupant behavior and green glazing
can improve working performance [53]. For the present study, only bronze glazing and double low-E
glazing were used. Considering the current building industry in Saudi Arabia, it is still difficult to
apply advanced glazing systems for residential buildings. Based on the obtained results, the tinted
double glazing has shown the second-best performance in energy consumption. For more accurate
analysis, it is thus imperative to analyze the economic impact of the tinted and the low-E coated
double glazing.
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6. Conclusions

In Saudi Arabia, residential buildings account for more than half of total buildings, and the energy
consumed by residential buildings has become one of the most significant concerns. To improve
energy efficiency in residential buildings, several studies have mainly investigated the performance of
mechanical systems, because of high cooling demand due to hot climates in Saudi Arabia. In addition,
privacy issues in Saudi Arabia have caused small WWRs in residential buildings. Even though there
are abundant natural resources in Saudi Arabia, it is still difficult to apply passive design strategies for
residential buildings. Focusing on the use of natural resources, such as daylight, the present study has
investigated the daylight and energy performance of design variables for developing energy-efficient
residential buildings.

For the design variables, three different WWRs, four designs of the external shading device,
and four types of glazing were selected. By using two different simulations, the daylighting and
energy performance of these design variables in a typical villa were examined. Moreover, two daylight
metrics—sDA and aSE—were used to evaluate the daylighting performance of design variables.
As a result, the daylighting performance was satisfied with the accepted ranges of sDA300/50% and
aSE1000,250h, when the WWR of 50% and the double-glazed clear windows were applied into the
reference building. The illuminance levels by two overhang designs (Type A and B) were somewhat
satisfied with the accepted values of sDA and aSE, while the other shading designs were not.

For the energy performance assessment, the annual, artificial, and HVAC energy consumption
were analyzed. While the daylighting performance was improved with the increased WWRs, the energy
consumption also increased as the WWR increased. This was caused by the increase in cooling demand
by the excessive sunlight through the increased WWRs. Similar to the daylighting performance,
the energy consumption decreased, as with the increase of the projection lengths and fins for the
external shading devices. A villa with the double-pane windows with a low-E coating showed a better
energy performance. In summary, the lowest energy consumption was achieved by using the external
shading device.

Based on the results, the energy-saving potential for residential buildings under hot climates
with the implementation of daylighting was observed. In addition, the daylighting performance can
be improved by using the proper design variables. However, the design variables for the present
study seemed to be insufficient to draw out more valuable outcomes. Thus, it is necessary to examine
the performance of more various design variables, such as triple-glazed windows with various inert
gases, and various types of internal/external shading devices for further study. For the present
study, the daylighting performance by design variables was evaluated by only using simulation tools.
To figure out the illuminance level practically, it requires further field measurements.

Author Contributions: A.M.A.-D. designed and performed the simulation and collected data; D.D.K. wrote the
manuscript and analyzed the data. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Energy Technology Perspectives 2017—Catalysing Energy Technology Transformations, International Energy
Agency. Available online: https://www.Iea.Org/buildings/ (accessed on 1 August 2020).

2. Radhi, H. Evaluating the potential impact of global warming on the uae residential buildings—A contribution
to reduce the CO2 emissions. Build. Environ. 2009, 44, 2451–2462. [CrossRef]

3. Abdul-Wahab, S.A.; Charabi, Y.; Al-Maamari, R.; Al-Rawas, G.A.; Gastli, A.; Chan, K. CO2 greenhouse
emissions in oman over the last forty-two years: Review. Renew. Sustain. Energy Rev. 2015, 52, 1702–1712.
[CrossRef]

4. Fahmy, M.; Mahdy, M.M.; Nikolopoulou, M. Prediction of future energy consumption reduction using GRC
envelope optimization for residential buildings in Egypt. Energy Build. 2014, 70, 186–193. [CrossRef]

https://www.Iea.Org/buildings/
http://dx.doi.org/10.1016/j.buildenv.2009.04.006
http://dx.doi.org/10.1016/j.rser.2015.07.193
http://dx.doi.org/10.1016/j.enbuild.2013.11.057


Energies 2020, 13, 5836 14 of 16

5. Taleb, H.M.; Sharples, S. Developing sustainable residential buildings in Saudi Arabia: A case study.
Appl. Energy 2011, 88, 383–391. [CrossRef]

6. Al-Sulaiman, F.A.; Zubair, S.M. A survey of energy consumption and failure patterns of residential
air-conditioning units in eastern Saudi Arabia. Energy 1996, 21, 967–975. [CrossRef]

7. Almutairi, K.; Thoma, G.; Burek, J.; Algarni, S.; Nutter, D. Life cycle assessment and economic analysis of
residential air conditioning in Saudi Arabia. Energy Build. 2015, 102, 370–379. [CrossRef]

8. The Annual Report of 2011, Electricity & Cogeneration Regulatory Authority, Saudi Arabia.
Available online: https://www.ecra.gov.sa/en-us/MediaCenter/DocLib2/Pages/SubCategoryList.aspx?
categoryID=4 (accessed on 1 September 2020).

9. Levy, J.I.; Woo, M.K.; Tambouret, Y. Energy savings and emissions reductions associated with increased
insulation for new homes in the United States. Build. Environ. 2016, 96, 72–79. [CrossRef]

10. Evin, D.; Ucar, A. Energy impact and eco-efficiency of the envelope insulation in residential buildings in
Turkey. Appl. Therm. Eng. 2019, 154, 573–584. [CrossRef]

11. Friess, W.A.; Rakhshan, K.; Hendawi, T.A.; Tajerzadeh, S. Wall insulation measures for residential villas in
Dubai: A case study in energy efficiency. Energy Build. 2012, 44, 26–32. [CrossRef]

12. Hee, W.J.; Alghoul, M.A.; Bakhtyar, B.; Elayeb, O.; Shameri, M.A.; Alrubaih, M.S.; Sopian, K. The role of
window glazing on daylighting and energy saving in buildings. Renew. Sustain. Energy Rev. 2015, 42, 323–343.
[CrossRef]

13. Fasi, M.A.; Budaiwi, I.M. Energy performance of windows in office buildings considering daylight integration
and visual comfort in hot climates. Energy Build. 2015, 108, 307–316. [CrossRef]

14. Dubois, M.-C.; Blomsterberg, Å. Energy saving potential and strategies for electric lighting in future north
european, low energy office buildings: A literature review. Energy Build. 2011, 43, 2572–2582. [CrossRef]

15. Ahn, B.-L.; Jang, C.-Y.; Leigh, S.-B.; Yoo, S.; Jeong, H. Effect of led lighting on the cooling and heating loads in
office buildings. Appl. Energy 2014, 113, 1484–1489. [CrossRef]

16. Homod, R.Z.; Sahari, K.S.M. Energy savings by smart utilization of mechanical and natural ventilation for
hybrid residential building model in passive climate. Energy Build. 2013, 60, 310–329. [CrossRef]

17. Kim, J.; Choi, H.; Kim, S.; Yu, J. Feasibility analysis of introducing renewable energy systems in environmental
basic facilities: A case study in Busan, South Korea. Energy 2018, 150, 702–708. [CrossRef]

18. Kunwar, N.; Cetin, K.S.; Passe, U.; Zhou, X.; Li, Y. Energy savings and daylighting evaluation of dynamic
venetian blinds and lighting through full-scale experimental testing. Energy 2020, 197, 117190. [CrossRef]

19. Srisamranrungruang, T.; Hiyama, K. Balancing of natural ventilation, daylight, thermal effect for a building
with double-skin perforated facade (DSPF). Energy Build. 2020, 210, 109765. [CrossRef]

20. Souza, L.C.; Souza, H.A.; Rodrigues, E.F. Experimental and numerical analysis of a naturally ventilated
double-skin façade. Energy Build. 2018, 165, 328–339. [CrossRef]

21. Mejjaouli, S.; Alzahrani, M. Decision-making model for optimum energy retrofitting strategies in residential
buildings. Sustain. Prod. Consum. 2020, 24, 211–218. [CrossRef]

22. Al-Awsh, W.A.; Qasem, N.A.A.; Al-Amoudi, O.S.B.; Al-Osta, M.A. Experimental and numerical investigation
on innovative masonry walls for industrial and residential buildings. Appl. Energy 2020, 276, 115496.
[CrossRef]

23. Alaidroos, A.; Krarti, M. Optimal design of residential building envelope systems in the kingdom of Saudi
Arabia. Energy Build. 2015, 86, 104–117. [CrossRef]

24. Krarti, M.; Howarth, N. Transitioning to high efficiency air conditioning in Saudi Arabia: A benefit cost
analysis for residential buildings. J. Build. Eng. 2020, 31, 101457. [CrossRef]

25. Li, D.; Lam, J. Predicting vertical luminous efficacy using horizontal solar data. Lighting Res. Technol. 2001,
33, 25–42. [CrossRef]

26. Shishegar, N.; Boubekri, M. Quantifying electrical energy savings in offices through installing daylight
responsive control systems in hot climates. Energy Build. 2017, 153, 87–98. [CrossRef]

27. Do, S.L.; Shin, M.; Baltazar, J.-C.; Kim, J. Energy benefits from semi-transparent bipv window and
daylight-dimming systems for IECC code-compliance residential buildings in hot and humid climates.
Sol. Energy 2017, 155, 291–303. [CrossRef]

28. Reffat, R.M.; Ahmad, R.M. Determination of optimal energy-efficient integrated daylighting systems into
building windows. Sol. Energy 2020, 209, 258–277. [CrossRef]

http://dx.doi.org/10.1016/j.apenergy.2010.07.029
http://dx.doi.org/10.1016/0360-5442(96)00051-5
http://dx.doi.org/10.1016/j.enbuild.2015.06.004
https://www.ecra.gov.sa/en-us/MediaCenter/DocLib2/Pages/SubCategoryList.aspx?categoryID=4
https://www.ecra.gov.sa/en-us/MediaCenter/DocLib2/Pages/SubCategoryList.aspx?categoryID=4
http://dx.doi.org/10.1016/j.buildenv.2015.11.008
http://dx.doi.org/10.1016/j.applthermaleng.2019.03.102
http://dx.doi.org/10.1016/j.enbuild.2011.10.005
http://dx.doi.org/10.1016/j.rser.2014.09.020
http://dx.doi.org/10.1016/j.enbuild.2015.09.024
http://dx.doi.org/10.1016/j.enbuild.2011.07.001
http://dx.doi.org/10.1016/j.apenergy.2013.08.050
http://dx.doi.org/10.1016/j.enbuild.2012.10.034
http://dx.doi.org/10.1016/j.energy.2018.03.006
http://dx.doi.org/10.1016/j.energy.2020.117190
http://dx.doi.org/10.1016/j.enbuild.2020.109765
http://dx.doi.org/10.1016/j.enbuild.2018.01.048
http://dx.doi.org/10.1016/j.spc.2020.07.008
http://dx.doi.org/10.1016/j.apenergy.2020.115496
http://dx.doi.org/10.1016/j.enbuild.2014.09.083
http://dx.doi.org/10.1016/j.jobe.2020.101457
http://dx.doi.org/10.1177/136578280103300107
http://dx.doi.org/10.1016/j.enbuild.2017.07.078
http://dx.doi.org/10.1016/j.solener.2017.06.039
http://dx.doi.org/10.1016/j.solener.2020.08.086


Energies 2020, 13, 5836 15 of 16

29. Sabry, H.; Sherif, A.; Gadelhak, M.; Aly, M. Balancing the daylighting and energy performance of solar screens
in residential desert buildings: Examination of screen axial rotation and opening aspect ratio. Sol. Energy
2014, 103, 364–377. [CrossRef]

30. Sherif, A.; Sabry, H.; Rakha, T. External perforated solar screens for daylighting in residential desert buildings:
Identification of minimum perforation percentages. Sol. Energy 2012, 86, 1929–1940. [CrossRef]

31. Sherif, A.H.; Sabry, H.M.; Gadelhak, M.I. The impact of changing solar screen rotation angle and its opening
aspect ratios on daylight availability in residential desert buildings. Sol. Energy 2012, 86, 3353–3363.
[CrossRef]

32. Sepúlveda, A.; De Luca, F.; Thalfeldt, M.; Kurnitski, J. Analyzing the fulfillment of daylight and overheating
requirements in residential and office buildings in Estonia. Build. Environ. 2020, 180, 107036. [CrossRef]

33. Li, D.H.W.; Wong, S.L.; Tsang, C.L.; Cheung, G.H.W. A study of the daylighting performance and energy
use in heavily obstructed residential buildings via computer simulation techniques. Energy Build. 2006,
38, 1343–1348. [CrossRef]

34. Toutou, A.; Fikry, M.; Mohamed, W. The parametric based optimization framework daylighting and energy
performance in residential buildings in hot arid zone. Alex. Eng. J. 2018, 57, 3595–3608. [CrossRef]

35. Dabe, T.J.; Adane, V.S. The impact of building profiles on the performance of daylight and indoor temperatures
in low-rise residential building for the hot and dry climatic zones. Build. Environ. 2018, 140, 173–183.
[CrossRef]

36. Huang, Y.; Niu, J.-l.; Chung, T.-m. Comprehensive analysis on thermal and daylighting performance of
glazing and shading designs on office building envelope in cooling-dominant climates. Appl. Energy 2014,
134, 215–228. [CrossRef]

37. Taleb, H.M.; Antony, A.G. Assessing different glazing to achieve better lighting performance of office
buildings in the United Arab Emirates (Uae). J. Build. Eng. 2020, 28, 101034. [CrossRef]

38. Liu, M.; Heiselberg, P.K.; Antonov, Y.I.; Mikkelsen, F.S. Parametric analysis on the heat transfer, daylight and
thermal comfort for a sustainable roof window with triple glazing and external shutter. Energy Build. 2019,
183, 209–221. [CrossRef]

39. Building Performance Analysis Software, Autodes. Available online: https://www.Autodesk.Com/products/
insight/overview (accessed on 1 August 2020).

40. IES. IES LM-83-12 IES Spatial Daylight Autonomy (SDA) and Annual Sunlight Exposure (ASE);
Illuminating Engineering Society: New York, NY, USA, 2013.

41. Costanzo, V.; Gianpiero, E.; Marletta, L.; Pistone Nascone, F. Application of climate based daylight modelling
to the refurbishment of a school building in Sicily. Sustainability 2018, 10, 2653. [CrossRef]

42. Leed v4, Leed bd+c: Healthcare, the U.S. Green Building Council. 2005. Available online: https://www.
Usgbc.Org/credits/healthcare/v4-draft/eqc-0 (accessed on 24 June 2019).

43. Lee, J.; Boubekri, M.; Liang, F. Impact of building design parameters on daylighting metrics using an analysis,
prediction, and optimization approach based on statistical learning technique. Sustainability 2019, 11, 1474.
[CrossRef]

44. Weather Data, Energyplus. Available online: https://energyplus.Net/weather (accessed on 1 August 2020).
45. American Society of Heating, Refrigerating and Air Conditioning Engineers, Ashrae Guideline 14-2002, Measurement of

Energy and Demand Savings—Measurement of Energy, Demand and Water Savings; ASHRAE: Atlanta, GA,
USA, 2002.

46. Rashwan, A.; El Gizawi, L.; Sheta, S. Evaluation of the effect of integrating building envelopes with parametric
patterns on daylighting performance in office spaces in hot-dry climate. Alex. Eng. J. 2019, 58, 551–557.
[CrossRef]

47. Alhagla, K.; Mansour, A.; Elbassuoni, R. Optimizing windows for enhancing daylighting performance and
energy saving. Alex. Eng. J. 2019, 58, 283–290. [CrossRef]

48. Alghoul, S.K.; Rijabo, H.G.; Mashena, M.E. Energy consumption in buildings: A correlation for the influence
of window to wall ratio and window orientation in Tripoli, Libya. J. Build. Eng. 2017, 11, 82–86. [CrossRef]

49. Xue, P.; Li, Q.; Xie, J.; Zhao, M.; Liu, J. Optimization of window-to-wall ratio with sunshades in china low
latitude region considering daylighting and energy saving requirements. Appl. Energy 2019, 233–234, 62–70.
[CrossRef]

http://dx.doi.org/10.1016/j.solener.2014.02.025
http://dx.doi.org/10.1016/j.solener.2012.02.029
http://dx.doi.org/10.1016/j.solener.2012.09.006
http://dx.doi.org/10.1016/j.buildenv.2020.107036
http://dx.doi.org/10.1016/j.enbuild.2006.04.001
http://dx.doi.org/10.1016/j.aej.2018.04.006
http://dx.doi.org/10.1016/j.buildenv.2018.05.038
http://dx.doi.org/10.1016/j.apenergy.2014.07.100
http://dx.doi.org/10.1016/j.jobe.2019.101034
http://dx.doi.org/10.1016/j.enbuild.2018.11.001
https://www.Autodesk.Com/products/insight/overview
https://www.Autodesk.Com/products/insight/overview
http://dx.doi.org/10.3390/su10082653
https://www.Usgbc.Org/credits/healthcare/v4-draft/eqc-0
https://www.Usgbc.Org/credits/healthcare/v4-draft/eqc-0
http://dx.doi.org/10.3390/su11051474
https://energyplus.Net/weather
http://dx.doi.org/10.1016/j.aej.2019.05.007
http://dx.doi.org/10.1016/j.aej.2019.01.004
http://dx.doi.org/10.1016/j.jobe.2017.04.003
http://dx.doi.org/10.1016/j.apenergy.2018.10.027


Energies 2020, 13, 5836 16 of 16

50. Mangkuto, R.A.; Rohmah, M.; Asri, A.D. Design optimisation for window size, orientation, and wall
reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings
in the tropics. Appl. Energy 2016, 164, 211–219. [CrossRef]

51. Leung, C.K.; Lu, L.; Liu, Y.; Cheng, H.S.; Tse, J.H. Optical and thermal performance analysis of aerogel glazing
technology in a commercial building of Hong Kong. Energy Built Environ. 2020, 1, 215–223. [CrossRef]

52. Chinazzo, G.; Wienold, J.; Andersen, M. Combined effects of daylight transmitted through coloured glazing
and indoor temperature on thermal responses and overall comfort. Build. Environ. 2018, 144, 583–597.
[CrossRef]

53. Chen, X.; Zhang, X.; Du, J. Glazing type (colour and transmittance), daylighting, and human performances
at a workspace: A full-scale experiment in Beijing. Build. Environ. 2019, 153, 168–185. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.apenergy.2015.11.046
http://dx.doi.org/10.1016/j.enbenv.2020.02.001
http://dx.doi.org/10.1016/j.buildenv.2018.08.045
http://dx.doi.org/10.1016/j.buildenv.2019.02.034
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Principal Design Variables for Daylighting in a Residential Building 
	Methodology 
	Building Description 
	Design Variables 
	Assessment of Daylighting and Energy Performance 

	Result 
	Assessment of Daylighting Performance 
	WWRs 
	External Shadings 
	Types of Glazing 

	Energy Performance Assessment of Design Variables 
	The Monthly Energy Consumption Comparison between the Data of the Reference Villa and Energy Simulation 
	The Energy Performance of Design Variables 


	Discussion 
	Conclusions 
	References

