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Abstract: The paper assesses the influence of the calcination temperature of synthetic gypsum binder
on the binding properties of innovative gypsum pastes, as well as on masonry and plastering mortars.
The calcination process of gypsum binder was carried out at four different temperatures ranging
from 170 to 190 °C. The specimens for testing were prepared on the basis of the obtained raw material
with a constant water to gypsum ratio of w/g = 0.75. It was noted that the calcination temperature
influenced the setting time of the gypsum. Based on synthetic gypsum, mixtures of masonry and
plastering mortars modified with tartaric acid and Plast Retard were designed. During the experiment,
the particle diameter distribution of aqueous suspensions of building and synthetic gypsum particles
(before and after calcination) was determined using the Fraunhofer laser method. The dimensions
of the obtained artificial gypsum grains did not differ from the diameters of the gypsum grains in
the reference sample. On the basis of the conducted research, it was found that the waste synthetic
gypsum obtained in the flue gas desulphurization process met the standard conditions related
to its setting time. Therefore, it may be a very good construction substitute for natural gypsum,
and consequently, it may contribute to environmental protection and the saving and respecting
of energy.

Keywords: synthetic gypsum; calcination process; setting time; Fraunhofer method; particle
size distribution

1. Introduction

Gypsum is a commonly used building material. It is characterized by its lower natural radioactivity
in the group of mineral construction binding materials, as well as by its quick growth of strength [1].
The development of the construction industry and the growing demand for more and more ecological
and perfect building materials has led to the searching for new solutions to improve these materials.
Due to growing ecological awareness, new methods of waste management in various branches of
industry are being developed.

Gypsum can be modified with the use of various chemical additives. Such additives can be,
among others, accelerants, retarders, glass fibers, cellulose fibers, vermiculite, aerogels, microspheres
polymers, and copolymers [2-6]. All such modifications affect the properties of gypsum composite
and its application.
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One of the most important environmental problems is air pollution with sulfur oxides that result
from the combustion of fossil fuels. For this reason, measures that aim to reduce the emission of harmful
substances generated as a by-product of combustion are a very big challenge. One of the main ways to
neutralize the impact of pollutants on the environment is by using the flue gas desulphurization process,
the by-product of which is synthetic gypsum. In order to meet social expectations, the pro-ecological
construction industry recognizes the possibility of replacing natural gypsum with synthetic gypsum.

Currently, a very broad field of science within innovative and pro-environmental material solutions
concerns the properties of synthetic gypsum obtained in the flue gas desulphurization process [7-11].
However, before its commercial use, it is necessary to perform a series of tests and studies. In this area,
science and industry strive to obtain construction products with the most suitable expected parameters,
e.g., thermal, strength, mechanical or other. A very important property of building materials is their
setting time. It is the time from the moment the binder is moistened and mixed, in which the grout
maintains plastic properties, until the final material is sufficiently hardened. The setting time depends
on the type of binder, and also the amount of mixing water and its temperature [12-15].

The basic process used in the construction industry for the production of synthetic gypsum is
the calcination process. In the entire production process, this stage is the most energy consuming
and involves the heating of the substance below its melting point in order to cause a partial chemical
decomposition of the compound by removing water from its crystal lattice. In the case of gypsum,
it causes the processing of dihydrate calcium sulphate into a semi-aqueous or anhydrous form.
The calcination process itself takes place with the use of various methods and calcination boilers [16-22].
The obtained dihydrate calcium sulphate may undergo internal changes under the influence of
temperature (Figure 1).
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Figure 1. Possible transformations of the dehydration and hydration of synthetic gypsum in the
calcination process [23].

The dehydration process takes place successively over a period of time and depends on many
factors, mainly including the method of calcination, the granulation of the pure raw material, and the
presence of minerals and other chemical compounds. The type of predominant dehydrate phase and
the properties of the binder depend on the applied temperature changes. Usually, there are various
transition phases in the final product, which correspond to the calcination temperature range. This
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effect is influenced by wide equilibrium temperature ranges in the process of the transformation of
dihydrate gypsum into semi-aqueous gypsum and anhydrite.

In the process of the dehydration of 3 phases, the instability of the CaSO4-H,O system occurs
at a temperature of 45 °C. The first intense dehydration of the dihydrate into hemihydrate occurs in
the temperature range of 107-170 °C (Figure 1). The transition of the hemihydrate into the unstable
phase of anhydrite III in the (3 phases takes place in the temperature range of 170-180 °C, followed by
the occurrence of intense changes at a temperature close to 200 °C. The conversion of anhydrite III
into sparingly soluble anhydrite II takes place at a temperature of about 400 °C in the case of thef
hemihydrate. At temperatures above 600 °C, the decomposition of calcium sulphate begins according
to reaction (1).

CaSOy4 CaO + SO, + 0.50; 1)

The product obtained from this stage, which contains 2-3% of unbound CaO, is a raw material
for the production of estrich gypsum. With a rapid increase in temperature and large grains,
non-dehydrated material may remain in the raw material, which can be seen in the analysis of the
mineral composition of building gypsum (3 hemihydrate). The above factors affect the heterogeneity
of products obtained in the calcination process and, consequently, the differentiation of the properties
of gypsum binders.

It has been documented that the dehydration process, from the dihydrate phase to the anhydrite
II phase, is accompanied by significant changes in the crystal structure Equation (2), and large changes
in density from 2.31 to 2.98 g/cm3, respectively [23].

CaSO4'2H20 CaSO405H20 CaSO4 111 CaSO4 1I
monoclinic monoclinic pseudo-hexagonal orthorhombic

2

Due to its more difficult workability, synthetic gypsum requires the use of various specially
selected admixtures to modify its properties. Innovative recipes for masonry and plastering mortars
are created experimentally by selecting the components in an optimized way.

The aim of the study was to evaluate the effect of the calcination temperature of synthetic gypsum
binder on the binding properties of innovative gypsum pastes, as well as on the properties of masonry
and plastering mortars. A63 tartaric acid and a compound delaying the binding—Plast Retard—were
used when creating recipes for mortars based on synthetic gypsum that was obtained from flue gas
desulphurization. An additional goal was to analyze the grain size of the synthetic gypsum before and
after the calcination process and to determine the effect of this process on the grain diameters of the
obtained building materials. The authors’ intention was also to compare the particle size measurements
of the gypsums obtained from flue-gas desulphurization with the results obtained for building gypsum
(reference material). The authors of the study assume that construction materials based on synthetic
gypsum do not have different properties than materials based on natural gypsum. The use of synthetic
gypsum in building materials would have a significant economic impact. Currently, a lot of synthetic
gypsum is deposited in flue gas desulphurization plants as waste. Its recycling would bring benefits
for environmental engineering, as well as contribute to the reduction of the energy-intensive process of
obtaining natural gypsum. Such activities will surely be beneficial for global energy saving and ecology.

2. Materials and Methods
2.1. Materials Used in the Research

2.1.1. Building Gypsum

The material applied during the research was building gypsum (Dolina Nidy, Pinczow).
This gypsum is used in construction, renovation and completion works inside buildings. It is
used for the production of mortars and prefabricated elements [24].
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Gypsum materials, apart from their ability to maintain hygrothermal balance in buildings, are fire
resistant, environmentally friendly and almost odorless. Additionally, they can be seen as very good
acoustic and thermal materials. Therefore, gypsum plasters applied in rooms are very aesthetic and
provide comfort of living. Natural gypsum can be excavated from mines, whereas its synthetic version
can be obtained by the chemical synthesis during the flue-gas desulfurization process. Both types have
different physical properties and can be used interchangeably in the construction industry.

Natural gypsum is a mineral binding material, which is extracted during the process of partial
dehydration of natural gypsum stone (dihydrate calcium sulphate) from an opencast gypsum mine. It
is characterized by the quick growth of mechanical strength and short time of binding.

The natural gypsum, which is commercially available and meets the standard requirements, was
used as the reference material. The content of calcium sulfate (CaSO,) in the gypsum powder was almost
91%, and the additional ingredients included: CaCO3—2.79%, SiO,—1.62%, montmorillonite—3.07%,
clays—0.79%, and chlorite—0.16%. Table 1 summarizes the basic physical properties of the building
materials that were used in the tests. These parameters were obtained from safety data sheets made
available by the producer [24].

Table 1. Basic physical properties of the building gypsum used in the tests [24].

Bulk

Building Density d . Setting Time

Material (kg-m-3) Den51t}_7 dp pH Color Appearance (min)
(kg-m~3)

Building 2300 900 78 grey grey-yellow 3

gypsum powder

2.1.2. Synthetic Gypsum

The synthetic gypsum (Nova-gypsum) that was used in the research was obtained using the wet
lime method. Currently, there are many known industrial methods for the production of synthetic
dihydrate gypsum [25-28]. The most used flue gas desulphurization method in the world is the wet
limestone method that uses limestone (CaCOs3) or quicklime (CaO). It involves the absorption of SO,
in an aqueous suspension of limestone flour. The cooled raw flue gas is directly injected into water,
and then redirected to the absorbent where SO, is washed out and sulfites are formed. In the next
stage, oxidation of sulfite ions takes place and the precipitation of synthetic gypsum dihydrate CaSO4
2H,0 occurs. The chemical reaction of the flue gas desulphurization process and the production of
synthetic dihydrate gypsum takes place in the following stages:

CaCO; + 2H* Ca?* + H,O + CO, (3)
CaO + H,0 Ca®* + 20H"- (4)
Ca?t + 2HSO;™ + O, + 4H,0 2CaS0,4 2H,0 + 2H* (5)

The created gypsum paste is thickened and collected as a powder with a moisture content of about
10%. Harmful impurities are removed from the product by rinsing. Synthetic building gypsum has a
similar chemical composition and similar properties to natural gypsum, but mainly in its hardened
state. However, its compressive strength is greater than that of natural gypsum (by about 35-40%).
It has low grain cohesion (different graining), and is therefore also less workable. It can be recognized
by its slightly creamy color. Some of its properties cause many technological problems for industrial
recipients, and thus this gypsum, depending on the types of manufactured products, requires the use
of various specially selected modifying admixtures. Currently, this gypsum, as is the case with natural
gypsum, is used as a full-value material for the production of various products.
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2.1.3. Tartaric Acid

Tartaric acid is a product belonging to the group of dicarboxylic hydroxy acids that contain
two hydroxyl groups (—OH). It fulfils a number of functions in various areas of life, e.g., in the
pharmaceutical and food industries [29-34]. In the construction industry, it is used as a retarder in the
preparation of gypsum mortars. Tartaric acid is in the form of colorless crystals or white powder, and
is almost odorless, strongly sour in taste, stable in air, and hygroscopic at a relative humidity higher
than 75%. According to the manufacturer’s data, it has the properties listed in Table 2 [35].

Table 2. Properties of the tartaric acid used in the research [35].

Solubility at 25 °C in 100 cm® Solid Density =~ Apparent Density =~ Melting Temperature
of water (g)  of ethanol (g)  of ether (g) ps (kg/m3) pa (kg/m3) Tw (°C)
147 33 0.4 1760 800/1100 168/170

The use of tartaric acid increases the plasticity and strength of concrete [36-38]. The used A63
tartaric acid (Evimex Ltd., Tomaszéw Mazowiecki, Poland) contained a maximum of 1% of particles
with a size greater than 0.063 mm in its composition.

2.1.4. Plast Retard

This material belongs to the group of admixtures that delay the binding time of gypsum by
slowing down the growth of hydrate crystals. It can be used with natural gypsum, flue-gas gypsum,
and phosphogypsum of a low or high quality and with different water to gypsum ratios (w/g). Its
use can extend the mixing time of the mixture by up to several hours and reduce the risk of thermal
stresses during binding. Plast Retard (Evimex Ltd.) is in the form of a fine, highly water-soluble,
hygroscopic, and light-colored powder. Chemically, it is calcium salts of reduced polyamides. Due to
its properties [39], mainly its thermal stability up to 300 °C, it can be used in a wide temperature range.
It also works very well with other additives, e.g., tartaric acid. The basic properties of this admixture
are presented in Table 3.

Table 3. Properties of the Plast Retard used in the research [39].

. pH Apparent Active Water
Color  Physical Form in a 10% Solutions Density Substances  Content
) ) ) pa (kg/m?) (%) (%)
White Solid, powder 8 300 >95 <5

Plast Retard acts as a retarder in the gypsum-water mixture, slowing down the growth of the
hydrate crystals. Its activity is characterized by the correlation between setting time and dosage, and it
gives excellent performance even at low dosage rates. Generally, Plast Retard is used alone in gypsum
formulations, but it is also compatible with citric acid and tartaric acid when being used to obtain a
delayed hardening and suitable consistency.

2.1.5. Other Ingredients

In addition to the basic ingredients of innovative masonry and plastering mortars (synthetic
gypsum, Plast Retard, tartaric acid), admixtures also include: river sand with a grain diameter of
0-2 mm, methylcellulose, lime flour, perlite, hydrated lime, and water.
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2.2. Measurements of Particle Diameters

The main assumptions of the Fraunhofer theory are shown in article [40]. In the case when a laser
beam hits a single particle, the light diffracts. This phenomenon can be described using the Fraunhofer
theory and is possible if the particle fulfills the condition of x > 1 (x = md/A, d—particle diameter).

Taking into account the assumptions of Babinet and Fraunhofer, Airy described this phenomenon
using Relationship (6):

1(0,x) = Iy (6)

16F2A2|  xsin®

where: [p—is the intensity of light, —is the diffraction angle, F—is the focal length of the lens. When
assuming that the sine of the angle 0 is very small (sin0~0), the following Relationship (7) is obtained:

n2d4 [2]1 (xsin0) r

1(6,x)

2
24 |2]l (x@)] .

~ 076222 20

If the tested sample has a very small concentration of particles, then such a sample meets the
condition for a single scattering. Therefore, the above equation can be integrated within the particle
size range, which results in the obtaining of the diffraction intensity distribution that is described by
the Fredholm integral Equation (8) [40,41]:

o0 2 0o 12 2
1(6) :Iof(; ol [2]1(x9)] n(x)dleof(; de (8)

16F2A2|  x0 F2k262

Due to the mathematical foundations of Fraunhofer, the advanced optical systems, and
the development of laser techniques, it was possible to conduct measurements based on the
diffractometric method.

The system that is used to analyze optical images consists of the following elements: a laser,
an advanced optical system, a measuring cell, lenses, and an image detector. The image of the light
diffraction grating, which was formed at the edge of the grains suspended in the water, was recorded
and saved by a computer. The diffraction method is commonly used in industry for the purpose of
measuring grain diameters, and also as an element of testing the quality of manufactured products in
the pharmaceutical, food and construction industries [42-45].

A detailed description of image processing in a granulometer, as well as a description of the
resulting diffraction image, are described in publications [46,47]. It should be mentioned that the
identification of the grain diameter involves the measuring of the distance between the strip and the
optical axis, as well as the measuring of the brightness of the diffraction strip. From the obtained image,
it can be concluded that the greater the distance between the stripe and the optical axis, the smaller
the size of the examined grains. It can also be stated that a higher brightness intensity of the stripes
correlates with a larger amount of grains with particular dimensions in the entire sample.

An Analysette 22 MicroTec Plus particle size analyzer produced by FRITSCH GmbH (Katowice,
Poland) Milling and Sizing, which consists of green and infrared lasers, was applied when analyzing
the size of the particles. It uses an inverse Fourier system according to ISO 13320, and has a modular
structure that includes a measuring unit and units for the preparation of samples for wet or dry
measurements. The particle size analyzer that was applied in the research took measurements of the
granulation of the suspension of particles in water. It consisted of two units—a larger one, which was
the main measuring part, and a smaller one, which was the dispersing unit. Grains with a diameter
within the range between 0.08 and 2100 pm can be measured in the device. Measurements of particle
size distribution using the particle size analyzer, a computer, and the diffractometric method are
very precise, and the applied apparatus does not require any calibration on the basis of the basic
physical properties.
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2.3. Setting Time Measurement

The setting time of the gypsum materials was tested using the Vicat method in accordance with
the guidelines contained in PN-EN 13279-2 [48]. It is a method intended for gypsum plasters in the
form of dry mixtures that also contain additives, among others, retard ingredients. It involves the
penetration of an immersion cone (with specified dimensions and mass) in the mortar (Figure 2). The
immersion depth of the cone is a measure of the progress of the setting process. A detailed description
of the research methodology can be found in [49].

(-
T

(o

(a) (b)

Figure 2. The Vicat apparatus used in the tests: (a) diagram and (b) photo: 1—guide, 2—release
mechanism, 3—immersion cone, 4—resilient plate, 5—Vicat ring, 6—glass plate.

2.4. Gypsum Pastes Used in the Research

In the study of gypsum pastes, a constant water to gypsum ratio of w/g = 0.75 was used, which
was determined experimentally using the slump test. The test was carried out in accordance with
the PN-EN 13279-2 standard, which is used for pastes, mortars and gypsum plasters with a liquid
consistency. The tests involve the measuring of the sample’s slump diameter. For the purposes of
investigating the effect of the gypsum calcination temperature on the setting time of the pastes, four
samples were prepared. They contained synthetic gypsum that was obtained at different calcination
temperatures: 170, 180, 185 and 190 °C for 7 h. Additionally, for comparison purposes, a reference
sample containing building gypsum instead of synthetic gypsum was prepared. In all cases, a slump
diameter of 175 mm was obtained. The amounts of ingredients and the results of the slump diameters
obtained using the slump test are presented in Table 4.

Table 4. List of the types of tested gypsum pastes.

Amount of Components (g)
BG, SG170, SG180, SG185, SG190 *
Water 230

Gypsum Paste Ingredients

Gypsum 300

The obtained diameter of the slump for the

. . 17
determination of consistency (mm) >

* signs: BG-building gypsum; SG—synthetic gypsum; 170, 180, 185, 190—calcination temperature.
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2.5. New Masonry and Plastering Mortars on the Basis of Retardan and A63 Tartaric Acid

Based on the granulation tests and the setting time of the gypsum pastes, recipes for masonry and
plastering mortars, which are based on synthetic gypsum and meet the standard requirements, were
designed. As was the case with the gypsum pastes, in order to determine the effect of the gypsum
binder’s calcination temperature on the setting time of the modified masonry and plastering mortars,
four types of mortars based on synthetic gypsum, and one reference mortar based on the building
gypsum, were prepared. Additionally, the mortar recipes were diversified by using two types of
gypsum setting retarders (Plast Retard and A63 tartaric acid). The recipes of the prepared mortars are
presented in Table 5 for masonry mortars, and in Table 6 for plastering mortars.

Table 5. The obtained recipes of the masonry mortars [50].

Designations of Mansonry Mortars
MBG MSG170 MSG180 MSG185 MSG190
With the addition of Plast Retard

Mortar Ingredients

Gypsum 70000 700.00 700.00 70000 700.00
Vistula sand 0-2 mm 24550 24598 245.95 24604 24613
Methylcellulose 3.00 3.00 3.00 3.00 3.00
Hydrated lime 8) 50.00 50.00 50.00 50.00 50.00
Plast Retard 1.50 1.02 1.05 0.96 0.87
Water 550.00 62000 620.00 62000 62000
With the addition of tartaric acid A63
Gypsum 70000 700.00 700.00 70000 700.00
Vistula sand 0-2 mm 24664 24658 246.61 24664 24658
Methylcellulose 3.00 3.00 3.00 3.00 3.00
Hydrated lime ) 50.00 50.00 50.00 50.00 50.00
Tartaric acid A63 0.36 0.42 0.39 0.36 0.42
Water 550.00 62000 620.00 62000 62000

signs: MBG—mortar based on building gypsum, MSG—mortar based on synthetic gypsum.

Table 6. The obtained recipes of the plastering mortars [50].

Designations of Plastering mortars
PMBG PMSG170 PMSG180 PMSG185 PMSG190
With the addition of Plast Retard

Mortar Ingredients

Gypsum 700.00 700.00 700.00 700.00 700.00
Limestone flour 221.15 221.04 220.86 221.04 221.04
Methylcellulose 4.00 4.00 4.00 4.00 4.00

Perlite (g) 34.00 34.00 34.00 34.00 34.00
Methylcellulose 40.00 40.00 40.00 40.00 40.00
Plast Retard 0.85 0.96 1.14 0.96 0.96

Water 800.00 860.00 860.00 860.00 860.00
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Table 6. Cont.

Designations of Plastering mortars
PMBG PMSG170 PMSG180 PMSG185 PMSG190
With the addition of tartaric acid A63

Mortar Ingredients

Gypsum 700.00 700.00 700.00 700.00 700.00
Limestone flour 221.58 221.58 221.61 221.64 221.65
Methylcellulose 4.00 4.00 4.00 4.00 4.00

Perlite (g) 34.00 34.00 34.00 34.00 34.00
Methylcellulose 40.00 40.00 40.00 40.00 40.00
Tartaric acid A63 0.42 0.42 0.39 0.36 0.35

Water 800.00 860.00 860.00 860.00 860.00

signs: PMBG—plastering mortar based on building gypsum, PMSG—plastering mortar based on synthetic gypsum.

3. Research Results and Analysis

3.1. Results of Particle Size Distribution

All the studied samples of building materials were characterized by good wettability. During the
experimental tests, in all the cases, the power of the pumps was used at 60% capacity, and the power of
light and ultrasound at 100%. In the first 10 s of the measurements, the air bubbles were removed and
the time it took for each sample to be added to the dispersing part of the device was no longer than
30 s. Each gypsum material was measured three times.

On the basis of the collected measurement data, it was found that very high repeatability was
obtained in subsequent measurements for the building gypsum (Figure 3a) and the synthetic gypsum
before calcination (Figure 3b). The distribution of the particle diameter of the synthetic gypsum after the
calcination process was not repeatable during the measurements. The first sample contained particles
with a diameter of 100-1000 um, which were not noticeable in the second and third measurements.
This indicates the formation of agglomerates, and also the agglomeration of the particles into larger
clusters that occur during the calcination process. As a result of the influence of water, there was a
division of these particles in the measuring system, which was noticeable in the second and third
measurements (Figure 3c).

The synthetic gypsum before the calcination process was characterized by a larger particle size
ranging from 10 to 100 um (Figure 3b) when compared to the building gypsum, which had particles
with diameters from 0.1 to 40 um (Figure 3a). The calcination process (Figure 3¢c) caused the diameters
of the synthetic gypsum to be reduced to values similar to the building gypsum. The influence of the
calcination process on the grain size was noticed by the author of paper [50], who presented his views
in a photo (Figure 4).



Energies 2020, 13, 5759 10 of 23

1st measurement s 20d measurement === 3rd measurement
100

90

80

70
60
50

(@)

40 ,
/

30

., Al 4
10 /

d [um)

Particle size distribution PSD [%)]
[25] (1.1 vonnquysip Lousnbar g

Ist m— 2nd — rd —

100

WO
(=]

80

= =
a 2
A g
g g
£ 60 g
E =
(b) 5 50 g
o =8
a 40 2
L5} =
= a0 <
& =
A20 -
10
ul 1 U T 1 T T L il 4
0.1 1 dpm] 10 100
Ist s 20d w— 3rd =

100

90 ﬂ\A / ’/
: /N W A
i V4l .
. Pl \ I
. A\ [ R\VHPs) [11
- 7 NN
& / // AW AN 1A
- I F JIL ANATINN TN
A AN NN

T T

0.1 1 10 100 1000
d [um]

\
|
k

(0

Particle size distribution PSD [%)]

4] (1.1 wonnqnsip Louanbary

Figure 3. Graph of dependency PSD = f(d) for the studied building materials: (a) building gypsum,
(b) artificial gypsum before the calcination process, (c) artificial gypsum after the calcination process.
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Figure 4. The appearance of gypsum: (a) before the calcination process, (b) after the calcination
process [50].

Schaefer et al. [51] showed that phosphogypsum subjected to the calcination process in the
temperature range of 350650 °C was characterized by particle diameters from 10 to 40 um. The authors
noticed that the different values of the calcination process temperatures did not significantly affect
the obtained diameters of the phosphogypsum. Salih and Hussein [52] obtained gypsum after the
calcination and grinding processes that contained particles with a diameter from 0.5 to 45 um, and
Cakal et al. [53] obtained average particle diameters of 37-41 um. The authors of [54] note that gypsum
after the calcination process, in order to have appropriate properties for the construction industry,
should have particles smaller than 10 pm in an amount of up to 70%. Klin [1] declares a very good
plaster quality if there is 44% of grains with diameters ranging from 0 to 40 um.

The results of statistical parameters of all the gypsum materials are presented in the Figures 5-7:
diameters of characteristic grains d1g, ds, dgo, mode and span. The span is described by Equation (9):

dog —d1o ©)

Span =
4 dso

In the case of the obtained statistical data for the commercial building gypsum (Figure 5a—),
it can be stated that the diameters of the particles that have the highest probability of occurring in this
building material are in the range of 1.69-1.76 pum.

The synthetic gypsum before the calcination process had the most particles in the range of
33.69-38.04 um (Figure 6a—c), while after the calcination process it had the most particles within the
range of 1.56-1.99 um (Figure 7a—c). The experimental results showed that the calcination process
caused the reduction of the average grain diameters of the synthetic gypsum to be comparable to the
values obtained for the reference sample (building gypsum). Moreover, the D5 values for the building
gypsum and synthetic gypsum after the calcination process were 2.9 and 2.1 pm, respectively, which
proves the similar particle size properties of both products.
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Figure 6. Sizes of characteristic particles determined with the use of the laser diffraction method in the

samples of synthetic gypsum before the calcination process: (a) 1st measurement, (b) 2nd measurement,

(c) 3rd measurement.
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The authors of papers [1,51,52] emphasize the fact that for the proper use of new building materials,
particle diameters below 10 pm should constitute a significant part of all the particles in the used
gypsum materials. Additionally, Borgwardt [54] points out that the diameters of gypsum particles
with dimensions of 10 um extend the calcination time by five times when compared to particles with
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dimensions of 1 um, and also that particles with dimensions of 90 um extend the calcination time by

up to ten times.

In the present study, in the synthetic gypsum that was obtained after the calcination process,
75-80% of the grains have a diameter smaller than that required. The obtained product, derived from
flue gas desulphurization and then subjected to thermal treatment, can therefore be a substitute for
commercial building gypsum. Figure 8a—c show the results of all the studied building materials, and
present the average particle size distribution as a function of grain diameter.
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Figure 8. Results of the average particle distribution of the gypsums tested using laser diffraction:
(a) building gypsum, (b) synthetic gypsum before calcination, (c) synthetic gypsum after calcination.

The following general relationship was proposed for all the gypsum materials (10):

OGave(d) = A-In(d) +B

where A and B, are constant equation values.
A very good compatibility of the experimental results with the proposed dependency (10) was
obtained in all the cases, which is confirmed by the high values of the R? parameter (Table 7).

(10)

Table 7. A and B constants of equation (10).

Studied Constants
Building Materials A B R?
Building Gypsum 23.58 22.62 0.9913
Synthetic gypsum before the calcination process 63.29 -166.12 0.9778
Synthetic gypsum after the calcination process 18.28 29.94 0.9784

3.2. The Results of the Setting Time of Gypsum Pastes and Masonry and Plastering Mortars

For the proposed compositions of gypsum pastes (Table 4), measurements of their setting time
were made based on the temperature calcination of the synthetic gypsum (Figure 9). In the case of the
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measurements of the setting time of the modified gypsum samples, they were made three times for a
sample made of the same gypsum pastes. The binding time results were identical, and therefore no
statistical considerations were made.

40 .=‘.:.::g.,oo
35 5 [ ] & L $ o
30 ge e 2
™
__ 25 o P eBG
g
E 20 8 ©5G-170
<15 B SG-180
10 o 50-185
- ™
2 ® o ® G -190
[ & W PP WP
0 2 4 [} 8 10 12 14 16
Time [min]

Figure 9. The setting time of the pastes based on the obtained synthetic gypsum. at different

calcination temperatures.

The pastes made of gypsum obtained in the calcination process at 170 and 180 °C resulted in longer
setting times. The higher gypsum calcination temperature shortened the setting time. During the
binding process, the primary hydrates gradually occurred in the form of small crystals (crystallization
seeds). The greater the degree of their occurrence, the greater the rate of formation of new crystallization
seeds. The pastes with the content of gypsum that was obtained at higher calcination temperatures
probably contained increased amounts of crystallization seeds, which accelerated the setting process.
Doubts would be unambiguously dispelled by using scanning electron microscope (SEM) photos, but
they are not, however, the subject of this publication. Such an analysis should be carried out in the
future at the level of the microstructure of the samples.

Based on the measurements of the binding times (initial t; and final ¢,) of the tested synthetic
gypsum pastes, the relationships s = f(T) and ¢, = f(T) were determined.

t, = —0.08 T +20.4 (11)

be=-026T + 585 (12)

It was noticed that the setting time was shortened with an increasing calcination temperature of
raw gypsum (Figure 10). The beginning of binding for gypsum calcined at 170 °C started in the 7th
minute of the setting process and was completed in the 14th minute. However, for gypsum calcined
at 190 °C, these times were 5.5 and 9 min, respectively. It is also important that the entire setting
process was shortened with the increase of the gypsum calcination temperature. For gypsum calcined
at 170 °C, the time between the start and the end of the setting process (At = tk—tp) was Aty79 = 7 min.
In turn, for gypsum calcined at 190 °C, it was only Atjgg = 3.5 min.
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Figure 10. Graph of the dependence between the initial setting time t; and the final setting time te of
the synthetic gypsum in a function of its calcination temperature T.

The setting p

rocess of the plaster was very fast, and even violent. The beginning of gypsum

binding took place just a few minutes after mixing the binder with water, while the end of setting

did not exceed 12—

14 min. A rapid hydration process adversely affects the microstructure of gypsum

material. Therefore, while designing the composition of gypsum mortar mixes (Table 5) and plaster
mortar mixes (Table 6), additives that delay the setting process were used. These additives reduced the
gypsum solubility and, as a result, extended the setting time. In all the proposed cases of gypsum
masonry and plastering mortars, which were based on flue gas desulfurization gypsum, setting times
of about 120 min were obtained. This was compliant with the standard requirements for the proposed

building materials

[48]. The composites show the effect of tartaric acid and Plast Retard on the setting

time of building mixes (Table 8).

Table 8. Comparison of the initial values of the setting times t; of the gypsum pastes and masonry and
plastering mortars based on synthetic gypsum with Plast Retard and tartaric acid.

Initial Setting Time (min)

Gypsum Pastes: BG-Building Gypsum, BS-Synthetic Gypsum

BG SG170 SG180 SG185 SG190
6.5 7 7 6 5.5
Mortar Based on Building Gypsum with Plast Retard (MBG-PR)
Mortar Based on Synthetic Gypsum with Plast Retard (MSG-PR)
MBG-PR MSG170-PR MSG180-PR MSG185-PR MSG190-PR
120 120 124 120 120
Mortar Based on Building Gypsum with Tartaric Acid (MBG-A63)
Mortar Based on Synthetic Gypsum with Tartaric Acid (MSG-A63)
MBG-A63 MBG170-A63 MBG180-A63 MBG185-A63 MBG190-A63
120 122 126 120 124

Plastering Mortar Based on Building Gypsum with Plast Retard (PMBG-PR)
Plastering Mortar Based on Synthetic Gypsum with Plast Retard (PMSG-PR)

PMBG-PR PMSG170-PR PMSG180-PR PMSG185-PR PMSG190-PR

118 120 120 118 118

Plastering Mortar Based on Building Gypsum with Tartaric Acid (PMBG-A63)
Plastering Mortar Based on Synthetic Gypsum with Tartaric Acid (PMSG-A63)

PMBG-A63 PMSG170-A63 PMSG180-A63 PMSG185-A63 PMSG190-A63

126 120 120 118 122
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An additional test, not included in the standards, was the determination of the workability time
of the mortars. The parameter is the time during which the mortar has not yet started to set, and
therefore it shows the ability to easily and accurately fill the forms, while at the same time maintaining
homogeneity. During this time, it is possible to put it on a wall and make any corrections resulting
from errors arising during construction works. This is a very important feature of fresh gypsum
mortars, which translates into the quality of already hardened composites and the products that are
made of them.

Figures 11 and 12 additionally summarize the relationship between the setting time and workability
of the masonry and plastering mortars that were modified with tartaric acid and Plast Ret in a function
of the synthetic gypsum calcination temperature. The figures have the calculated value of 5% error
bars marked.

During the comparison of the setting times of the masonry mortars, it was shown that all the
mortars containing synthetic gypsum and Plast Retard had a longer workability time when compared
to the mortar based on building gypsum. The mortars that contained gypsum, which was obtained in
the calcination process at the temperature of 180 °C, had the longest workability time. With the use of
A63 type tartaric acid, most of the proposed mortars also achieved a longer workability time. In this
case, the longest workability was obtained for the composite based on gypsum calcined at 180 °C
(Figure 11).

135

120 T I T I T T -

105 wlm

75 el

Time [min]

45

30

15

BG BG 170° 170° 180" 180° 185°  18%° 190" 190°
B workability time PLAST RET  initial seffing time PLASTRET
= workability tim e A3 initial seffing fime A63

Figure 11. Relationships between the setting times and workability of masonry mortars modified with
tartaric acid and Plast Ret as a function of the synthetic gypsum calcination temperature, which was
calculated with an error bar value of 5%.

When comparing the setting times of the plastering mortars, it was found that when Plast Retard
was used, all the mortars with synthetic gypsum had a longer or comparable workability time to the
reference mortar with the building gypsum. When using A63 type tartaric acid, all the mortars were
characterized by a constant value of workability time reaching 90 min (Figure 12).
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Figure 12. Relationships between the setting times and workability of plastering mortars modified
with tartaric acid and Plast Ret as a function of the synthetic gypsum calcination temperature, which
was calculated with an error bar value of 5%.

The authors of paper [55] stated that due to the obtained short gypsum setting times, it was
necessary to add tartaric acid to mixes with building gypsum. The amount of retarder was empirically
selected and determined to be 0.16% of the total dry weight. Sing and Garg [56] also used tartaric acid
as a setting retarder for gypsum plasters. They noticed that the used chemicals not only influenced the
setting time, but also changed the compressive strength and microstructure of the plaster.

The above parameters are strongly influenced by the pH of the mortar. It was noticed that the pH
of the mortar affected the strength of the materials, and the retardation factor was not directly related
to the strength of the obtained composites. It was shown that the morphology of the hardened gypsum
plaster depends, to a significant extent, on the pH value of the water and the added retarder, and that
the maximum compressive strength was achieved when the pH was equal to 7.

In recent years, many research centers have dealt with the influence of the following chemical
compounds on setting times: tartaric acid, sodium tartrate, salicylic acid, melamine, sucrose,
white cement, sodium triphosphate, citric acid, black tea, and sodium polyphosphate [12,13,57,58].
The results of their work showed that all types of retarders had a different effect on building gypsum,
and at the same time they also all had a different effect on gypsum strength.

Paper [14] presents a study of the influence of a composite modifying admixture, which consists
of slaked lime and a superplasticizer, on the strength properties and specificity of the shaping of the
binder’s structure. The compressive strength of the samples made of the modified binders ranged
from 20 to 24 MPa, and the flexural strength from 10 to 12 MPa after 28 days. Strength tests of modified
gypsum-based building materials are very important from the point of view of construction engineers.
The authors of this publication are currently planning research concerning the strength of gypsum
materials that are based on synthetic gypsum obtained from flue gas desulphurization.

In turn, the authors of paper [59] analyzed the influence of thermal insulation material on the
energy and environmental efficiency of a building. The building was constructed while taking into
account the principles of sustainable development, both in terms of its design and technical solutions.
In order to assess the impact of the thermal insulation material, various partition configurations were
considered, and the original material (glass wool) was replaced with synthetic (polystyrene, polystyrene)
and natural materials (wood fiber and kenaf). Moreover, the authors of [60] made improvements to
wooden structures with regards to the following: the comfort of use, energy savings, or more broadly
speaking, sustainable development. In the context of papers [59,60], it would be advisable to carry
out tests of partitions made of materials based on synthetic gypsum (proposed in this paper) with
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regards to their thermal and mechanical properties. More advanced construction technologies enable
the addition of photocatalysts to gypsum, e.g., TiO;, in order to obtain a self-cleaning building material
and a material with high photocatalytic properties [61].

An important aspect, apart from the mechanical properties, is the search for composites with
low thermal conductivity values. Very often, the improvement of thermal properties deteriorates the
mechanical properties of materials. A great challenge for scientists is to obtain a material with very
good mechanical and thermal properties.

There are current trends in the construction industry of finding new alternatives to traditional
functional admixtures for gypsum. Attempts have been made to invent a green and sustainable
technology for obtaining innovative composite materials. This approach is conducive to the
development of the construction industry towards ecology, energy efficiency and the broadly understood
area of energy conservation.

4. Conclusions

The main conclusions of this study are:

e  The grain size distribution of the synthetic gypsum before the calcination process differed from
that of commercial building gypsum. The synthetic gypsum before the calcination process
was characterized by a larger share of particle size within the diameter range of 10-100 pm
when compared to the building gypsum, which had particles with diameters from 0.1 to 40 pm.
The calcination process caused the grains to break up into smaller diameters. Thanks to this, it
was possible to use them when creating masonry and plastering mortars.

e  The received statistical parameters of the grain diameters of the synthetic gypsum obtained in
the calcination process did not differ from the parameters of the building gypsum. The research
allowed the grain diameters of the ecological gypsum in complex multiphase systems, such as
pastes and mortars, to be assessed.

e  Based on the study of gypsum pastes, for all the samples, a generalized dependence of the mean
particle size distribution with regards to the diameter of the tested samples was proposed.

e  Pastes made of gypsum that was obtained in the calcination process at 170 and 180 °C resulted in
longer setting times when compared to the reference sample that was made of building gypsum.
The higher gypsum calcination temperature caused the shortening of the setting time. Correlations
that determine the initial and final setting time as a function of calcination temperature were
proposed for the tested synthetic gypsums.

e Masonry and plastering mortars based on the synthetic gypsum with the addition of A63 tartaric
acid or Plast Retard caused the setting time to be extended to the expected standard values of 2 h,
and can be successfully used in innovative building composites. The workability time of all the
proposed modified masonry and plastering mortars was nearly equal to 90 min.
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