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Abstract: In this paper, an off-grid direction-of-arrival (DoA) estimation algorithm which can work
on a non-uniform linear array (NULA) is proposed. The original semidefinite programming (SDP)
representation of the atomic norm exploits a summation of one-rank matrices constructed by atoms,
where the summation of one-rank matrices equals a Hermitian Toeplitz matrix when using the
uniform linear array (ULA). On the other hand, when the antennas in the array are placed arbitrarily,
the summation of one-rank matrices is a Hermitian matrix whose diagonal elements are equivalent.
Motivated by this property, the proposed algorithm replaces the Hermitian Toeplitz matrix in the
original SDP with the constrained Hermitian matrix. Additionally, when the antennas are placed
symmetrically, the performance can be enforced by adding extra constraints to the Hermitian matrix.
The simulation results show that the proposed algorithm achieves higher estimation accuracy
and resolution than other algorithms on both array structures; i.e., the arbitrary array and the
symmetric array.

Keywords: non-uniform linear array (NULA); off-grid direction-of-arrival (DoA) estimation;
atomic norm minimization (ANM); continuous compressive sensing; super-resolution

1. Introduction

Direction-of-arrival (DoA) estimation is one of the longest-studied research topics in array
signal processing. DoA estimation algorithms have been adopted in various applications, such as
source localization [1] and time-reversal imaging [2,3]. For the localization of target signal sources,
distributed sensor arrays estimate the DoAs of target signal sources and then find the location of
signal sources using a triangulation method [4]. In the case of time-reversal imaging, the transmitting
source generates the probing fields, and the receiving array measures the field scattered by the target
object. An image of scattering points can be retrieved by TR-MUSIC [2,3], where TR-MUSIC is derived
from MUSIC [5], one of the well-known DoA estimation algorithms. The localization of vehicles in
a global positioning system (GPS)-outage scenario has been recently studied in [6-9], and the DoA
information is expected to be employed for accurate localization. In a vehicular network context,
the position, relative distance and DoAs of neighboring vehicles can be shared via inter-vehicle
communication. Using the aforementioned information, the position of vehicles that are out of GPS
range can be estimated using cooperative localization [7-9]. As the commercialization of an automotive
multiple-input-multiple-output (MIMO) radar progresses [10], it is possible for vehicles to harness the
DoAs of other vehicles using the DoA estimation algorithm.

Traditional DoA estimation algorithms such as MUSIC [5] and ESPRIT [11] have high estimation
accuracy and resolution. However, they require a large number of snapshots to estimate a covariance
matrix and cannot properly estimate the DoAs of coherent signal sources [12] unless they employ
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an additional technique such as a spatial smoothing [13]. To overcome the disadvantages of [5,11],
another approach for DoA estimation has been proposed in [12,14,15], where the authors exploit
various types of compressive sensing (CS) techniques including basis pursuit (BP) [16] and orthogonal
matching pursuit (OMP). Normally, CS-based DoA estimation algorithms can successfully estimate
DoAs by using a small number of snapshots [17]. CS-based DoA estimation exploits a discretized
search grid that consists of angular bases; however, there is a high possibility that the DoAs do not
correspond perfectly with the angular bases. The mismatch between the DoAs and the angular bases
is generally referred to as a grid-mismatch and induces an estimation error [18]. The grid-mismatch
can be alleviated by using a finer search grid. However, using a finer search grid increases the
computational complexity, where the complexity of CS is proportional to the grid size [19].

A new approach of exploiting atomic norm minimization (ANM) for DoA estimation has been
studied; the mathematical definition of the atomic norm is proposed in [20]. This new approach is
often referred to as off-grid DoA estimation and was first proposed in [21], where the new approach
based on ANM eliminates the grid-mismatch by working directly on the continuous angular domain.
Studies in [22] provide criteria for determining a regularization parameter that helps to retrieve DoAs
from a noisy signal. Recently, off-grid azimuth and elevation estimation were proposed in [23], and its
application to multiple-input-multiple-output (MIMO) radar is discussed in [24]. However, existing
studies regarding off-grid DoA estimation are limited to a uniform linear array (ULA). Since the
semidefinite programming (SDP) representation for the atomic norm changes with the array structure,
the original SDP representation in former studies does not work under the non-uniform linear array
(NULA). Recently, off-grid algorithms that can work on arbitrary array geometries were proposed
in [25,26]. However, the placement of the arbitrary array used in [25] is not completely random. Rather,
the spacing of adjacent antennas must be a multiple of the preset minimum unit spacing. The algorithm
in [26] was motivated by the work presented in [27], where the algorithm enables the usage of an
arbitrary array by exploiting the truncated Fourier series-based approximation in [27].

In this paper, we propose a novel approach for off-grid DoA estimation which can work on an
NULA. When using an NULA whose antennas are arbitrarily placed, a Hermitian Toeplitz matrix
in the SDP targeted for the ULA is replaced by a Hermitian matrix whose diagonal elements are
equivalent. Furthermore, when antennas are symmetrically placed, the DoA estimation performance
can be improved by adding extra constraints to the Hermitian matrix. The main contributions of this
paper are as follows:

*  Most of the existing works regarding off-grid DoA estimation are limited to ULA. To overcome
this disadvantage, we propose a novel approach for an off-grid DoA estimation algorithm which
can work on the NULA. The derivation of the SDP targeted for ULA exploits the property that a
summation of the one-rank matrices is equivalent to the Hermitian Toeplitz matrix, where the
one-rank matrix is an outer product of identical array manifold vectors. When using the NULA,
the summation of the one-rank matrices corresponds to the constrained Hermitian matrix whose
diagonal elements are equal. Motivated by this property, we enable the usage of the NULA by
replacing the Hermitian Toeplitz matrix with the constrained Hermitian matrix.

e Although the antenna placement of the NULA can be completely arbitrary, it is also possible for
antennas to be placed symmetrically with respect to the center. In the case of using the symmetric
array, we propose an algorithm for a symmetric array which can enhance the estimation accuracy.
When antennas of the NULA are symmetrically placed, the summation of the one-rank matrices
corresponds to a unique Hermitian matrix whose particular elements are equal in a certain manner.
We model this unique Hermitian matrix by adding extra constraints to the SDP.

Table 1 provides a list of the main symbols used in the paper, and the rest of this paper is organized
as follows. Section 2 presents the received signal model. Section 3 describes the proposed off-grid DoA
estimation algorithm for the NULA. Simulation results are provided in Section 4, and finally Section 5
gives concluding remarks.
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Table 1. List of main symbols used in this paper. DoA: direction of arrival.

Symbol Description Symbol Description
P Number of DoAs M Number of antennas
A Wavelength of signal A Distance between the m-th antenna and the reference
Op DoA of the p-th signal source (C) Vector consists of P DoAs
a(0) Steering vector whose DoA is X Received signal
s Signal from P signal sources o2 Power of signal

We use lower-case and upper-case bold characters to represent vectors and matrices, respectively,
throughout this paper. (-)T, (-)H and (-)*, respectively, denote transpose, conjugate transpose and
complex conjugation. Trace(-) denotes the trace of a matrix. The curled inequality symbol > denotes
matrix inequality. If A > B, a matrix A — B is positive semidefinite. a(i) denotes the i-th element in a
vector a, and A(i, j) denotes the (i, j)-th element in a matrix A. Oy denotes a N X 1 zero vector, and Iy
denotes a N x N identity matrix. | (-) | denotes rounding down.

2. Signal Model

We consider P narrowband signals impinging on the antenna array, where the antenna array is
composed of M antennas. f denotes the carrier frequency of the signal. The DoAs of P signal sources
are denoted as ® = (6, ...,0p)". An array manifold vector whose DoA is 6, a(6) can be given as

a(f) = (ejZT[(d]/)\)COSB’."IejZH(dM/)\)COSB)T e CMx1 1)

where d;;, denotes the distance between the m-th antenna and the reference antenna, and A = ¢/ f.
Note that c is the speed of light. CM*! denotes a complex vector with the size of M x 1, and this
notation can also represent the complex matrix. The first antenna is the reference antenna, if not noted,
and thus d; = 0. An array manifold matrix for P signal sources, A(0), is

A(®) = (a(8y),...,a(0p)) € CM*P, )

The received signal x can be given by

x = A(@)s € CM*1, (3)

s = (s1,...,5p)", where sp denotes the single signal snapshot from the p-th signal source. s follows
CN (0p,c21p), where 02 denotes the power of the signal, and CA (0p, 021p) represents a circularly
symmetric Gaussian random vector whose mean is 0p and covariance is ¢21p.

3. Off-Grid DoA Estimation Algorithm on Non-Uniform Linear Array Using Constrained
Hermitian Matrix

In this section, the off-grid DoA estimation algorithms for the arbitrary array and the symmetric
array are explained. Examples of the ULA, the arbitrary array and the symmetric array are given in
Figure 1. Note that the spacing between adjacent antennas in the arbitrary array is completely random.
On the other hand, the antennas in the symmetric array are placed symmetrically with respect to the
center of the array, with the spacing between adjacent antennas being random.

3.1. Arbitrary Linear Array Case

The atomic norm of x can be given by

|x[[4 =inf{g > 0:x € gconv(A)}

L L 4)
= inf{ Yo || |x= tha(ﬁz)},
=1 =1
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where conv(-) denotes a convex hull of a given set, A is an atomic set, g is an arbitrary positive number
that satisfies x € gconv(.A), and L is the number of atoms that forms x. a(%;) is the I-th atom, and A =
{a(d) | 0° < ® < 180°}. h; is a coefficient of the I-th atom which satisfies x = Y_F_; Ija(#) for arbitrary
{0}, where {8} denotes 9, for I = 1,..., L. The details of the convex hull and its relationship with
the atomic norm are well-explained in the seminal works of the atomic norm [20,21,28]. When using
the ULA, the SDP representation of ||x|| 4 can be given by follows, as in [28].

u,t

[[x]|.4 =min {Z}VITrace(Toep(u)) + ;t}

st [Toe%(u) x} c0,t>0. (5)
X t
Toep(u)—a Hermitian Toeplitz matrix whose first column is u—can be denoted as
u(l) (2 u* (M)
Toep(u) = u(:2) u(zl) . u*(M -1) ‘ ©)
u(M) u(M.— 1) . u(.l)

I S A

Irregular spacing

Center

Figure 1. Examples of a uniform linear array (ULA), arbitrary array and symmetric array. The blue
antenna denotes the center of the symmetric array.

However, when antennas are placed arbitrarily so that the spacing between adjacent antennas is
non-uniform, the SDP representation in (5) can no longer be used. In this case, the SDP formulation
in (5) can be modified as follows:

1 1
in { — Trace(H) + =1
Eirk {ZM race(H) + 3 }

H x
s.t. L(H t} =0,t>0, ?)

H is a Hermitian matrix,
H(1,1) =H(2,2)... = H(M, M).

In Figure 2, the example of Toep(u) for the ULA and H for the arbitrary array is given, and the
relationship between elements is displayed. To show that diagonal elements of H are equal, we define
B;fori=1,...,M —1 as follows.

B;(1,1) =1,

8
Bi(i+1,i+1)=—1,fori=1,...,M—1 ®
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Using B; fori =1,...,M — 1, (7) can be reformulated as

H,t 2M 2

s.t H
| H

H is a Hermitian matrix,

Trace (B;H) =0, fori=1,..., M —1.

min {1Trace(H) + 1t}

=0, t>0, 9)

After solving (9), MUSIC [5] is applied to obtain the spatial spectrum and estimate DoAs. Note that
the approach of applying MUSIC after solving the SDP has been employed in the seminal works of
off-grid DoA estimation [29-31]. Letting H denote the optimal solution of H, H is considered as the
covariance matrix in MUSIC and is decomposed into a set of eigenvectors and eigenvalues as follows:

H = QuIyQf, (10)

where Qy is a matrix that is composed of eigenvectors of H, and Ly is a diagonal matrix whose
diagonal elements are eigenvalues of H. Eigenvalues are sorted such that £g(1,1) > Zg(2,2)... >
Zy(M, M). The DoAs can be estimated by finding P largest peaks from the spatial spectrum fy(6),
which is

(6) = .
fu(9) = a(0)HQu(P+1: M)Qu(P + 1 : M)Ha(0)’ (11)

for 0° < 6 < 180°,

where Qg (P + 1 : M) denotes a matrix that is composed of consecutive columns from the (P + 1)-th
column of Qg to the M-th column.

(ULA) (Arbitrary array) (Symmetric array)
Toep(u) € CMxM HeCMxM G e CMxM
u(1) w2 | w@) | u@) H(1,1) | H(1,2) | H(1,3) | H(14) G(1,1) | G(1,2) | G(1,3) | G(1,4)
u(2) u(1) u*(2) u*(3) H(2,1) | H(2,2) | HEZ,3) | H(24) G(21) | G(2,2) | G(2,3) | G(2,4)
u(3) u(2) u(l) u(2) HG,1) | HG,2) | HE,3) | HB4) G311 | GB,2) | GB,3) | G349
u(4) u(3) u(?) u(l) H41) | H4,2) | H4,3) | H44) G4 | G4,2) | G143 | G494

Figure 2. Elements of the Hermitian Toeplitz matrix, constrained matrix for arbitrary array H
and constrained matrix for symmetric array G. Here, M = 4. Note that colors are used to display
which elements are equal. Since all matrices are Hermitian matrices, the upper sides of the matrices are
not colored.

Remark 1. The SDP representation of ||x|| 4 can be derived by using a linear matrix inequality. Here, note that
X = 2})5_1 spa(0y). The linear matrix inequality that is employed for the SDP representation of ||x|| 4 can be
given by

L
tY da(8)a(d)” —xx" =0, t>0,d, >0, for1=1,...,L (12)
1=1

Suppose t/2 + Y.\, d; is minimized while t, {d;}, and {9} satisfy (12); then, L = P and t =
25:1 |sp| [21]. Additionally, 8, = 6, and d, = |sy| for p = 1,...,P. Note that when the ULA is
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employed, the summation of one-rank matrices Y_-_, dja(8;)a(%)H is a Hermitian Toeplitz matrix. According
to the Vandermonde decomposition theorem [30], it is also possible to represent the Hermitian Toeplitz matrix
as Yr_ dja(0))a(8)H. When replacing Y-, dja(9;)a(8;)" with the Hermitian Toeplitz matrix Toep(u),
Equation (12) can be rewritten as

tToep(u) — xx1 =0, t > 0. (13)
By using the Schur complement, (13) can be represented as

lToep(“) Xl =0, ¢>0, (14)

xH

where (14) is equivalent to the constraint of (5). However, when using the NULA, 2}21 da(d;)a(8;)H is no
longer the Hermitian Toeplitz matrix, but a Hermitian matrix whose diagonal elements are equal. Thus, for the
NULA case, we replace the Hermitian Toeplitz matrix in (5) with a constrained Hermitian matrix whose diagonal
elements are equal.

3.2. Symmetric Array Case

Although the antenna placement of the NULA can be completely arbitrary, the antennas can
be placed in a certain manner; e.g., placing antennas symmetrically. When antennas are placed
symmetrically, particular elements of Y- ; dja(9;)a(8;)" are equivalent to each other. Let G € CM*M
denote Y-, dja(9;)a(8;)" when using the symmetric array; G has following unique properties:

¢  Gis a Hermitian matrix.
e All diagonal elements of G are equal such that G(1,1) = G(2,2) ... = G(M, M).
e G(i+j,)=GM-j+1L,M—i—j+1)fori=1,...,M—2jandj=1,...,[(M—1)/2].

In Figure 2, the example of G for the symmetric array is given, and the relationship between

elements is displayed. To represent these properties within the constraints of SDP, we define Cf for
i=1,...,M—2jandj=1,...,[(M—1)/2] as follows.

Cli+jj)=1CM—j+1,M—i—j+1)=-1,
M-1

forizl,...,M—Zj,j=1,---,{2J-

(15)

With B; and C{, the SDP formulation for the symmetric array can be given by

1 1
2 Il 1
min {2 race(G) + 2t}
G «x

s.t. =0,t>0,
xH - =

G is a Hermitian matrix, (16)
Trace (B;,G) =0, fori=1,..., M—1,
Trace (C{G) =0,

—1

fori=1,... M-2j,j=1,..., {Mz J .
After solving (16), MUSIC is applied to obtain the spatial spectrum and estimate DoAs. Letting G
denote the optimal solution of G, G also undergoes the identical procedure as in (10) and (11).

An eigen-decomposition of G can be given by
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G = QcEcQf, (17)

where Qg is a matrix that is composed of eigenvectors of G, and Eg is a diagonal matrix whose
diagonal elements are eigenvalues of G. Eigenvalues are sorted such that £g(1,1) > Zg(2,2) ... >
LG (M, M). The DoAs can be estimated by finding P largest peaks from spatial spectrum fg () which is

1
fa(0) = a(0)HQg(P+1: M)Qg(P+1: M)Ha(6)’ (18)

for 0° < 6 < 180°.

4. Simulation Result

The performance of the proposed algorithm, OMP [32], conventional delay-sum beamforming
(CBF) and the algorithm in [26] are compared in this section. Since only single snapshots are given
in the simulation, algorithms that require plenty number of snapshots such as MUSIC and ESPRIT
are excluded from the comparison. For the root mean square error (RMSE) analysis, M = 8 and
P = 2. The spacing between adjacent antennas is randomly set between 0.3A and 0.7A. For OMP,
the size of grid D is set to 360, and the discrete grid spacing is set to 0.5°. Note that as D increases,
the grid becomes finer so that the estimation error induced by the grid-mismatch decreases. However,
the computational complexity is proportional to D. For the CBF, the resolution of the spectrum is set to
0.01°, and the size of the spectrum R is 18,000. In this case, the spectrum is sufficiently fine, as if DoAs
are estimated from the continuous angle domain. For the algorithm in [26], the number of the discrete
Fourier transform (DFT) points K is set to 101, where the estimation accuracy of the algorithm in [26]
is proportional to K. The root mean square error (RMSE) is defined as

LG & (a1 gr)?
RMSE= | 565 124 1 (00 -08) ¢ (19)
q=t \p=
where Q is the number of Monte Carlo trials for RMSE calculation, and 9;77 and éZ, respectively,
denote the real DoA and the estimated DoA of the p-th signal source on the g-th trial. For each iteration,

DoAs are chosen randomly between (30°,150°).

4.1. Simulations for Arbitrary Array

In Figure 3, the spectrums of the proposed algorithm for the arbitrary array, OMP, CBF and
the algorithm in [26] are given. The antennas are placed arbitrarily as (0,0.7,1.3,1.8,2.1,2.6,3.0)A,
and o = 1. The DoAs are sufficiently separated such that ® = (50°,90°)”. Figure 3 shows that the
spectrums of all algorithms have peaks around DoAs. From this result, it can be considered that the
estimations of all algorithms are accurate if DoAs are sufficiently separated.

However, if DoAs are closely separated, an algorithm with low resolution may exhibit estimation
failure. To compare the resolution of DoA estimation algorithms, we define a distance between two
adjacent DoAs T as T = |(cos ) — cos 0,) /2|, where T is used as a criterion of resolution in [21,28,33].
Note that 7 is proportional to the difference between 6; and 6, as T becomes 0 when 6; = 6,. Figure 4
presents the RMSE result versus 7. Here, 05 = 1. Figure 4 shows that the proposed algorithm has
superior accuracy over OMP, CBF and the algorithm in [26] at every T. Especially, the RMSE of the
proposed algorithm remains low when 7 is small, while the RMSE of the other algorithms is large
when 7 is small. The RMSE of all algorithms tend to decrease as T increases. From this result, it can be
seen that the proposed algorithm has higher resolution than others since the proposed algorithm can
accurately estimate two adjacent DoAs. Additionally, the proposed algorithm has higher estimation
accuracy even when DoAs are sufficiently separated.
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Figure 3. Spectrums of DoA estimation algorithms when using the arbitrary array and ® = [50°, 90°]T.
10? \ \ |
' -o-OG arbitrary
i — .5 OMP ]
—+CBF
10" Govinda Raj et al. [26]

Mz

10°

RMSE (°)

107!

-2
< L L

0.(53 0.04 0.05 0.06 0.07 0.08 009 01 011 0.12

T
Figure 4. The RMSE of the proposed algorithm, orthogonal matching pursuit (OMP) and conventional
delay-sum beamforming (CBF) versus 7. A total of 1000 Monte Carlo trials are conducted.

4.2. Simulations for Symmetric Array

In Figure 5, the spectrums of the algorithm for the symmetric array, the algorithm for the arbitrary
array, OMP, CBF and the algorithm in [26] are given. The antennas are placed symmetrically as
(0,0.4,0.8,1.5,2.2,2.6,3.0)A. The DoAs are sufficiently separated such that ® = (50°, 90°)T and 05 = 1.
Figure 5 shows that the estimation of all algorithms is accurate when DoAs are sufficiently separated.
Nevertheless, the spectrum of the algorithm for the symmetric array shows distinct peaks at DoAs
while the spectrum of the algorithm for the arbitrary array has dispersed peaks.

For the RMSE analysis, the symmetric array with irregular antenna spacing is used, where the
spacing between adjacent antennas is randomly set between 0.3A and 0.7A. Figure 6 presents the RMSE
result versus 7. Here, 05 = 1. In Figure 6, the RMSE of the proposed algorithms for the symmetric
array and the arbitrary array are lower than other algorithms at every 7. The RMSE of the proposed
algorithms for the symmetric array and the arbitrary array remain low when 7 is small, while the
RMSE of the other algorithms is large when 7 is small. The RMSE of all algorithms tend to decrease
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as T increases. The RMSE of all algorithms tends to decrease as T increases. From this result, we can
conclude that the resolution of the algorithm for the symmetric array is higher than other traditional
algorithms, and the algorithm for the symmetric array has a slight superiority over the algorithm for
the arbitrary array. Additionally, the algorithm for the symmetric array has higher estimation accuracy
when DoAs are sufficiently separated. Thus, the algorithm for the symmetric array is the best option
when the symmetric array is employed.

= 150 . o= 30 i .

Qo —OG symmetric 3 —OG arbitrary

= --True DoAs = 20 --True DoAs

g g

= 100 =

= B

3 g 10

& 50 &

= 0

2 0 ; , 2 ; ,

n ' ' s} _10 i '

0 50 100 150 0 50 100 150
Direction-of-Arrival (°) Direction-of-Arrival (°)
(a) Symmetric array case (b) Arbitrary array case
—~ 10 1 ——a———n —_—
A - OMP a —CBF - —Govinda Raj et al. [26]-
= 10 --True DoAs \E/ --True DoAs = --True DoAs
3 g £0.5
& 5 & <
= = 0 =z
= = Q,
5] s} w0
3, =3 : : : :
w0 0 wn ' ' 0
0 50 100 150 0 50 100 150 0 50 100 150
Direction-of-Arrival (°) Direction-of-Arrival (°) Direction-of-Arrival (°)
(c) OMP [32] (d) CBF (e) Govinda Raj et al. [26]

Figure 5. Spectrums of DoA estimation algorithms when using the symmetric array and
© = [50°,90°]".

107 ; ]
-4-0OG symmetric i
'-e-OG arbitrary i

-8 0MP
10 —+CBF il
)—E\E\E\H Govinda Raj et al. [26]]

RMSE (°)

il

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 011 0.12

1072L
-

Figure 6. The RMSE of the proposed algorithm for the symmetric array, the proposed algorithm for
the arbitrary array, OMP, CBF and the algorithm in [26] versus T. A total of 1000 Monte Carlo trials
are conducted.

4.3. Complexity Analysis

The complexity and the average computation time of DoA estimation algorithms are given in
Table 2. For computation, an Intel CPU i5-7500 (3.40 GHz) and 16 GB RAM are used. The complexity
of the proposed algorithm for the symmetric array, the proposed algorithm for the arbitrary array and
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the algorithm in [26] can be calculated using the analysis in [34], where the complexity of the SDP is
derived as in [34]. The complexity of the OMP is taken from [35]. The complexities of the proposed
algorithms for both types of NULA and the algorithm in [26] are much higher than OMP and CBF.
Among both proposed algorithms, the complexity of the proposed algorithm for the symmetric array
is higher than that of the proposed algorithm for the arbitrary array since extra constraints are added
to the algorithm for the symmetric array. Although the average computation times of the proposed
algorithms are below 1 s, the computation time of theproposed algorithms may surge as the number of
antennas increases. When using the algorithm in [26], K must be much bigger than M for accurate
estimation. Thus, the average computation time of the algorithm in [26] is larger than other algorithms.

Table 2. The complexity and average computation time of DoA estimation algorithms.

Algorithm Complexity Computation Time
Proposed algorithm for the symmetric array O (M?(M + 1)39) 0.33s
Proposed algorithm for the arbitrary array O (M(M + 1)39) 0.28's
OMP [32] O (PMD) 0.0068 s
CBF O (MR) 0.078's
Govinda Raj et al. [26] O (K(K+1)3?) 3.08s

5. Conclusions

In this paper, we propose a novel off-grid DoA estimation algorithm which can work on two
types of NULA; i.e., an arbitrary array and a symmetric array. The proposed algorithm is motivated
by the original SDP representation in former studies that only work on the ULA. In the derivation of
the original SDP, the received signal and the summation of one-rank matrices constructed by atoms
are exploited, where the summation of one-rank matrices equals the Hermitian Toeplitz matrix when
using the ULA. On the other hand, when using the NULA, the summation of one-rank matrices is no
longer the Hermitian Toeplitz matrix but rather the Hermitian matrix, whose diagonal elements are
equal. Besides, when the antennas in the NULA are placed symmetrically, extra constraints can be
added to the summation of one-rank matrices. Thus, the proposed algorithm replaces the Hermitian
Toeplitz matrix in the original SDP with the constrained Hermitian matrix, where the constraints
vary with the array structure. Simulation results present the superiority of the proposed algorithm,
especially in terms of estimation accuracy and resolution, compared to other algorithms on both array
structures; i.e., the arbitrary array and the symmetric array. The proposed algorithm can be extended
to practical applications such as localization in vehicular networks and automotive radar. However,
the complexity analysis shows that the computation time of the proposed algorithm may no longer be
negligible when the number of antennas increases. Thus, a method to reduce the complexity of the
proposed algorithm needs to be studied for the broader application of the proposed algorithm.

Author Contributions: Conceptualization, H.C.; Methodology, H.C.; Software, H.C.; Validation, H.C. and S.K.;
Formal analysis, H.C.; Investigation, H.C.; Resources, H.C., ].J. and S.K,; Data curation, H.C.; Writing—original
draft preparation, H.C. and S.K.; Visualization, H.C.; Supervision, S.K.; Project administration, J.J. and S.K,;
Funding acquisition, S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Acknowledgments: This work was supported by the Agency for Defense Development.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, J.C.; Kung Yao.; Hudson, R.E. Source localization and beamforming. IEEE Signal Process. Mag. 2002,
19, 30-39.

2. Marengo, E.A ; Gruber, EK.; Simonetti, F. Time-Reversal MUSIC Imaging of Extended Targets. IEEE Trans.
Image Process. 2007, 16, 1967-1984. [PubMed]


http://www.ncbi.nlm.nih.gov/pubmed/17688202

Energies 2020, 13, 5775 11 of 12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

Ciuonzo, D.; Romano, G.; Solimene, R. Performance Analysis of Time-Reversal MUSIC. IEEE Trans.
Signal Process. 2015, 63, 2650-2662.

Liu, H.; Darabi, H.; Banerjee, P,; Liu, J. Survey of Wireless Indoor Positioning Techniques and Systems.
IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2007, 37, 1067-1080.

Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Ant. Propag. 1986,
34, 276-280. [CrossRef]

Kaiwartya, O. Geometry-Based Localization for GPS Outage in Vehicular Cyber Physical Systems. IEEE Trans.
Veh. Technol. 2018, 67, 3800-3812.

Hassan, A.N. Geometry Based Inter Vehicle Distance Estimation for Instantaneous GPS Failure in VANETs.
In Proceedings of the Second International Conference on Information and Communication Technology for
Competitive Strategies, Austin, TX, USA, 4-5 March 2016. [CrossRef]

Wymeersch, H.; Seco-Granados, G.; Destino, G.; Dardari, D.; Tufvesson, F. 5G mmWave Positioning for
Vehicular Networks. IEEE Wirel. Commun. 2017, 24, 80-86.

Eom, J.; Kim, H.; Lee, S.H.; Kim, S. DNN-Assisted Cooperative Localization in Vehicular Networks. Energies
2019, 12, 2758. [CrossRef]

Hasch, J.; Topak, E.; Schnabel, R.; Zwick, T.; Weigel, R.; Waldschmidt, C. Millimeter-Wave Technology
for Automotive Radar Sensors in the 77 GHz Frequency Band. IEEE Trans. Microw. Theory Tech. 2012,
60, 845-860.

Roy, R; Kailath, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans.
Acoust. Speech Signal Process. 1989, 37, 984-995.

Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization
with sensor arrays. IEEE Trans. Signal Process. 2005, 53, 3010-3022. [CrossRef]

Shan, T.J.; Wax, M.; Kailath, T. On spatial smoothing for direction-of-arrival estimation of coherent signals.
IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 806-811. [CrossRef]

Gorodnitsky, L.E,; Rao, B.D. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted
minimum norm algorithm. IEEE Trans. Signal Process. 1997, 45, 600-616.

Yang, Z.; Xie, L.; Zhang, C. Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference.
IEEE Trans. Signal Process. 2013, 61, 38—43. [CrossRef]

Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by Basis Pursuit. SIAM ]. Sci. Comput.
1999, 20, 33-61.

Shen, Q.; Liu, W.; Cui, W,; Wu, S. Underdetermined DOA Estimation Under the Compressive Sensing
Framework: A Review. IEEE Access 2016, 4, 8865-8878. [CrossRef]

Chi, Y.; Scharf, L.L.; Pezeshki, A.; Calderbank, A.R. Sensitivity to Basis Mismatch in Compressed Sensing.
IEEE Trans. Signal Process. 2011, 59, 2182-2195. [CrossRef]

Baraniuk, R.G. Compressive Sensing [Lecture Notes]. IEEE Signal Process. Mag. 2007, 24, 118-121. [CrossRef]
Chandrasekaran, V.; Recht, B.; Parrilo, P.A.; Willsky, A.S. The Convex Geometry of Linear Inverse Problems.
Found. Comput. Math. 2012, 12, 805-849. [CrossRef]

Tang, G.; Bhaskar, B.N.; Shah, P; Recht, B. Compressed Sensing Off the Grid. IEEE Trans. Inf. Theory 2013,
59, 7465-7490. [CrossRef]

Bhaskar, B.N.; Tang, G.; Recht, B. Atomic Norm Denoising with Applications to Line Spectral Estimation.
IEEE Trans. Signal Process. 2013, 61, 5987-5999. [CrossRef]

Tian, Z.; Zhang, Z.; Wang, Y. Low-complexity optimization for two-dimensional direction-of-arrival
estimation via decoupled atomic norm minimization. In Proceedings of the 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5-9 March 2017;
pp- 3071-3075.

Tang, W,; Jiang, H.; Pang, S. Grid-Free DOD and DOA Estimation for MIMO Radar via Duality-Based 2D
Atomic Norm Minimization. IEEE Access 2019, 7, 60827-60836. [CrossRef]

Sanchez-Fernandez, M.; Jamali, V.; Llorca, J.; Tulino, A. Gridless Multidimensional Angle of Arrival
Estimation for Arbitrary 3D Antenna Arrays. arXiv 2020, arXiv:cs.IT/2008.12323.

Govinda Raj, A.; McClellan, J.H. Single Snapshot Super-Resolution DOA Estimation for Arbitrary Array
Geometries. IEEE Signal Process. Lett. 2019, 26, 119-123. [CrossRef]


http://dx.doi.org/10.1109/TAP.1986.1143830
http://dx.doi.org/10.1145/2905055.2905279
http://dx.doi.org/10.3390/en12142758
http://dx.doi.org/10.1109/TSP.2005.850882
http://dx.doi.org/10.1109/TASSP.1985.1164649
http://dx.doi.org/10.1109/TSP.2012.2222378
http://dx.doi.org/10.1109/ACCESS.2016.2628869
http://dx.doi.org/10.1109/TSP.2011.2112650
http://dx.doi.org/10.1109/MSP.2007.4286571
http://dx.doi.org/10.1007/s10208-012-9135-7
http://dx.doi.org/10.1109/TIT.2013.2277451
http://dx.doi.org/10.1109/TSP.2013.2273443
http://dx.doi.org/10.1109/ACCESS.2019.2915189
http://dx.doi.org/10.1109/LSP.2018.2881927

Energies 2020, 13, 5775 12 of 12

27.

28.

29.

30.

31.

32.

33.

34.

35.

Rubsamen, M.; Gershman, A.B. Direction-of-Arrival Estimation for Nonuniform Sensor Arrays:
From Manifold Separation to Fourier Domain MUSIC Methods. IEEE Trans. Signal Process. 2009, 57, 588-599.
[CrossRef]

Chi, Y.; Ferreira Da Costa, M. Harnessing Sparsity Over the Continuum: Atomic norm minimization for
superresolution. IEEE Signal Process. Mag. 2020, 37, 39-57. [CrossRef]

Zhou, C.; Gu, Y;; Fan, X;; Shi, Z.; Mao, G.; Zhang, Y.D. Direction-of-Arrival Estimation for Coprime Array
via Virtual Array Interpolation. IEEE Trans. Signal Process. 2018, 66, 5956-5971. [CrossRef]

Yang, Z.; Xie, L.; Stoica, P. Vandermonde Decomposition of Multilevel Toeplitz Matrices With Application to
Multidimensional Super-Resolution. IEEE Trans. Inf. Theory 2016, 62, 3685-3701. [CrossRef]

Li, Y.; Chi, Y. Off-the-Grid Line Spectrum Denoising and Estimation With Multiple Measurement Vectors.
IEEE Trans. Signal Process. 2016, 64, 1257-1269. [CrossRef]

Cai, T.T.; Wang, L. Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise. IEEE Trans.
Inf. Theory 2011, 57, 4680—4688. [CrossRef]

Candes, E.; Fernandez-Granda, C. Towards a Mathematical Theory of Super-Resolution. Commun. Pure
Appl. Math. 2014, 67, 906-956. [CrossRef]

Polik, I; Terlaky, T. Interior Point Methods for Nonlinear Optimization. In Nonlinear Optimization; Di Pillo, G.,
Schoen, E, Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 215-276. [CrossRef]

Wang, J.; Kwon, S.; Shim, B. Generalized Orthogonal Matching Pursuit. IEEE Trans. Signal Process. 2012,
60, 6202—6216. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1109/TSP.2008.2008560
http://dx.doi.org/10.1109/MSP.2019.2962209
http://dx.doi.org/10.1109/TSP.2018.2872012
http://dx.doi.org/10.1109/TIT.2016.2553041
http://dx.doi.org/10.1109/TSP.2015.2496294
http://dx.doi.org/10.1109/TIT.2011.2146090
http://dx.doi.org/10.1002/cpa.21455
http://dx.doi.org/10.1007/978-3-642-11339-0_4
http://dx.doi.org/10.1109/TSP.2012.2218810
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Signal Model
	Off-Grid DoA Estimation Algorithm on Non-Uniform Linear Array Using Constrained Hermitian Matrix
	Arbitrary Linear Array Case
	Symmetric Array Case

	Simulation Result
	Simulations for Arbitrary Array
	Simulations for Symmetric Array
	Complexity Analysis

	Conclusions
	References

