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Abstract: On becoming a commodity, Microgrids (MGs) have started gaining ground in various
sizes (e.g., nanogrids, homegrids, etc.) and forms (e.g., local energy communities) leading an
exponential growth in the respective sector. From demanding deployments such as military bases
and hospitals, to tertiary and residential buildings and neighborhoods, MG systems exploit renewable
and conventional generation assets, combined with various storage capabilities to deliver a completely
new set of business opportunities and services in the context of the Smart Grid. As such systems
involve economic, environmental and technical aspects, their performance is quite difficult to evaluate,
since there are not any standards that cover all of these aspects, especially during operational stages.
Towards allowing an holistic definition of a MG performance, for both design and operational stages,
this paper first introduces a complete set of Key Performance Indicators to measure holistically the
performance of a MG’s life cycle. Following, focusing on the MG’s day-to-day operation, a data-driven
assessment is proposed, based on dynamic metrics, custom made reference models, and smart
meter data, in order to be able to extract its operational performance. Two different algorithmic
implementations (i.e., Dynamic Time Warping and t-distributed Stochastic Neighbor Embedding)
are used to support the methodology proposed, while real-life data are used from a small scale
MG to provide the desired proof-of-concept. Both algorithms seem to correctly identify days and
periods of not optimal operation, hence presenting promising results for MG performance assessment,
that could lead to a MG Performance Classification scheme.

Keywords: microgrid; performance; key performance indicators; t-SNE; dynamic time warping

1. Introduction

An increasing amount of industrial and commercial key stakeholders have shifted their attention
to the Microgrid (MG) concept over the past few years [1]. Various MG-related viable solutions, both in
terms of hardware and software products, have been recently introduced to the markets. Combined
with the exponential escalation of renewable energy resources (RES) penetration, and the highly diverse
technologies for energy storage that are promoted at the European Union (EU) level (e.g., Reference [2]),
MGs have proven to be a flexible and active building block for the Smart Grid. The overall benefits
from the incorporation of MGs into existing distribution grids range from improved efficiency to
increased reliability and resiliency, even in extreme cases such as black start and grid restoration after
natural disasters.

According to IEEE, a MG is “a group of interconnected loads and distributed energy resources (DERs)
with clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid and
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can connect and disconnect from the grid to enable it to operate in both grid-connected or island modes” [3,4].
In that context, the MG concept aims to maximize the balance between energy demand and supply
for a group of consumers and producers, ensuring reliability in both grid-connected and islanded
situations. In order to achieve this at sensible energy costs and in an effective way that optimally
combines various RES, Energy Storage Systems (ESS), and conventional generators, there are certain
financial and technical criteria that are required to be met.

Nevertheless, although MGs are gaining more and more attention, tools and procedures that
define and assess their overall performance are still eluding of proper standardization, and in some
cases profound understanding. As it will be presented in the following paragraphs (see Section 2),
there have been several endeavours to properly draft a framework that addresses all aspects that
define this rather complex and challenging problem, mainly due to the extremely vast product
range (e.g., inverters, inverters/chargers, converters, etc.) but even more due to their highly vast
configuration combinations (e.g., AC vs. DC, centralised vs. decentralised, etc.). Despite the invested
effort, in most cases these frameworks are focusing on reliability and financial aspects, and even more
specifically they correspond to the design phase, not the actual MG operation.

Furthermore, when discussing about performance of such complex and highly heterogeneous
systems, it is quite often required to have detailed information on every asset deployed. This fact
increases significantly the amount of information required and even more the effort that is needed
to adequately understand all the necessary interrelations that can lead to the delivery of an accurate
performance assessment. The endeavours should not only focus on providing evaluation insight for
a MG operator, but also on offering comparative potential between different MGs. Through such
assessment frameworks, sharing of best practices and solutions to common challenges can be facilitated,
leading potentially to the increase of MG performance worldwide.

In an effort to holistically cover all aspects that define a MG’s performance during real-life operation,
this work initially presents a thorough framework that consists of numerous multi-dimensional Key
Performance Indicators (KPIs) that successfully cover the most commonly found MG applications. Further
on, and towards evaluating the operational performance, a data-driven performance assessment
methodology is presented, following two different algorithmic implementations, aiming to understand
and document the MG’s performance from the data perspective, without requiring detailed information
about each and every deployed asset. By employing known best practices in performance assessment
from other applications, a reference model has been created for each KPI. By comparing any MG’s
data with this reference model, objective assessment of its overall MG performance is possible.

This paper is structured in five sections—Section 2, presents a brief overview of related research
results over the last decade. In Section 3 a detailed introduction is delivered on the holistic performance
framework, followed by the data-driven performance assessment approaches and the MG testbed
used for as experimental setup. Results over the introduced framework are presented in Section 4,
and finally, Section 5 is devoted to conclusions and future work.

2. Related Work

Over the last decade there has been significant research on MGs in general, but also in particular
towards understanding the aspects that define MG performance, evaluating a variety of KPIs on
multiple levels and within the categories presented above. It needs to be highlighted that the term
“performance” in MGs is still under discussion and in more than a few cases the interpretation varies,
the majority of which researching just stability under various use cases (i.e., transition, high penetration
of renewable energy, and more). In addition, there are a lot of instances were different metrics are
presented, however the context remains the same, even though, as it will be highlighted below,
with certain ambiguities involved.
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2.1. Performance Indicators for MG Assessment

As the majority of research endeavours is performed at simulation level, their results can be
applied mainly for (re-)design purposes. Bollen et al. [5] almost ten years ago presented very basic
requirements in terms of MG operation such as voltage and frequency characteristics (magnitude,
fluctuations, dips, etc.) as well other reliability metrics already defined for the distribution network
such as the Customer Average Interruption Duration and Frequency Indeces (CAIDI and CAIFI,
respectively), and the System Average Interruption Duration and Frequency Indeces (SAIDI and
SAIFI, respectively). A few years after, Rahim and Hussain [6] evaluated the performance of their MG
model by assessing the overall stability through detailed simulations, highlighting the fact that the
energy mix from PV and wind generation should be carefully controlled so as to maintain the overall
system stability. In terms of metrics from the MG perspective the focus is solely on voltage and power
measurements, as well as the eigen values from the small signal analysis.

Taking it a step further, the same year, Wang et al. [7] introduced specific indexes for not only
reliability, but also financial assessment. Using as a starting point the IEEE Standard 1366–2001 as well
as previous work on the field [8], 19 metrics were introduced to assess both the reliability and economic
MG performance. Results from a two step Monte Carlo simulation present interesting outcomes
in terms of comparative foundation, however this work reflects only steady-state performance and
neglects dynamic aspects of MG stability evaluation.

A more complex approach was followed by the Department of Energy of the Unites States
of America, in an effort to meet their already defined national objectives for MG deployment [9].
Exploring revenue and environmental aspects during grid-connected operation, critical load reliability
and longevity, priority load service for non-critical yet important loads, as well as other environmental
and budgetary constraints, a design tool has been introduced towards planning MG deployment in
real-life scenarios, while a performance/reliability model assess reliability and cost parameters on the
simulated design results. Again, simulation results present very promising outcomes, nevertheless the
application of such tool remains to be seen in real-life MG operation towards evaluating it’s real-life
performance. Although more complete as an evaluation toolset, the metrics list could not be recovered
in total to replicate the indexes presented.

Moving from not only design but also operation evaluation, Gabbar et al. [10] introduced not only
reliability, economic and environmental indicators, but also power quality related ones, presenting a
more complete range of metrics for the MG lifecycle. In total 25 KPIs are demonstrated to fully
cover the mentioned aspects and a multi-objective function has been defined (Figure 1), to research
their combined impact to the MG performance based on the interrelation between KPIs and MG
assets/components (i.e., diesel generators, PV, wind turbines, battery, AC load, etc.).

Figure 1. Interrelation between microgrid (MG) components and Key Performance Indicators (KPIs) [10].
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Solving an objective function that takes into account that interrelation, a method is first introduced
for creating high level metrics for evaluating a MG’s performance. Nevertheless, within the case
studies examined in the presented work only 11 KPIs are actually used and assuming that their effect
is uniform.

In a similar manner, and taking into account that MGs are considered active building blocks for
Smart Grids (or that Smart Grid principles apply in MGs as well), the work of Personal et al. [11] is also
evaluated, as it presents an extended list of indicators, grouped per objective and macro-objective for
assessing the Smart Grid goals, covering 21 indicators (Figure 2), which at a high level cover besides
the four main categories introduced above most innovative aspects, such as vehicle-to-grid (V2G),
mini-generation, and more. The main difference, besides the higher level approach, is identified in the
fact that each KPI has a different weight in the objective function defined to explore their combination.
However, these weights are said to be found empirically and are not included in the work presented,
hence once again the paradigm cannot be replicated. Even though the latter KPIs can be used for
assessing Smart Grid goals, they are not necessary for evaluating its performance, and even more they
cannot be considered actually essential for MG performance assessment. Although, it is important to
consider the fact that KPIs do have different impact on the overall MG performance.

Figure 2. Smart Grid Assessment through Indicators, Objectives, and Macro-objectives [11].

Following, the work of Rangel et al. [12] is based upon less metrics and multi-objective functions
per case for grid-connected MGs. Through hardware-in-the-loop (HIL) validation, the work focuses
only on very specific metrics, such as the levelized cost of energy (LCoE); the total demand curtailed;
the total purchased energy; the amount of fuel consumed; as well as power violations. Finally, in a
recent work from Pinceti et al. [13] a series of technical indicators for MGs are introduced divided
into power quality, energy efficiency, and conventional generators stress indicators. Once again the
categories and the names of the KPIs are not consistent, even thought the technical aspects that are
essential when assessing a MG are well known.



Energies 2020, 13, 5780 5 of 36

2.2. Data-Driven Approaches for Performance Assessment

There are quite a few examples in literature with new researching approaches for MG challenges
were different metrics are used to highlight the results. Nevertheless, even in new standards there
are not any procedures defined that can assess the MG’s performance through these KPIs. Just like
buildings and Energy Performance Certificates, a performance assessment framework for MGs will be
most likely required in the years to come. However, scaling up the notion from buildings to MGs would
not be a sustainable solution, as the amount of information required would be quite cumbersome
to analyse, and quite the human and computational workload would be required. Hence, in an
effort to use the context-rich data offered by the KPIs provided, a data-driven approach is required
to identify how these can actually provide an overview of the entire MG’s performance. Such an
approach would comprise the foundation for assessing and comparing MGs in overall and regardless
deployment-specific barriers. Although quite less in terms of detail, the KPIs presented still offer quite
thhe multi-dimensional challenge.

Dimensionality reduction methods manage to extract low-dimensional representations of
high-dimensional data, which is crucial for data-driven performance analysis, in absence of well-defined
ground truth target labels for classification or regression. The low-dimensional representations allow the
analyst to explore the available information and discover patterns that can then be linked to their expert
knowledge. The literature of dimensionality reduction is rich with linear or non-linear methods, such as
PCA [14], MDS [15], the general framework of graph embedding [16], and so forth, which try to unfold
a low-dimensional manifold on which the data lie inside the high-dimensional space. Methods such
as t-SNE [17] have shown high performance in distinguishing both the local and global formations
of the high-dimensional input space. Combinations of Dimensionality reduction techniques also
find use in Business Intelligence systems. Applying Dynamic Time Warping and Granger Causality
iteratively to industrial time series, leading indexes have been extracted, whereas implementing
adaptive agglomerative clustering has finally resulted in main indicator determination [18].

Applications of performance measurement and analysis have benefited from the use of
dimensionality reduction methods, as a means to explore the measurement space and discover areas
of high or low performance. In mobile network applications, graph-based dimensionality reduction
techniques have been used to map users of cell phones on the two-dimensional plane, based on
their behavioural similarities [19]. The resulting mapping allowed the visual distinction of separate
groups of users with similar behaviour and their characterization with respect to normal or abnormal
behaviour, based on the amount of call activity. Clustering methods have also been used in the
cellular network literature to discover associations between performance indicators of the network [20].
Estimating user experience is also taking advantage of unsupervised learning, as in the case of video
viewing assessment in Content Delivery Networks. K-means algorithm was fitted on a dataset of logs
and requests forming meaningful clusters of user sessions and extracting clear KPI patterns [21].

3. Materials & Methods

3.1. Microgrid Key Performance Indicators

Following the state-of-the-art analysis in Section 2, a wide range of KPIs are introduced for
holistically assessing MG performance. In total six categories have been identified, however with a
certain degree of overlapping among them. In each of the categories, we define a set of KPIs with
specific equations that allow precise quantification, provided that the required data can be gathered.
Depending on their availability, further performance indicators can be defined to provide even more
insight on the quality of technical and economic MG design decisions. Thus, measuring and assessing
MG performance includes various metrics, which can be aggregates in the following main categories:

• Economy means that certain levels of reliability and efficiency can only be met in an economic
context where both use of resources during operation and expenditures for equipment like supply
infrastructure and generation and storage facilities are taken into account. Important features that
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include the financial energy exchange with the grid as well as the overall cost minimization to
supply the required demand are included.

• Environmental criteria introduce the optimal use of renewable resources in the overall MG
operation, thus reducing energy generated from fossil fuels from the utility grid or even from
assets within the MG (e.g., diesel generators) and as such minimizing emissions from the
MG infrastructure

• Reliability of a system has to do with its ability to provide electricity to the MG consumers at the
time and in the amount that it is requested

• Resiliency has to do with the capability of the system to respond to various failures such as asset
outages, control and/or communication equipment malfunctions

• Power Quality describes parameters such as deviations in voltage magnitude and frequency from
desired values, distortion of voltage and current waveforms, phase imbalance, and occurrence
of various types of short-term voltage variations. These parameters must be within the suitable
tolerance ranges for operation of given consumer equipment.

• Efficiency refers to the use of resources that is needed to fulfil the consumer demands. Since MGs
by definition include electricity generation resources, maximizing the use of renewable and
emission-free resources is the key aspect here, while also average and peak demand reduction is
explored along with accuracy, flexibility, and so forth. Within this category other metrics can also
be included, which are not normally assessed in the literature. Such metrics are the accuracy of
various components, the deviation from an operational schedule, and so forth.

Another classification of the aforementioned KPIs separates them into static and dynamic. The first
category refers to KPIs that are defined and calculated during the design or redesign phase of a MG
and cannot be considered as time-series, whereas the second one introduces KPIs that change over
time and are highly dependent on the temporal domain. To avoid confusion, at this point the KPIs are
presented regardless of whether they are static or dynamic. However, for the data-driven approach
followed within the presented approach, only dynamic KPIs will be evaluated, as will be clarified in
Section 3.2 This clarification is provided within the following sections where needed and it will also
be evaluated during implementation and visualisation of the results during MG evaluation either at
simulation or real-time application.

In each of these categories, a set of performance indicators has been identified or defined,
allowing precise quantification of the above aspects, provided that the required data can be gathered.
Depending on the later, further performance indicators can be defined to provide even more insight
on the quality of technical and economic MG design decisions. All of the KPIs, their description
and mathematical representation, along with key aspects that makes each one of them important are
provided in detail in the appendixes of this manuscript. Nevertheless, an overview of the KPIs in each
category is presented in the following paragraphs, highlighting some key points per KPI.

3.1.1. Economy

When considering economics we not only need to look at operation strategies and cost, but also
at required equipment. This means that both operational expenditure (OPEX) and capital expenditure
(CAPEX) should be taken into account. Therefore the question of economic viability is always part of
the MG design phase already. In essence the idea behind the economic evaluation is to define a matrix of
possible asset configurations and operation strategies, configure assumptions about demand, resource
availability and asset prices, and then simulate operation across a certain time period (e.g., some years)
and calculate the resulting total expenditure (TOTEX) [22].

Specifically, OPEX can be further divided into sub-metrics due to the different aspects that can
be identified within a MG. Starting from the maintenance cost (MAINTEX), the fuel cost (mainly
for diesel generators—FCEGEX), the OPEX metric is divided into more clear indicators for the MG
needs. These are significant KPIs, especially when exploring the operational MG sustainability,
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as well as return of investment (ROI) parameters. Beyond commonly found metrics, this work
also cover the energy transaction perspective that occurs with the grid. Either as a cost (AEPEX)
or an income (AESINC), the microgrid is able to trade electricity as an active stakeholder to energy
markets. From simple net-metering schemes, to complex dynamic pricing Demand Response programs,
these KPIs elaborate on the added-value that the MG presents through ancillary services to the
Smart Grid.

Another set of financial-related metrics that have been identified as necessary for the economy
category are the levelized costs of energy (LCoE) for the three different generation (including energy
provided from energy storage systems) technologies explored in the context of a MG infrastructure.
These LCoE metrics provide an effective tool to compare different energy resource technologies with
different lifetimes, cost structures, and capacity factors from an economical perspective [23]. Generally,
the LCoE metric presents the cost to build and operate a power generation facility, divided by the
total power output over the lifetime of the facility. In the present work, the most commonly existing
deployment (i.e., PVs plus ESSs) is considered and explored.

All economic KPIs that have been identified are documented in detail in Appendix A.

3.1.2. Environmental

These performance indicators target to reveal how environmental friendly is the MG. Thus the
optimal use of Renewable Energy Resources (RES) is explored in order to depict the energy savings
in general for both grid-connected and islanded operation. These savings can be directly translated
into Greenhouse Gas Emissions, or more easily in carbon dioxide (CO2) emissions through the use of
specific coefficients [24] based on the energy mix used to produce the energy consumed under no-RES
operation. Moreover, since in EU there is already a framework for reducing greenhouse gas emissions,
accompanied by a penalty system for CO2 emissions excess under the EU Emissions Trading System
Directive [25], a financial approach is also investigated towards weighting the significance of such
penalties in the MG operation.

These metrics are important when assessing the environmental footprint of the MG. Although not
directly critical for the actual operation, they provide meaningful indirect information for both
efficiency and economic variables. The RES penetration (RESPEN) can provide a good insight of
the actual coverage at any given moment, whereas the reduction of GHG emissions (GHGRED),
accompanied by the Reduction of Carbon Penalties (PNLRED) allow an easy to understand way to
quantify an environmental friendly (or not) performance. More information on these KPIs is provided
in Appendix B.

3.1.3. Reliability

When designing MGs, reliability represents one of the most important (if not the most important)
aspects. The reliability study of MGs, however, is a very complex subject because there are several
issues to be taken into account, each with its own peculiarity. Under normal operation, utilities measure
reliability by counting supply interruption duration, interruption frequencies, and calculating certain
distinct metrics.

The most commonly used indices are those defined in IEEE Standard 1366–2003 [26]. To address
MG performance in terms of reliability, the metrics that are taken into consideration cover both constant
and dynamic indices. The latter are the ones that actually depict the operational condition of the
designed MG, whereas the former are an estimation based on certain assumptions.

More well known and well established indices have been defined in the IEEE Standard
1366–2003 [26] towards measuring system and customer reliability. In particular, the most commonly
used are SAIDI, SAIFI, CAIDI, and CAIFI.

Supply interruptions in this mode of operation can be caused by different events: Short circuits are
the most common reason. Any electrical equipment where a short circuit occurs must be disconnected
as soon as possible to prevent further damage. This is done automatically by protection relays and
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fuses and can result in consumer outages. Short circuits can be caused by deterioration of isolation
material, dirt accumulation, human error (e.g., switching mistakes), lightning strokes, animals, earth
works, and so forth. Malfunction of protection relays often also results in interruptions.

As it is really difficult to actually measure such metrics from the MG perspective, as well as due to
the large amount of statistical information and further assumptions that are required for a meaningful
analysis of such reliability indices, an assessment of the original metrics is quite cumbersome or even
infeasible. Therefore, the authors have redefined the aforementioned KPIs in a manner that they can
correspond better to a MG’s operation (i.e., LAIDI, LAIFI, MGAIDI, MGAIFI).

Following the same principles as above, where the loads are of utmost importance for the MG
in general, additional reliability KPIs need to be presented. As any system, to be able to assess
something, it is essential to first being able to monitor it at any given moment. Towards that direction
the Load Monitoring Coverage (LDCOV) has been introduced. But load coverage does not stop there.
To support ancillary services and optimal operation, it is important to have knowledge over how
much flexible loads are present, and thus how much demand can be curtailed or shifted, for servicing
multiple business or technical requirements (i.e., Demand Response request or maintenance needs).
Hence, a KPI for flexible load integration (LDFLEX) needs to be provided.

From there on, to able to support a reliable MG, it is necessary to have knowledge of the balance
between supply and demand. Different KPIs can quantify such knowledge. From RES (RESCOV),
to Diesel (DGCOV), and ESS (ESSA, ESSANoRES, SCC) coverage metrics have been introduced.

These KPIs are quite important in the general performance of the MG, but are extremely essential
for anticipating and planning potential islanded occurrences, as they will be defining the timeframe
under which the MG will remain operational. For a clearer understanding of the new metrics as well
as other reliability KPIs, the reader is redirected Appendix C.

3.1.4. Resiliency

As previously explained, system resiliency is the capability to be able to continue to operate
within acceptable limits after certain failures occur upon the system for various reasons. In general,
the resilience of a MG can be estimated during the design phase by calculating two metrics, the Systems
Resilience Factor (SRF) and the Units Resilience Factor (URF). However, even though this can be
useful for anticipating failures and estimating how resilient the system is, there is also a need to
be able to provide quantified resiliency metrics while the system is operational. Thus, after the
first two KPIs which are static, the authors present indicators that can evolve dynamically and
provide a more accurate description of how resilient the MG is, in terms of general duration and
reaction times (i.e., SPFSR and DUROSPF), as well as voltage (VLTDEVSPF), frequency (FQDEVSPF),
active (PDEVSPF) and reactive (QDEVSPF) power deviations during a single-point failure occasion.

These KPIs are not usually considered beyond the design of the MG, and even more after such
events have occurred, given the rarity of them. Most systems do not even provide reports of that kind
of metrics. Nevertheless, even though rare, such metrics could enable early detection of critical issues
as well as the necessary knowledge for preventing future ones. A detailed description of these KPIs
can be found in Appendix D.

3.1.5. Power Quality

Power Quality can be analysed using standard EN 50160 [27]. There, limits for all quantities
associated with voltage are defined (amplitude, frequency, Total Harmonic Distortion, flicker,
unbalances). To fulfil the requirements of the standard, the examined quantities have to stay within the
defined limits for a certain amount of time (e.g., 95%). Usually one week is analysed when checking if
power quality requirements are fulfilled.

The drawback of doing a power quality analysis with standard EN 50160 is that there is no
more information than requirements are fulfilled or are not fulfilled. Hence, if a deeper analysis of
power quality parameters shall be conducted, new criteria have to be defined. In the this manuscript,
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detailed criteria to analyse power quality are described. The focus is put on voltage and frequency
fluctuations (i.e., FQR, FQSTD, VLTR, and VLTSTD) because these two parameters are the most critical
ones. Generator protection gets triggered depending on frequency and voltage deviations. Hence, it is
essential to keep these parameters within a certain range to prevent blackouts. Detailed quantification
of real-time development of these metrics, along with other KPIs, can reveal issues in terms of for
example, RES penetration, that are not easy to catch in daily or monthly measures, and can be critical
when occurring simultaneously with a transition to islanded operation.

In addition, the Total Harmonic Distribution is also included, for well known reasons, whereas an
additional indicator in terms of Asymmetric load charge is presented, to assess the distribution of the
MG demand, but also given the recent interest in phase balancing as an ancillary service to the grid.
All Power Quality KPIs are available in detail in Appendix E.

3.1.6. Efficiency

MG efficiency includes mostly metrics that provide some sort of feedback as to how well the MG
performs under normal operation conditions. This definition of efficiency has added value mostly in
deployments where there is RES-based electricity generation within the premises of the MG. If the
electricity demand is always higher than the solar and/or wind-based generation and there is no
relevant minimum operating level of other generation, then the VRE (variable renewable energy,
meaning wind turbines and PVs) generation does not need to be curtailed at any time, and operational
strategies of demand response do not have an impact on efficiency (in this case storage is never really
needed and hence should not be used, since it always involves losses).

During island operation, if there is more VRE-based power injection available at one point in time
than there is electricity demand, then flexibility is needed to establish the power balance. This can be
done by any combination of:

• Reducing feed-in from VRE sources (curtailment)
• Demand response (increasing the load to match the high available generation)
• Making use of storage facilities for electricity (batteries)

Using demand response and storage is likely to increase efficiency in terms of maximising use of
RES, but also considering curtailment is useful from an economic perspective.

In grid-connected operation there is typically no need for any demand response or storage
application, unless there are incentives for minimizing power exchange (or exchange of energy
altogether) with the external system. If such incentives are considered, then the share of renewable
generation that is stored or consumed locally without ever being exchanged with the grid is also an
indicator of efficiency.

To provide an overview in terms of MG efficiency the KPIs presented in Appendix F have been
defined based on previous work on Smart Grids [11]. Special interest is denoted to the capability to
reduce demand, both in general (ROED) and peak (RRD) values, but also to the algorithms deployed
to optimize the MG management (DOTO). As most of them require forecasting algorithms to optimally
schedule MG operation, these should also be evaluated (i.e., LDFA, RESPFA, UPFL).

Up to this point, a holistic performance assessment framework has been presented to cover all
MG performance aspects. To the knowledge of the authors, all of the above KPIs are required to have
an overall understanding of whether a MG will or is currently operating as good as it can. However,
not all of the above KPIs are needed for the real-time assessment of a MG’s performance. Therefore,
only a subset of the presented KPIs has been selected for the second part of the presented methodology
of this manuscript.

3.1.7. Dynamic KPIs and Reference Values

As this work introduces a data-driven approach for evaluating from a higher level perspective
the MG performance, some KPIs were not included in the methodology presented below. The authors
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selected the KPIs (Table 1) that their values change frequently and are more significant for the daily
operation of the MG, in order to proceed with further analysis. More specifically, static KPIs that do
not affect day to day activity and are mainly related to the MG establishment and maintenance like
CAPEX, MAINTEX, REPLEX and so forth have been excluded. On the contrary some annual KPIs like
AESINC and AEPEX were substituted from their equivalent daily KPIs, meaning DESINC and DEPEX.
In addition, Diesel generator related KPIs like FCEGEX, LCoEG and so forth have been removed as
the studied MG has not such assets installed. Finally, the KPIs that are referred to interruptions and
failures were not included in the analysis as their values change only in transient phenomena with
limited duration and this work studies the normal operation which constitute the wider period of the
microgrid operation.

Table 1. KPIs that were used in the study.

GHGRED RESPEN DEPEX DESINC ESSANoRES

ESSA ROED RPD SCC LDFA

RESPFA UPFL DOTO FQR FQSTD

VLTR VLTSTD EALC

Following other performance evaluation schemes (e.g., Building Performance Certificates),
for each KPI a reference value has been created to explore the validity of the methodology adopted.
Even though it is well understood that such reference models should be generic and not specific to a
dedicated infrastructure, towards providing the required proof of concept, the reference models for
each KPI was calculated based on the actual values of the MG examined. Nevertheless, some generic
principles are also present for certain KPIs (i.e., the electrical characteristics of the MG like voltage and
frequency should not refrain from electric grid nominal values, meaning 230 V and 50 Hz respectively
for Greece.) For more dynamic measurements like generated and consumed energy, monthly reference
values were calculated.

3.2. Data-Driven Performance Assessment Analysis

In this section, two data-driven approaches for the performance assessment methodology
suggested are presented: the Dynamic Time Warping (DTW) and the t-distributed Stochastic Neighbor
Embedding (t-SNE).

3.2.1. Dynamic Time Warping—(DTW)

The Dynamic Time Warping (DTW) distance algorithm is a comparison methodology and is used
extensively in many areas of time series analysis and it is a well-known algorithm in scientific literature.
DTW is a seminal time series comparison technique that is first introduced in the 1960s [28] and has
been used extensively for speech and word recognition [29,30] since the 1970s with sound waves as
the source.

The objective of this time series comparison method is to produce a distance metric between two
input time series. The similarity or dissimilarity of two input time series is calculated by converting
the data into vectors and calculating the Euclidean distance between those points in vector space.
Generally, DTW distance metric is as a robust similarity score between two time series where the lower
the number is the more similar the two time series are. Below, the DTW algorithm is presented as
described in Reference [31].

Given two time series X = (x1, x2, ..., xN), N ∈ N and Y = (y1, y2, ..., yM), M ∈ N represented by
the sequences of values (or curves represented by the sequences of vertices) DTW algorithm starts
by building the distance matrix C ∈ RN×M representing all pairwise distances between X and Y time
series. This distance matrix is called the local cost matrix for the alignment of two time series X and Y:
Ci ∈ RN×M : cij = |xi−yj|, i ∈ [1 : N], j ∈ [1 : M].
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Once the local cost matrix built, the algorithm finds the alignment path, called as the warping
path or the warping function, which runs through the low-cost areas on the cost matrix, which defines
the correspondence of an element xi ∈ X to yj ∈ Y following the boundary condition which assigns
first and last elements of X and Y to each other. The cost function associated with a warping path
computed with respect to the local cost matrix (which represents all pairwise distances) is given by:

cp(X, Y) =
L

∑
l=1

c(xnl , yml)

The warping path which has a minimal cost associated with alignment called the optimal warping
path. The DTW distance function DTW(X, Y) = cp∗(X, Y) = min{cp(X, Y), p ∈ PN×M} where PN×M

is the set of all possible warping paths and builds the accumulated cost matrix D which is defined as
follows: D(i, j) = min{D(i−1, j−1), D(i−1, j), D(i, j−1)}+ c(xi, yj), i ∈ [1, N], j ∈ [1, M]). The only
limitation of the algorithm is that time series should be sampled at equidistant points in time.

This technique can be used not only for speech and recognition pattern matching, but also anomaly
detection (e.g., overlap time series between two disjoint time periods to understand if the shape has
changed significantly, or to examine outliers). In our work, DTW will be used to calculate the similarity
between the actual KPIs time series and their reference values.

3.2.2. Low-Dimensional Embedding Using t-SNE

In an attempt to characterize instances of MGs with respect to their performance, we have also
examined embedding the MGs in the two-dimensional plane, which allows the creation of visual maps
of the MGs and the inspection of their structure.

We have used the t-SNE [17] method for the two-dimensional embedding. The t-SNE method
(t-Distributed Stochastic Neighbor Embedding) is a popular dimensionality reduction method that
manages to map high-dimensional points onto a low-dimensional space, so that both local and global
structures of the dataset are apparent. The t-SNE method is based on the earlier SNE (Stochastic
Neighbor Embedding) method [32]. In SNE, the similarity between two data points xi and xj was
taken to be the conditional probability pj|i that xi would pick xj as its neighbor, considering a Gaussian
neighborhood distribution around each data point. The goal was to find low-dimensional points yi
and yj, so that a corresponding lower-dimensional Gaussian conditional distribution qj|i would be as
close to the original distribution as possible. The Kullback-Leibler divergence was used as a measure
of closeness between the distributions [32], which was optimized using gradient descent:

∑
i

KL(Pi||Qi) = ∑
i

∑
j

pj|i log
pj|i
qj|i

. (1)

The t-SNE method improves the SNE method by providing an easier cost function to optimize,
making use of symmetric conditional probabilities between points, thus achieving faster optimization.
It also overcomes a crowding problem arising in SNE, where multiple points were crowded in the
same space, by considering a Student’s t distribution for the low-dimensional points, instead of a
Gaussian one. Under these improvements, the t-SNE method can achieve revealing two-dimensional
visualizations at a small computation time.

In our case, the high-dimensional MG instances are mapped to two-dimensional points, in order
to examine the structure of the resulting mapping. The MG instances considered are the characteristics
of the same MG at different days of the year. Specifically, let us consider a single day of the dataset.
For this day, and for each KPI type c, we collect a time series of KPI measurements, at 15 min intervals:

xc = (xc,1, xc,2, . . . , xc,96). (2)
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There is also a subset of KPIs for which we only have one aggregate daily values. For these KPIs,
each xc is a scalar.

As a pre-processing step, we aggregate the time-series per day by computing their Root Mean
Square (RMS) value:

RMS(xc) =

√√√√ 1
96

96

∑
j=1

x2
c,i. (3)

Considering that the RMS value of a scalar is the same value, we can extend this notation to all
KPIs, including those with only a single value per day. This leads us to a vector x = (x1, x2, . . . , xC),
characterizing a single day, whose elements each correspond to one of the C types of KPIs considered.

Let us now consider that there are N days in the dataset. We can organize the above vectors in a
matrix X ∈ RN×C, where each element Xic is the RMS value of the time series of KPI type c for day i.
Since different KPI types have different scales, we normalize the columns of X by dividing them by
their RMS value across all days. If we let Xc denote the c-th column of X, the normalized column X′c is
computed as:

X′c =
Xc

RMS(Xc)
. (4)

We then supply this normalized feature matrix X′ as input to t-SNE, which results in a matrix
Y ∈ RN×2, where each row is the two-dimensional embedding of the corresponding day in the
original data:

Y = t-SNE(X′). (5)

We can then examine the structure of the resulting embedding, to find areas of interest,
and characterize each area based on the deviations of its points from reference values provided
by experts. Results of this procedure can be found in Section 4.3, below.

3.3. Microgrid Testbed

In order to be able to provide the necessary evaluation and validation of the proposed methodology,
data from a real-life small scale MG have been employed over a time range of a few months. The MG
discussed is a living lab at the Centre for Research and Technology Hellas infrastructure consisting of a
two-floor Smart House building (see Figure 3), equipped with 9.57 kWp PV installation and a 5 kWh
Li-on battery. CERTH Smart House is the first grid-connected MG in Greece and is presented in detail
in Reference [33].

Figure 3. CERTH MG in Greece.

Going into more detail, the electrical design of the MG deployed is depicted in Figure 4. Starting
from the point of common coupling with the Grid (left) and going to towards the loads, an interface
protection relay has been installed to ensure compliance with the Greek regulations in terms of voltage,
frequency, and time restrictions. Following, all loads have been connected in line with a master-slave
configuration of three 3 kW single phase inverter through which it is possible to fully control the
power flow from and to the grid. The PVs are connected on a common AC bus at the output of the
ESS inverters, through a two MPP channel PV inverter of 10kW rated power. The loads follow, with a
nominal capacity exceeding by far generation and storage, however due to asynchronous operation,
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during grid-connected mode around 12–14 kW can be self-consumed, whereas on islanded operation
this is limited to a maximum of 9 kW and only during sufficient PV production. Finally, for the MG
described, a day-ahead and real-time optimisation framework is deployed following state-of-the-art
energy forecasting algorithms for automatically controlling all involved assets based on maximizing
the MG financial and technical aspects. However, these are considered out of scope for the presented
work and are not further analysed.

Figure 4. MG High Level Electrical Design.

4. Results

4.1. KPI Overview

Starting mid 2019 the framework described in Section 3.1 has been deployed to the MG testbed,
starting the data collection, executing and collecting various scenarios (i.e., days without any PV
generation). Either at the 15 min or daily interval, all KPIs are calculated dynamically and stored
automatically to a local database. Due to various technical and non-technical reasons, not all days
have valid data, hence a certain degree of prep-processing is required for the extracting the correct
dataset to be used in the data-driven performance assessment.

The following figures (Figures 5–12) provide a graphical representation of an indicative day of
the MG (i.e., 23/08/2019), as an example. Moreover, Table 2 depicts the aggregated results over the
studied period for certain financial, environmental and reliability KPIs.

Figure 5. Energy Storage System (ESS) Autonomy on the 23 August 2019.
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Figure 6. Storage Coverage Capability on the 23 August 2019.

Figure 7. Renewable Energy Resources (RES) Penetration on the 23 August 2019.

Figure 8. Load Demand Forecasting Accuracy on the 23 August 2019.

Figure 9. RES Production Forecasting Accuracy on the 23 August 2019.
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Figure 10. Frequency Range on the 23 August 2019.

Figure 11. Voltage Range on the 23 August 2019.

Figure 12. Excessive Asymmetric Load Charge on the 23 August 2019.

Table 2. KPIs overview for the studied period.

Name Value

PV production 11,033.592 kWh

Reduction of GHG Emissions 8.540 ton CO2

Voltage Standard Deviation 4.27 V

Frequency Standard Deviation 0.43 Hz

Microgrid Profit 75.35 euro

4.2. DTW

The DTW distance is calculated for a 7 month period in 2019 (June–December) for those days
where there were measurements every 15 min for the entire time of day, a total of 96 measurements.
The whole dataset consists of a total of 144 days, divided into months as follows: June: 19, July: 22,
August: 26, September: 27, October: 15, November: 15, and December: 20.



Energies 2020, 13, 5780 16 of 36

In Figure 13a one can see that reduction of greenhouse gas (GHG) emissions (GHGRED) does
not show large deviations from the reference value throughout the control period (see red line) while,
Energy Storage System Autonomy (ESSA), Energy Storage System Autonomy to Hours without RES
production ratio (ESSANoRES) and SCC, show corresponding deviations from their reference value,
with larger the one of August. In October, a similar phenomenon is observed while in December only
SCC has the larger deviation compared to ESSA and ESSANoRES. On the other side, in Figure 13b
one can see that for Frequency Range (FQR), Voltage Range/Fluctuations (VLTR) and Excessive
Asymmetric Load Charge (EALC) the deviations are nearly zero, except from a small period at the end
September (like ESSA, ESSANoRES and SCC), while for Upward Flexibility (UPFL) the deviations from
references values are quite large with those in August to be the larger ones (like ESSA, ESSANoRES
and SCC) and again in October a large deviation at the end of the month is observed. From Figure 13a,b
we see that when there are large deviations from the reference values this phenomenon is observed in
several KPIs.

(a)

(b)
Figure 13. Dynamic Time Warping distance for two sets of KPIs. (a) GHGRED, ESSA, ESSANoRES,
SCC and (b) UPFL, FQR, VLTR, EALC.
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4.3. t-SNE

Following the procedure described in Section 3.2.2, we can compute the two-dimensional
embeddings of the days in the dataset, using the t-SNE method. The resulting embedding can
be seen in Figure 14. Each point corresponds to a particular day in the dataset. Its position on the
two-dimensional plane is determined by t-SNE so that nearby points correspond to days that are
similar with respect to their KPI values. Some groups of days seem to emerge in this mapping, forming
clusters of points separated by relatively empty space. Each of these groups contains days that follow a
similar pattern with regard to their KPI values. However, we cannot so far tell which areas correspond
to days with good performance and which to days with poor performance.

Figure 14. Two-dimensional embedding of the days in the dataset, using t-distributed Stochastic
Neighbor Embedding (t-SNE). Each point corresponds to a day. The x- and y- coordinates are computed
by t-SNE, so that nearby points correspond to days that are similar with respect to their KPIs. We can
see that groups of similar days emerge.

In order to characterize the areas computed by t-SNE in terms of their performance, we define a
crude measure of performance cost for each day, by comparing the KPI values of each day to reference
values provided by experts. The available reference values are in the form of time series (of 15-min
time intervals, similar to the KPI measurements), or in the form of scalar values for those KPIs for
which only aggregated daily measurements are available. The reference values characterize a single
reference day in each month of the year.

Prior to defining the cost functions, the reference values are aggregated using the RMS values of
the time series, and normalized per KPI, by dividing them with the RMS values computed from the
data, in order for both the data and the reference values to be at the same scale. Then, for each KPI,
the cost of a measurement xic is defined as follows:

costc(xic, ric) = (xic − ric)
2, (6)

where i is the index of a particular day, c the index of a particular KPI and ric the reference value for
day i (i.e., for the month of day i) and for KPI c. In other words, the more the squared difference
between the measurement and the reference value, the larger the cost. There are three exceptions in the
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above definition, for the RESPEN, LDFA and RESPFA KPIs. For these KPIs, the nominal values are not
particular values, but rather thresholds above or below which the performance is optimal. For these
KPIs, the above definition is slightly modified, so that when the xic falls within the optimal range,
the cost is 0. Otherwise, it is as above.

Using the above definitions for costs, a cost matrix B ∈ RN×C is constructed, where each element
is Bic = costc(xic, ric). Summing the costs across all days, we construct an aggregated cost per day:

b = (b1, b2, . . . , bN), bi =
C

∑
c=1

Bic. (7)

This gives a crude measure of the deviation of each day from the nominal values. This aggregate
measure looses some of the information contained in the individual KPI values available per day,
which was preserved in the t-SNE embedding. However, the fact that it is a scalar value for each
day allows us to approximately characterize each day, in terms of its performance, and thus use this
measure to characterize the different areas appearing in the t-SNE embedding.

Figure 15a shows the same embedding as Figure 14, but now the points are colored according to
the total cost per day. The red color corresponds to high cost (large deviation from the reference values)
while the white color corresponds to low cost (small deviation from the reference values). We can see
that the different areas of the t-SNE embedding are more or less colored differently according to the
cost function. The left and bottom parts contain small groups of days with consistently high costs,
while larger areas mostly at the right part of the mapping contain days with low costs, that is, close
to the reference values on average. We can use the costs per day as a guide to characterize the larger
areas appearing in the t-SNE embedding.

(a) (b)
Figure 15. Two-dimensional embedding of the days in the dataset, using t-SNE. (a) Each day is colored
according to the total cost (deviation from reference values). We can see areas of high cost (red, left and
bottom), as well as areas of low cost (white, right). (b) Each day is colored according to its assigned
cluster, using k-means clustering. Each cluster can be characterized by the average cost of its days.

As an attempt to do such a characterization, we have proceeded to group the two-dimensional
points using k-means clustering, in order to split the points into groups according to their positions on
the map. The number of clusters has been set to 10, in order to be able to capture the small groups
of points appearing in the embedding. The resulting clustering is shown in Figure 15b, where each
color corresponds to a cluster. Computing the average total cost per cluster gives us an indication of
the overall performance of the days in each group, as shown in Table 3. The clusters are ordered in
decreasing average cost order. The clusters with the larger costs are 8 and 6, which correspond to the
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left and bottom parts of the mapping. Such a ranking can be used to grade each group of days, or each
group of microgrids in general, according to its performance compared to the other days.

Table 3. Average cost for each cluster of Figure 15b, sorted in decreasing cost order. The clusters with
higher costs are 8 and 6, which correspond to the left and bottom areas, respectively.

Cluster Average Cost

8 471
6 464
1 261
4 248
3 215
7 179
2 147
5 146
9 115

10 109

The cost function and cluster assignments can also be plotted against time, in order to examine
which days are those with the higher and lower costs, or which days belong to the different clusters
(see Figure 16). The larger costs appear in August, corresponding to the high-cost clusters. This is
due to the large deviation from the reference values in August. A two-day spike is also visible on
September 25 and 26, when there was significantly low production.

Figure 16. Total cost per day. The vertical axis is the total cost (corresponding to the colors of Figure 15a,
while the color of each point is the cluster assignment for each day (corresponding to the colors of
Figure 15b. The larger costs appear in August, corresponding to the high-cost clusters.

The form of the curve in Figure 16 is similar to the form of the curves in Figure 13a, showing
that the cost measure characterizes the different days in a similar manner as the DTW method.
The characteristic form arises from the deviation of each day with respect to the corresponding
reference values. This suggests that the two methods of quantifying the difference with respect to the
reference values converge. Merging the two methods to construct a unified measure of performance
that can be validated against expert ground truth is left for future work.

5. Conclusions & Future Work

This paper presented two main contributions: (i) a holistic performance assessment framework
that consists of 46 KPIs covering the most commonly assessed aspects of a MG design and operational
performance, and (ii) a data-driven approach for evaluating the operational MG phase through a high
level analysis of the dynamic KPIs (i.e., 18) presented in the above mentioned holistic framework.
For the latter, two different approaches have been employed for exploring the methodology proposed,
namely the DTW and t-SNE implementations. Both algorithms were evaluated on specific reference
models that were made having the MG’s optimal performance in mind (e.g., no frequency and voltage
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deviations, high RES coverage, etc.). As tested with real-life data from a small scale MG in northern
Greece, both approaches seem to correctly identify and classify daily MG performance, providing a
promising tool for high level performance assessment.

Starting from the KPI framework, it is quite evident that there are a lot of aspects that require
attention when evaluating the performance of a MG, a fact that has been highlighted by multiple
different research results, and in a collective manner presented in this manuscript as well. This fact is
also translated into quite a lot of data and information revolving around all seven metric categories,
which further expands to a variety of metering points and equipment required for collecting all
necessary input. Most current systems have not considered all of these KPIs whilst a MG design
phase. Even more, in terms of real-time operation, there are quite a lot of challenges that need to be
addressed in order to truly being able to evaluate the overall performance, such as interoperability
issues. This work aimed to detail all this information, into a uniform framework, that can potentially
aid towards better designing and operating future microgrids.

The algorithms used for characterizing days and grouping KPIs, that is, DTW and t-SNE,
are effective in discovering groups of similar days and in assessing the difference of each day from
the supplied reference values, as has been demonstrated in the results. So far, they mostly operate
in an unsupervised manner, utilizing the supplied expert knowledge (the reference values) as a
post-processing step, to construct crude measures of assessing the algorithm results. Based on the
promising results of this work, future extensions could use the reference values explicitly to train
dimensionality reduction and prediction models.

Furthermore, the data-driven methodology can lead to a major breakthrough in MG design,
assessment and comparison. As already presented, both algorithms reach to similar conclusions
in terms of daily performance, identifying correctly days where the overall MG performance had
dropped. Such results, could introduce multiple merits to the MG research and industrial community.
Beside the obvious benefit of being able to assess in real-time the MG performance by going through
aggregated information (i.e., data originating not per inverter but from all inverters together regardless
of their types, sizes, etc.), it is also easier to examine and reveal system problems and shortcomings
by evaluating days and moments that introduce “poorer” performance, as shown in the presented
results. By doing so, the MG operator can identify quite early performance issues and proceed towards
resolving them, acting in a preventive manner.

Moreover, even through still in quite a neonatal form, through this approach, a new high level
metric could be introduced, similar to the ones in buildings, that could present the MG Performance
Class. Such a metric besides the quite practical result of easily understanding how “good” a MG is,
it could facilitate significantly regulatory aspects that currently hinder MG integration to the grid in
various countries. Just like Energy Performance Certificates, the MG Performance class could unlock
how MGs integrate, operate and support the Smart Grid in its legislative perspective.

As an ongoing investigation, there are various ideas and concepts that have erupted during the
evaluation of the presented methodologies. These are expected to be analysed as future work in the
following months to come. The most interesting of these ideas is the following. A Long Short-Term
Memory Auto-encoder will be used in a sense of trying to learn data representation, an efficient
encoding that uses as few parameters and memory as possible, so as to detect hidden anomalies in the
KPIs. Since the data are unlabeled, the whole network will be unsupervised.

Limitations

Although in this study an holistic performance framework and a promising methodology for
the real-time performance assessment have been presented, there are certain limitations that require
further investigation, one of which is the size of the MG testbed employed. Although sufficient for
providing proof of concept, larger MG are needed to further validate the presented methodology and
thoroughly examine the assessment results. Another limitation identified is the reference models.
Even though some of them are generic, a few are specific to the MG examined. As a result, this
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approach cannot be easily be used to other MGs. To that direction, it is necessary to create a set of
reference models (besides the generic ones) that will be able to describe a variety of MG sizes and
configurations towards presenting the necessary ground truth for accurate and validated performance
assessment results.

Another key aspect that requires future attention is an eighth category of KPIs that have to do
with security, both physical and cyber. Although not directly related with the energy performance, it is
expected to play a major role in future deployments affecting both hardware and software investments
required but also issues emerging in terms of information exchange, hence making interoperability
even more critical.

Finally, in the Smart Grid context, MGs are expected to deliver an active building block that can
offer a magnitude of ancillary services. Even though certain aspects are already covered (directly or
indirectly), additional KPIs may be required to fully cover these aspects.
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Abbreviations

The following abbreviations are used in this manuscript:

AEPEX Annual Energy Purchase Expenditure
AESINC Annual Energy Selling Income
CAPEX Capital Expenditure
DGCOV Diesel Generator Coverage
DEPEX Daily Energy Purchase Expenditure
DESINC Daily Energy Selling Income
DUROSPF Duration of Operation Whilst Single Point Failure
DOTO Divergence from Optimal Tertiary Operation
DTW Dynamic Time Warping
EALC Excessive Asymmetric Load Charge
ESS Energy Storage Systems
ESSA Energy Storage System Autonomy
ESSAnoRES Energy Storage System Autonomy to Hours without RES production ratio
EPS Energy Power System
FCEGEX Fuel Cost for Energy Generation Expenditure
FQDEVSPF Frequency Deviation from Reference Values whilst Single Point Failure
FQR Frequency Range
FQSTD Frequency Standard Deviation
GHGRED Reduction of GHG Emissions
HIL Hardware-In-the-Loop
KPI Key Performance Indicator
LAIDI Load Average Interruption Duration Index
LAIFI Load Average Interruption Frequency Index
LCoEG Levelised Cost of Diesel Generators
LCoER Levelised Cost of Renewable Energy Sources
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LCoES Levelised Cost of Energy Storage Systems
LDCOV Load Monitoring Coverage
LDFA Load Demand Forecasting Accuracy
LDFLEX Flexible Load Integration
MAINTEX Maintenance Expenditure
MG Microgrid
MGAIDI Microgrid Average Interruption Duration Index
MGAIFI MicroGrid Average Interruption Frequency Index
PCC Point of Common Coupling
PDEVSPF Active Power Deviation from Reference Values whilst Single Point Failure
PNLEX Penalties Expenditure
PNLRED Reduction of Carbon Penalties
PV Photovoltaic
QDEVSPF Reactive Power Deviation from Reference Values whilst Single Point Failure
REPLEX Replacement Expenditure
RESPEN Renewable Energy Penetration
RESPFA Renewable Energy Production Forecasting Accuracy
RESCOV Renewable Energy Sources Coverage
ROED Reduction in Overall Energy Demand
ROI Return Of Investment
RPD Reduction in Peak Demand
OPEX Operational Expenditure
SCC Storage Coverage Capability
SPFSR Single Point Failure Successful Reaction
SRF System Resilience Factor
t-SNE t-distributed Stochastic Neighbor Embedding
THD Total Harmonic Distortion
TOTEX Total Expenditure
UPFL Upward Flexibility
URF Unit Resilience Factor
V2G Vehicle to Grid
VLTDEVSPF Voltage Deviation from Reference Values whilst Single Point Failure
VLTR Voltage Range
VLTSTD Voltage Standard Deviation
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Appendix A. Economic KPIs

Table A1. Detailed Representation of MG Economic KPIs.

Name Description Formula Variables Phase

CAPEX

Capital Expenditure
• Initial cost of the investment needed in order to make
the system functional.
• Calculated once the project is finished and the purchases
of the new equipment can be added.
• Considered to be static information since it is not affected
by the MG operation.
• In case of infrastructure changes, this metric should be also
recalculated taking into account more complex calculations
that include equipment age, return of investment, and
so forth.

∑N
k=1 Ccap,k ·

i(1+i)Yp,k

(1+i)Yp,k−1

• N: total amount of assets purchased and
installed for creating a functional MG,
• Ccap: initial investment for each asset k,
• Y(p, k): lifetime for each asset.

Design

MAINTEX

Maintenance Expenditure
• All costs that are needed to keep the system operational.
• Measured once the system is up and running.
• Annualized costs can be estimated as a constant value.

constant Design

FCEGEX

Fuel Cost for Energy Generation Expenditure
• Running costs that might be needed to generate energy
through more conventional means such as diesel generators.

∑N
i=0 Fli · Fci

• Fl: the fuel consumed for producing energy
within the MG for every generator i in litres,
• Fc: fuel price in euros/litre. Note: Since
there can be different types of generators
(in total N) using different fuels, Fc can vary
based on the fuel type required.

Operation

REPLEX

Replacement Expenditure
• Cost of equipment that is already installed but needs to
be changed,
• Similarly to MAINTEX, this metric can be extracted
as an average annual value from the system after given
to operation, or it can be estimated based on installed
infrastructure.

∑M
k=1 Crep,k · i

(1+i)Yrep,k−1
• Crep,k: the replacement cost,
• Yrep: the lifetime for each asset k,

Design
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Table A1. Cont.

Name Description Formula Variables Phase

AEPEX

Annual Energy Purchase Expenditure
• Annual cost of electrical energy bought from the grid,
• Initially this indicator is defined as a summary of daily/
monthly values that present an overview of the total amount
of money spent for energy supply,
• It can be translated into a percentage during the
implementation of the holistic performance model.

∑NM
k=0 ∑ND

j=0 ∑24
i=1 Enpurch,i ·

Ecpurch value,i

• Enpurch: energy purchased in kWh,
• Ecpurch value: the energy cost per kWh
within the 24 h interval, so as to cover
dynamic pricing fluctuations, for a sum
ND of days and a sum of NM of months
applicable.

Operation

AESINC
Annual Energy Selling Income
• Annual profit from the excess energy sold to the grid.

∑NM
k=0 ∑ND

j=0 ∑24
i=1 Ensold,i ·

Ecselling value,i

• Ensold: the amount of energy sold to the
grid in kWh,
• Ecselling value: the energy cost per kWh
within the 24 h interval according which the
MG sells to the grid it’s energy excess.

Operation

LCoER
Levelised Cost of Renewable Energy Sources ∑n

t=1
It+Mt
(1+r)t

∑n
t=1

Et
(1+r)t

• It: Investment expenditures,
• Mt: operational and maintenance
expenditure,
• Et: Electricity generation in year t,
• r: discount rate (discount future cost and
translate to present value).

Design

LCoES
Levelised Cost of Energy Storage Systems ∑n

t=1
It+Mt
(1+r)t

∑n
t=1

C·E f ·DoD·d
(1+r)t

• It: Investment expenditures,
• Mt: operational and maintenance
expenditure,
• C: storage system capacity,
• E f : overall system efficiency,
• DoD: depth of discharge,
• d: number of cycles in a year,
• r: discount rate (discount future cost and
translate to present value).

Design

LCoEG
Levelised Cost of Diesel Generators ∑n

t=1
It+Mt+FCEGEXt

(1+r)t

∑n
t=1

Et
(1+r)t

• It: Investment expenditures for year t,
• Mt: operational and maintenance
expenditure,
• FCEGEXt: fuel expenditure,
• Et: electricity generation,
• r: discount rate (discount future cost and
translate to present value).

Design
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Appendix B. Environmental KPIs

Table A2. Detailed Representation of MG Environmental KPIs.

Name Description Formula Variables Phase

GHGRED

Reduction of GHG Emissions
• RES usage in MGs assists to the reduction on Greenhouse
Gas Emissions that would be produced via burning fossil
fuels in one year.
• The metric can be measured in shorter intervals (per
month, day, hour) if needed.

∑n
t=1 Et,RES · CFCO2

• Et,RES: t energy produced (kWh) from
RES per year t,
• CFCO2 : coefficient that “translates” energy
to kg (or tons) of CO2 emissions. This
coefficient depends on the energy mix
(including efficiencies) of the electricity
generation replaced by RES.

Operation

PNLRED

Reduction of Carbon Penalties
• Environmental taxation imposed upon organisations/
companies in order to raise awareness on their carbon
footprints.
• Applicable in some countries only.
• EC directive: penalty for every ton of CO2 emitted above
a given threshold [34].
• The reduction in carbon penalties is calculated as the
difference between penalties prior the deployment of any
system and after is calculated.

∑n
t=1 EmCO2,excess,t · PNLc

where
PNLRED =
PNLEXC−PNLEXP

PNLEXP
· 100%

• EmCO2,excess,t: the kg or tonne excess of
CO2 above a given allowed threshold for a
year t,
• PNLc: cost in euros/CO2tonne,
• PNLEXC: the current penalties that the
operator of the MG has to pay for every ton
of CO2,
• PNLEXP: the previous penalties

Operation

RESPEN

Renewable Energy Penetration
• RES penetration is defined as the percentage of
renewable energy produced compared to the total
consumed energy over a given period (e.g., a year).
• It describes how “environmental friendly” a MG is.
• In grid connected operation it can exceed 100%.
• In islanded mode, it has a maximum of 100%.

Et,RES,total
Ec,total

· 100%

• Et,RES,total : the total energy produced
from RES,
• Ec,total : the total energy consumed from
the MG for the same amount of
time explored.

Operation
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Appendix C. Reliability KPIs

Table A3. Detailed Representation of MG Reliability KPIs.

Name Description Formula Variables Phase

LDCOV

Load Monitoring Coverage
• It refers to the percentage of loads that can be monitored
individually and not in an aggregated way.
• Useful to assess the need for load disaggregation in
the upper levels of MG control (e.g., modules related to
demand forecasting, day-ahead scheduling, load shedding
priority list during critical events, etc.).
• It can be translated into absolute values presenting the
monitored consumption (i.e., kW or MW) over the total
MG installed load consumption (i.e., MW).

SmMin
Loadt

• SmMin: Number of integrated load smart
meters,
• Loadt: Number of total load assets. Design

LDFLEX

Flexible Load Integration
• Environmental taxation imposed upon organisations/
companies in order to raise awareness on their carbon
footprints.
• Applicable in some countries only.
• EC directive: penalty for every ton of CO2 emitted above
a given threshold [34].
• The reduction in carbon penalties is calculated as the
difference between penalties prior the deployment of any
system and after is calculated.

SmMin f lex
Loadt

· 100%

• SmMin f lex: Number of integrated
flexible load smart meters,
• Loadt: Number of total load assets.

Design

RESCOV
Renewable Energy Sources Coverage
• the percentage of RES Peak Power to overall peak load.

Et,RES,peak,i
Ec,peak,i

· 100%

• Et,RES,peak: the maximum generated
power from renewable energy resources,
• Ec,peak: the maximum consumed power
from the MG loads at given time i.

Design
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Table A3. Cont.

Name Description Formula Variables Phase

ESSA

Energy Storage System Autonomy
• The hours that the MG can operate depending both
on the installed ESSs and PVs, for the worst case scenario
where the MG operates on the highest demand.

∑n
i=1

BattCapi ·(BattSoci−1))
100 +Epv,gen

Eload,max,pred

• BattCapi: the maximum total available
capacity,
• BattSoci: current SoC for each ESS at a
given timeslot,
• Epv,gen: total energy produced by
installed PVs,
• Eload,max,pred: maximum expected
consumed energy at any time during
the day.

Operation

ESSANoRES

Energy Storage System Autonomy to Hours without
RES production ratio
• After subtracting the PV generation from ESSA KPI,
an estimation of whether the ESS sizing is appropriate can
be extracted.

∑n
i=1

BattCapi ·(BattSoci−1))
100

Eload,max,pred

• BattCapi: the maximum total available
capacity,
• BattSoci: current SoC for each ESS at a
given timeslot,
• Eload,max,pred: maximum expected
consumed energy at any time during
the day.

Operation

SCC

Storage Coverage Capability
• A metric to describe the MG capability to operate

in islanded mode without RES production and load
shedding.

∑n
i=1

BattCapi ·(BattSoci−1))
100

Eload

• BattCapi: the maximum total available
capacity,
• BattSoci: current SoC for each ESS at a
given timeslot,
• Eload: current energy consumed.

Operation

DGCOV
Diesel Generator Coverage
• The percentage of Diesel Generators Peak Power to
overall peak load.

Et,diesel,peak
Ec,peak

· 100%

• Et,diesel,peak: the total maximum
generation capacity from the
diesel generators,
• Ec,peak: peak load energy consumption.

Design
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Table A3. Cont.

Name Description Formula Variables Phase

LAIDI

Load Average Interruption Duration Index
• Corresponds to CAIDI in IEEE index.
• It gives the average outage duration that any given
customer would experience.
• It expresses also the average restoration time.
• Defined as the total duration of customer interruptions
to total number of customer interruptions.
• For the presented scale-down to MG level, every MG
load is considered as customer.

∑M
i=0(Ui ·Ni)

∑M
i=0(λi ·Ni)

• i: load location,
• λ: failure rate,
• N: number of loads,
• U: annual outage time.

Operation

LAIFI

Load Average Interruption Frequency Index
• Corresponds to CAIDI in IEEE index.
• The total number of customer interruptions to the total
number of customers interrupted.

∑M
i=0(λi ·Ni)

Nc

• i: load location,
• λ: failure rate,
• N: number of loads,
• Nc: total number of distinct
loads interrupted/.

Operation

MGAIDI

Microgrid Average Interruption Duration Index
• Corresponds to CAIDI in IEEE index.
• It expresses the reliability of a MG as an overall system.
• It refers to the total duration of customer interruptions
to total number of customers served.
• For the presented scale-down to MG level, every MG
load is considered as customer.

∑M
i=0(Ui ·Ni)

NT

• i: load location,
• U: the annual outage time,
• N: number of loads,
• NT : total number of loads served/.

Operation

MGAIFI

Microgrid Average Interruption Frequency Index
• Corresponds to CAIFI in IEEE index.
• It presents the total number of customer interruptions
to the total number of customers served.

∑M
i=0(λi ·Ni)

NT

• i: load location,
• U: the annual outage time,
• N: number of loads,
• NT : total number of loads served/.

Operation
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Appendix D. Resiliency KPIs

Table A4. Detailed Representation of MG Resiliency KPIs.

Name Description Formula Variables Phase

SRF
System Resilience Factor
• enumerating the possible single-point failures that -if
occur- they lead to a MG shutdown.

SysN−SpFail
SysN

· 100%
• SysN : number of systems,
• SpFail: number of potential single points
of failures.

Design

URF

Unit Resilience Factor
• Units’ resilience at the design phase can be quantified
by enumerating the possible single-point failures that -can
occur- in any unit of the MG.

SpFailu
SysNU · 100

• SpFailu: number of single points of
failures in MG units,
• SysNU: number of MG units. Design

SPFSR

Single Point Failure Successful Reaction
• Contrary to the previous KPIs that provide an estimation
of expected resilience, SPFSR provides an indicator that
allows to assess how resilient a MG system actual is over
the years.

SuReSPF
SpFail · 100%

• SuReSPF: number of successful reaction
to a single point of failure,
• SpFail: number of potential single points
of failures.

Operation

DUROSPF

Duration of Operation Whilst Single Point Failure
• By exploring the overall time that the system remained
operational after a single point failure due to fail-safe
countermeasures we can grasp an evaluation of the
system/s resiliency. Compared to the total duration
until system complete recovery, we can have a relative
quantified metric for how resilient the system can be in
mild and serious single point failure events.

Tu pS PF
Trec · 100%

• Tu pSPF: Operational time due to system
Reaction after an SPF,
• Trec: Total Duration of Complete
System Recovery.

Operation
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Table A4. Cont.

Name Description Formula Variables Phase

VLTDEVSPF

Voltage Deviation whilst Single-Point Failure
• After a single point failure and assuming the MG

is equipped with fail-safe countermeasures, the basic
variables need to be evaluated in comparison to their
nominal in order to assess the effectiveness of the
countermeasures applied.
• Voltage regulation within the MG
during the operation of the countermeasures until the main
systems are restored to operation.
• Metric measured in real-time (sampled).
• Min, max values and further statistical analysis is useful.

Vreal−time
Vre f

· 100%

• Vreal−time: voltage magnitude
measurement in real time,
• Vre f : voltage magnitude reference. Operation

FQDEVSPF

Frequency Deviation whilst Single-Point Failure
• Frequency regulation within the MG during the
operation of the countermeasures until the main systems
are restored to operation.

freal−time
fre f

· 100%

• freal−time: frequency measurement in
real time,
• fre f : frequency reference. Operation

PDEVSPF

Active Power Deviation whilst Single-Point Failure
• Active Power regulation within the MG during the
operation of the countermeasures until the main systems
are restored to operation.

Preal−time
Pre f

· 100%

• Preal−time: Active Power measurement in
real time,
• Pre f : Active Power reference. Operation

QDEVSPF

Reactive Power Deviation whilst Single-Point Failure
• Reactive Power regulation within the MG during the
operation of the countermeasures until the main systems
are restored to operation.

Qreal−time
Qre f

· 100%

• Qreal−time: Reactive Power measurement
in real time,
• Qre f : Reactive Power reference. Operation
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Appendix E. Power Quality KPIs

Table A5. Detailed Representation of MG Power Quality KPIs.

Name Description Formula Variables Phase

FQR

Frequency Range
• The range of frequency variation during daily operation
gives a rough indication of the capacity of the MG
generation pool needed to satisfy the load requirements
and to cope with the random RES variations.
• This metric is most important during islanded operation
(likewise to other frequency indicators), given the fact that
in grid-connected mode the frequency is defined and must
follow the grid.

f− fre f
fre f
· 100%

• f : current frequency value measured,
• fre f : nominal frequency value required. Operation

FQSTD

Frequency Standard Deviation
• Standard deviation quantifies the dispersion of
frequency around the target value of 50/60 Hz.
• An important indication on the capacity of the system
to balance the active power flow.
• A lower value of the standard deviation of the frequency
indicates a stable and reliable MG.

√
∑n

i=1( fi− f̄ )2

n

• f : current frequency value measured,
• f̄ : frequency mean value,
• N: the number of observations included
in the calculation. If a sample of values is
included then the denominator would be
N − 1.

Operation

VLTR

Voltage Range/Fluctuations
• The range of the voltage during the daily operation gives
a rough indication of the capacity of the generators in the
MG to satisfy the reactive power requirements.
• It can also be used to assess voltage at the Point of
Common Coupling (PCC) level.

Vavg−Vre f
Vre f

· 100%

• Vavg: the current average voltage value
measured,
• Ec,peak: Vre f : the nominal voltage
amplitude value required.

Operation

VLTSTD

Voltage Standard Deviation
• The standard deviation quantifies the dispersion of
voltage around the rated value.
• This value gives an important indication on the capacity
of the system to balance the reactive power flow.
• A lower value of the standard deviation of voltage
indicates a reliable MG.

√
∑n

i=1(Vi−V̄)2

n

• V: the current voltage amplitude value
measured,
• V̄: the voltage amplitude mean value,
• N: the number of observations included
in the calculation.

Operation
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Table A5. Cont.

Name Description Formula Variables Phase

THD

Total Harmonic Distortion
• Generally speaking, the ideal situation for THD would
be no THD at all. According to EN 50160 THD of the
supply voltage (including all harmonics up to the order
40) shall be less than or equal to 8 % for 95 % of the time.
• For the purpose of assessing MGs, additionally, voltage
and current THD during the considered period (e.g., one
week) should be checked for evaluation.

VTHD =

√
V2

n
V1

∀n =
2, 3, 4, . . . , 40

ITHD =

√
I2
n

V1
∀n =

2, 3, 4, . . . , 40

• Vn and In the individual harmonic voltage
and current distortion values,
• V1 and I1 the fundamental voltage and
current distortion value.

Operation

EALC

Excessive Asymmetric Load Charge
• In any 3-phase system, it is important to quantify
the effectiveness of balancing loads. In the majority of
applications, the 3 phases are not charged in a balanced
way, a phenomenon that causes displacement of the
neutral conductor and this consequently poses a series
of problems regarding protection and power quality.
• In order to assess the asymmetric load charge, a new KPI
is defined based on the frequency that the displacement
of the neutral exceeds the limits set by the international
standards.

|Vavg−VphA|+|Vavg−VphB|+|Vavg−VphC |
2·Vavg

·
100

• VphA, VphB, VphC: the voltages in each
phase of the 3 phase system,
• Vavg: the average voltage value of the 3
phases.

Operation
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Appendix F. Efficiency KPIs

Table A6. Detailed Representation of MG Efficiency KPIs.

Name Description Formula Variables Phase

ROED

Reduction in Overall Energy Demand
• a comparison for the energy demand from the Grid for
the same period of time of previous year, either between
total summarized values or individual values at given
timeframes.

Ec,baseline ·CF−Ec,real−time ·CF
Ec,baseline

· 100%

• Ec,baseline: the consumed energy prior to
the application of the new control scheme,
• Ec: the current MG energy demand,
• CF: a correction factor for different
environmental and operation conditions.

Operation

RPD

Reduction in Peak Demand
• The peak demand can also refer to a comparison for the
previous year but also can be compared to peak reductions
for the same year.
• Reduction in peak demand can be demonstrated through
simulation by enabling the regulated power exchange
mode in order to minimize the peak demand.
• KPI firstly defined in Reference [35].

Rma,baseline−Rma
Rma,baseline

,
where
Rma =

Dh,max
Dh,avg

∀h =

1, 2, 3, . . . , 24

• Dh,max: the maximum value of the hourly
demand,
• Dh,avg: the average value of the hourly
demand for a 24 h timeframe.

Operation

DOTO

Divergence from Optimal Tertiary Operation
• How many times the operation of the MG was not the
optimal one during a year, meaning that in order to satisfy
the load demand, extra effort from the ESS and/ or diesel
generators had to be invoked (or extra energy had to be
imported from the Grid when prices are high or grid is
unreliable).
• This KPI will underline the amount of times the MG
operation was diverging from the day ahead schedule’s
suggestions.

∑N
t=1 OSTrack(t)

• OSTrack(t): Optimal Schedule Tracker,
• OSTrack(t) = 0 and 1 if on and off track
respectively.

Operation
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Table A6. Cont.

Name Description Formula Variables Phase

LDFA

Load Demand Forecasting Accuracy
• In many MG EMS, forecast engines are common
regarding consumption and production .
• This KPI refers to the deviation of the forecasted load
consumption from real-time measurements.
• Variations of this metric can be provided, for example,
accuracy per interval (e.g., 15’), per day and a generic
holistic one.
• Based on the required resolution, it is possible to examine
this indicator for the entire MG infrastructure or for every
load separately.
• Varying the timeframe does not change the KPI per se.
• Accuracy will be defined based on the lowest required
resolution (e.g., 15’) and from there daily or holistic values
can be easily extracted for further analysis.

Ec, f orecast
Ec,real−time

· 100%

• Ec, f orecast: the forecasted value for the
consumption expected from the MG loads,
• Ec,real−time: the actual consumption for
the same examined time-frame.

Operation

RESPFA

RES Production Forecasting Accuracy
• this metric examines the accuracy of the forecasting
component for the RES generation.
• Since weather conditions have a more significant impact
on predicting energy generation, this KPI is expected to
have higher values than the one referring to the load
consumption.

Et, f orecast
Et,real−time

· 100%

• Et, f orecast: the forecasted value for
the generation expected from the
MG RES assets,
• Et,real−time: the actual generation for the
same examined timeframe.

Operation

UPFL

Upward Flexibility
• Real-time information regarding how much flexibility
we have to increase load consumption without needing
something other than RES to cover it.
• Upward refers to both the loads and RES because in
order to know how much the load can be increased without
having to use ESS or Diesel, the maximum RES output
must be known.

Eg, f orecast−Ec,real−time
Ec,real−time

· 100%

• Eg, f orecast: the total forecasted generation
for the entire MG,
• Ec,real−time: total forecasted
load consumption.

Operation
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