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Abstract: Electricity theft decreases electricity revenues and brings risks to power usage’s safety,
which has been increasingly challenging nowadays. As the mainstream in the relevant studies,
the state-of-the-art data-driven approaches mainly detect electricity theft events from the perspective
of the correlations between different daily or weekly loads, which is relatively inadequate to extract
features from hours or more of fine-grained temporal data. In view of the above deficiencies, we
propose a novel electricity theft detection scheme based on text convolutional neural networks
(TextCNN). Specifically, we convert electricity consumption measurements over a horizon of interest
into a two-dimensional time-series containing the intraday electricity features. Based on the data
structure, the proposed method can accurately capture various periodical features of electricity
consumption. Moreover, a data augmentation method is proposed to cope with the imbalance of
electricity theft data. Extensive experimental results based on realistic Chinese and Irish datasets
indicate that the proposed model achieves a better performance compared with other existing methods.

Keywords: data-driven approaches; electricity theft detection; smart meters; text convolutional
neural networks (TextCNN); time-series classification

1. Introduction

Electricity theft can be defined as the behavior of illegally altering an electric energy meter to avoid
billing. This illegal behavior not only severely disrupts the normal utilization of electricity, but also
causes huge economic losses to power systems. At the same time, the unauthorized modification of
lines or meters easily leads to accidents such as power failures and fires, and poses a serious threat to
the safety of the relevant power system [1,2]. According to the research released by an intelligence firm
northeast group, llc in January 2017, electricity theft and other non-technical losses have rendered over
$96 billion in losses per year globally [3]. State Grid Hunan Electric Power Company, China reported
that nearly 40% of electrical fires and 28% of electric shock casualties are caused by electricity theft [4].
Therefore, it is necessary to develop effective techniques for electricity theft detection and ensure the
security and economic operation of power system.

The electricity theft detection technologies can be divided into three categories: the network-oriented
method, the data-oriented method and a hybrid-oriented method that mixes the previous two
methods [5]. Network-oriented and hybrid-oriented approaches usually require the network
topology [6,7] and even the installation of additional devices [8]. It is difficult to implement these
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approaches widely, because the network topology may be unattainable due to security concerns and
the installation of addition devices is costly. Data-oriented approaches only focus on the data provided
by smart meters and have no requirements of the network topology or additional devices, which helps
with improving the cost-effectiveness for suspected electricity theft judgment and detection. Therefore,
data-oriented approaches have been widely applied to electricity theft detection in recent years [9,10].

At present, there are two typical data-oriented methods to detect electricity theft: support vector
machines (SVM) and neural networks. In [11], they proposed a SVM-based approach that uses customer
consumption data to expose abnormal behavior and identify suspected thieves. The authors in [12,13]
combined SVM and a fuzzy inference system to detect electricity theft. In [14], a comprehensive
top-down scheme based on decision trees and SVM was proposed. The two-level data processing
and analysis approach can detect and locate electricity theft at every level in power transmission and
distribution. The authors in [15] proposed an ensemble approach combining the adaptive boosting
algorithm and SVM.

More and more researchers are utilizing neural networks to detect electricity theft due to their
effectiveness. In [16], a long short-term memory (LSTM) and bat-based random under-sampling
boosting (RUSBoost) approach is proposed. The LSTM and bat-based RUSBoost are applied to detect
abnormal patterns and optimize parameters, respectively. In [17], a method based on the wide and deep
convolutional neural network (CNN) model is proposed. The deep CNN component can identify the
periodicity of electricity consumption and the wide component can capture the global characteristics
of electricity consumption data. The authors in [18] combined CNN and LSTM to detect electricity
theft from the power consumption signature in time-series data. In [10], an end-to-end hybrid neural
network is proposed, which can analyze daily energy consumption data and non-sequential data,
such as geographic information.

The above methods have paved the way for building the structures of networks and dedicate
to improving electricity theft detection’s accuracy. However, they mainly focus on the daily or
weekly electricity consumption patterns. As a result, if these methods are applied to hourly or more
frequent electricity consumption data, their accuracy will decrease. This is because they fail to capture
the intraday electricity consumption pattern, for example, the correlation between the electricity
consumption at the same time on different days. In practice, some illegal users commit electricity
theft for part of the day. Specifically, those who have precedent technology and large electricity
demands (such as industrial electricity thieves) prefer to commit the crime during some specific hours
after considering electricity prices, monitoring periods and the risk of being caught comprehensively.
Meanwhile, new kinds of attacks such as interception communication and false data injection [19,20]
make it easier to commit such crime. In a case of electricity theft caught by State Grid Shandong
Electric Power Company, China, the illegal user had normal daily electricity consumption. However,
he confused the metering time of his smart meter to avoid peak electricity tariffs [21]. In this way,
his abnormal electricity consumption pattern can only be reflected in the intraday data. In paper [22],
several possible attack models are proposed to confuse the metering time and commit electricity theft
targeting time-based pricing. Therefore, it is necessary to construct an electricity theft detection scheme
that can not only capture the daily features but the intraday features.

In order to better extract the periodical features from days and more frequent time periods,
we utilize a two-dimensional grid structure for the raw input data in this paper. Based on the
data structure, we propose a text convolutional neural network (TextCNN) to detect electricity theft.
The main contributions of the proposed model include:

(1) We analyze the electricity data structure and transform it into a two-dimensional time-series.
This structure carries the complete power consumption information of users, which means the
consumption patterns of various time scales, such as the electricity consumption at the same
period on different days and the daily consumption of different days.

(2) We propose a novel electricity theft detecting method based on TextCNN. The proposed method
can extract features of different time scales from two-dimensional time-series. To improve the
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accuracy and efficiency of training and detection, we designed our detection network based on
TextCNN. To test the performance, we implemented extensive experiments on the residential and
industrial datasets from a province in China and the public Irish residential dataset.

(3) We propose the data augmentation method to expand the training data in view of the shortage
of electricity theft samples. Experimental analysis indicates that the method can improve the
detection accuracy effectively with a proper augmentation process.

The remainder of this paper is organized as follows. The methodologies of data construction and
CNN construction for electricity consumption data are described in Section 2. Section 3 proposes the
neural network structure based on TextCNN and the data augmentation method. Then, the details of
experimental datasets and methods used for comparison and metrics are given in Section 4. Section 5
presents the performance and superiority of the proposed model, analyzes the parameters and discuss
the effectiveness of the data augmentation method. Finally, Section 6 concludes this paper.

2. Methodology

In this section, we introduce the characteristics of the electricity consumption data and then
compare several data structures regarding their advantages and disadvantages. Finally, we introduce
TextCNN and the reason why it is suitable for the two-dimensional time-series.

2.1. Data Structure Analysis

Smart meters can collect the electricity consumption data at a high frequency, such as once an
hour. The datasets can be expressed as:

Dn =
{
xd1

h1
, xd1

h2
, . . . , xd1

h24
, xd2

h1
, . . . , xdi

h j

}
(1)

where Dn represents the data of user n. xdi
h j

is the value recorded by smart meters during time h j on

day di.
Most studies focus on periodical features of daily or weekly consumption patterns to detect

electricity theft. Therefore, they merge the data of one day into one value and utilize the one-dimensional
data structure or its variant, as shown in Figure 1. The datasets can be further expressed as:

Dn =
{
xd1 , xd2 , . . . , xdi

}
(2)

where xdi represents the total amount of electricity consumption on day di.
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In this way, they neglect the intraday electricity change and fail to capture the intraday features.
In this paper, we construct the data into a two-dimensional grid, which is suitable for feature extraction
from not only different days but different time periods. The two-dimensional grid can be expressed as:
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Dn =


xd1

h1
xd2

h1
· · · xdi

h1

xd1
h2

xd2
h2
· · · xdi

h2
...

...
. . .

...
xd1

h24
xd2

h24
· · · xdi

h24


(3)

The columns in Equation (3) represent the electricity consumption data of 24 h a day. In fact, smart
meters may collect data more frequently, and may collect varieties of information, such as three-phase
voltages and currents, power factors and so on. In this manner, in order to simplify the expression of
Equation (3), we utilize the following column vector to represent the amount of data on day di:

xdi =
{
x1, x2, . . . , x j, . . . , xF

}T
(4)

where F is the number of data from one day. So far, the dataset of one user can be expressed as:

Dn =
{
xd1 , xd2 , . . . , xdi

}
(5)

Further, we use Figure 2 to explain the above two-dimensional structure. In the left figure,
an individual curve represents the data x j on different days and the cluster of curves demonstrates the
daily electricity consumption. Then the expansion of the cluster is a grid, as shown in the right figure,
which is also formulated as Equation (5). The height of the grid represents the number of data points
from one day points. The length of the grid represents the number of days. In other words, the grid of
electricity consumption data is a two-dimensional time-series.
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Figure 2. Two-dimensional data structure of electricity consumption data.

To extract the consumption patterns of different users, we utilize the same intercepted window to
consecutively intercept different users’ data. Then we can obtain a series of two-dimensional grids with
the same length and height. For user n, we use yn to label the intercepted window of the time-series
to judge whether it is electricity theft or not, as shown in Figure 2. Then, we build a nonlinear map
function from an input time-series to predict a class label yn formula:

yn = f (xdi , T) di ∈ T (6)

where T is the length of the intercepted window and f (·) is the key nonlinear function we aim to learn.
In order to conveniently express this data structure in CNN, we use D(N, F, T) to represent

the intercepted segments, where N is the number of samples. For an individual data D(F, T) in the
dataset D(N, F, T), the classification function f (·) needs learning. So far, we have constructed the
two-dimensional structure that maintains the full information of the raw data and transforms the
electricity theft detecting problem into the classification of time-series. Based on the two-dimensional
time-series structure, we utilize TextCNN to learn the classification function.
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2.2. CNN Structure Analysis

CNN specializes in processing data with a grid-like structure [23]. For different input data types,
the structure of CNN should be selected further to achieve effectiveness—TextCNN, RCNN, etc. [24–26].
Considering the above two-dimensional time-series, we focus on TextCNN in this research. TextCNN
is widely used in natural language processing (NLP) fields such as text classification, emotion analysis
and sensitivity analysis for its simple structure and effectiveness [27,28].

2.2.1. Basic Introduction to CNN

The normal multilayered neural networks, which are also called deep neural networks (DNN),
consist of input layers, hidden layers and output layers. CNN has an additional convolutional layer,
as shown in Figure 3a. The discrete convolution is the key operation in convolutional layers. As shown
in Figure 3b, we use a 2 × 2 kernel as an example to illustrate the discrete convolution. The input I has
a value in each grid. Then, a two-dimensional kernel function K ∈ R2×2 is used to extract features.
The output S of the convolution is:

S(i, j) =
1∑

ki=0

1∑
k j=0

I
(
i + ki, j + k j

)
K
(
ki, k j

)
(7)

Equation (7) and Figure 3b together illustrate that convolutional kernels map the neighboring
information of the input into the output. Therefore, compared with DNN, CNN has an advantage of
considering the information in the small neighborhoods, which is a crucial future in the classification of
two-dimensional data, as the neighboring grids usually carry related information [29,30]. For example,
if we regard I as a black and white picture, the kernels can efficiently extract features, such as edges,
angles and shapes from neighboring pixels.
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(b) discrete convolutions.

2.2.2. Differences between CNN and TextCNN

The kernel size is the main difference between CNN and TextCNN. As shown in Figure 4a, we use
height and length to describe the size of a two-dimensional kernel. The commonly used kernel size in
CNN is 3 × 3 [31,32], while in TextCNN the height of kernels is always equal to that of input data [27].
This is because for text classification, the most significant thing is to efficiently capture the internal
features of an individual word and the correlations between multiple words. As shown in Figure 4a,
the convolutional kernels are sliding windows with the same height as a single world. The kernel will
only move in the length direction, so each time the kernel will slide over a complete word.
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The influences of different kernel sizes on the network are shown in Figure 4b. In order to capture
the association between the green grids and the yellow grids, TextCNN requires only one convolutional
layer, while CNN requires three convolutional layers. Therefore, TextCNN simplifies the structure
of the neural network and reduces the parameters that require manual intervention. In this manner,
the efficiency and effectiveness of capturing the internal features of a word and the correlations between
multiple words are guaranteed.

In electricity theft detection, we aim to capture the features from the data correlations of weeks,
days, hours and even more frequent time periods. Analogously, the intraday feature of electricity
consumption is similar to the association between the green grids and the yellow grids in Figure 4b,
and the multi-day correlations are extracted by different kernels, such as K1, K2 and K3 in Figure 4a.
Therefore, to efficiently extract features of electricity consumption data, we propose a neural network
based on TextCNN for the classification of two-dimensional time-series.

3. Proposed Approach

In this section, we propose our electricity theft detection scheme. We introduce the data preprocess
at first. Then, we propose a neural network structure based on TextCNN, which consists of convolutional
layers, pooling layers and fully-connected layers. Finally, we propose the data augmentation method to
increase the amount of electricity theft data for the balance of the training dataset. The total framework
of the proposed electricity theft detection is demonstrated in Figure 5.
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As shown in Figure 5, the raw data collected by smart meters gets through the data preprocess
at first. Then, we divide it into the training dataset and the test dataset. If the training dataset is
imbalanced, we utilize the proposed data augmentation method to balance it. Finally, we train the
proposed network on the training dataset and validate the effect on the test dataset. The metrics used
for training and testing are introduced in Section 4.3. It should be noted that the training process is
supervised learning which requires labeled datasets.

3.1. Data Preprocess

During data collection, missing data, duplications and errors of electricity consumption data
may occur. To avoid the adverse effects of faulty data on the electricity theft detection, reference [17]
proposes an electricity data preprocessing method to recover the missing and erroneous data. Equation
(8) represents the interpolation method to recover the mission data.

x∗d,t =


xd,t−1+xd,t+1

2 xd,t ∈ NaN, xd,t−1, xd,t+1 < NaN

0 xd,t ∈ NaN, xd,t−1 or xd,t+1 ∈ NaN

xd,t xd,t < NaN

(8)

where xd,t is the electricity consumption data during time period t on day d. Additionally, NaN
represents null and non-numeric character.

Moreover, the three-sigma rule of thumb [33] is used to recover the erroneous data as follows:

x∗d,t =

 avg(xd) + 2 · std(xd) if xd,t > avg(xd) + 2 · std(xd)

xd,t otherwise
(9)

where xd is a vector composed of xd,t, avg(x) and std(x) stands for the average value and standard
deviation value of vector x.

3.2. Proposed Neural Network Structure Based on TextCNN

As shown in Figure 6, the proposed neural network structure based on TextCNN is mainly
composed of convolutional layers, pooling layers and fully-connected layers. The features of each
layer are demonstrated in detail below.
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3.2.1. Convolutional Layer

The proposed model has multiple convolutional layers. A convolutional layer has H different sizes
of convolutional kernels. As mentioned in Section 2, in order to ensure the efficiency and effectiveness
of the classification for two-dimensional time-series, the height of kernels is the same as the number of
data points for one day. For convolution kernels of size Hi, Du = (F, T) denotes the uth data sample.
The corresponding kernel weight wu

j ∈ R
F×K is used to extract features from the input data, where K is

the kernel length. For example, the feature map ou
j,i is calculated by:

ou
j,i = fa

(
wu

j ∗Du + bu
j

)
(10)

where ∗means the convolutional operation. bu
j ∈ R is a bias term and fa(·) is a nonlinear activation

function such as the rectified linear unit (ReLU) function. Without the activation function, the output of
the next layer is a linear function of the input of the previous layer. Additionally, it is easy to prove that
no matter how many convolutional layers there are, the output is a linear combination of inputs, which
means the network has no hidden layer. Therefore, activation functions can improve the effectiveness
of neural networks.

There are C kernels
{
wu

1 , wu
2 , · · · , wu

j , · · ·wu
C

}
of size Hi to produce C feature maps as follows:

ou
i =

[
ou

1,i, ou
2,i, · · · , ou

j,i, · · · , ou
C,i

]T
(11)

After first convolution, the feature maps of kernel size Hi are represented by Di(N, C, T −K + 1).
In order to extract the time features and compress the amount of data, the feature maps of the

first convolutional layer should be convoluted multiple times. Thus, there are multiple convolutional
layers in the proposed neural network. It is worth noting that the kernel size of the previous layer is
not necessarily equal to that of the next layer. For instance, the kernel size of Di in the upper layer is
Hi1, and in the next layer is Hi2. Hi1 and Hi2 are independent of each other. After passing through
these convolutional layers, the feature maps of kernel size {Hi1, Hi2, · · · , HiM} are expressed as:

Di(N, C, T −K1 −K2 − · · · −KM + M) (12)

where KM is the kernel length of convolutional layer M.

3.2.2. Pooling Layer

After multiple convolutional operations, the data come to the pooling layer. In this paper, a max
pooling layer is adopted. In the max pooling layers, only the maxima of extracted feature values are
retained and all others are discarded. The max pooling layer can extract the strongest feature and
discard the weaker ones. After the max pooling operation, the output is described as Di(N, C, 1).

3.2.3. Fully-Connected Layer

In the fully-connected layer, the input is the stack of the pooling layer’s output. Then, we use
a two-class classification, the softmax activation function, to calculate the classification result which
consists of two probabilities. When the probability of committing electricity theft is greater than that of
being normal, the input data are labeled as electricity theft. The final output of the entire model is
expressed as:

fSo f tmax

D(N,
∑

i

C, 1)

 = D(N, 2, 1) (13)
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3.2.4. Parameters of the Proposed Neural Network

The main parameters of the proposed neural network are as follows. We utilize two convolutional
layers to extract the features. The two convolutional layers are selected to make a balance between the
accuracy and computational time. In specific, the increase of convolutional layers may improve the
accuracy, but the computation burden also increases significantly with the increase of convolutional
layers. Therefore, we used two convolutional layers to balance the accuracy and the efficiency in the
experiments in this paper. Moreover, more layers typically means a larger number of parameters,
which makes the enlarged network more prone to overfitting [29].

Each convolutional layer has multiple kernels with different sizes. Considering the characteristics
of the TextCNN, the height of the kernels is same as the number of data points from one day and
the lengths of kernels are 2, 3, 5 and 7. Kernels with a length of 2 or 3 can capture features from
adjacent days. Additionally, kernels with lengths of 5 and 7 can capture features from the periodicity
of weekday and week, respectively. Besides, in order to reduce the risk of overfitting, the dropout rate
of the proposed neural network is set at 0.4.

3.3. Data Augmentation

When using CNN to cope with the classification problem, it requires a large amount of data
in various categories for training to obtain a more accurate classification result. Therefore, multiple
methods are used to increase the image samples in the image classification problem [34,35]. In realistic
datasets, since most users do not carry out electricity theft, there are less electricity theft data compared
with the normal data. The imbalance of the datasets would affect the classification result easily,
which could contribute to low accuracy or overfitting. Therefore, we propose a data augmentation
method to address the imbalance problem.

The data augmentation is illustrated in Figure 7. Assuming the date of electricity theft is found on
day DT, then [DT − T, DT] is an electricity theft sample. Due to the continuation of the theft behavior,
electricity theft also occurs during the time [DT − T − 1, DT − 1]. Therefore, [DT − T − 1, DT − 1] is also
an electricity theft sample. If the intercepted window slides AG times, one electricity user datum can
be transformed into AG + 1 samples. So far, the electricity theft samples can be increased effectively
through this method. It is noted that the value of AG needs to be chosen appropriately. If AG is too
large, it will classify the normal data into the theft samples and affect the classification result.
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4. Experimental Settings

In this Section, we present the details of datasets. Then, we introduce several methods for
comparison and the metrics to evaluate the accuracy of the classification model.

4.1. Datasets

Datasets (a) and (b) are realistic datasets from a certain province of China, containing electricity
thieves and normal users. Dataset (c) is the public power data of Northern Ireland, which lacks the
electricity theft data, so the electricity theft data in dataset (c) is artificially constructed.
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(a) Residential user dataset

The amount of residential user data within 1277 days is quite large, so data filtering was required.
There were 1063 electricity thieves; all of them were retained. The number of normal users is particularly
large, reaching several million. In order to achieve a better classification effect, the ratio of electricity
theft data to normal user data should be around 1:3. Therefore, the amount of normal user data finally
obtained was 3564. The smart meters collected 5 data points per day, which means the number of data
points from one day F was 5.

(b) Industrial user dataset

The industrial user dataset contains the electricity data of 8144 users within 1277 days, and smart
meters also collected 5 data points per day, which means the number of data points from one day F
was 5. Compared with the residential user dataset, the number of electricity thieves in the industrial
user dataset is even smaller—only 92. The electricity thieves only occupy nearly 1% of all. Therefore,
the proposed data augmentation method was used to increase the amount of the electricity theft data.

(c) Ireland residential user dataset

The dataset contains the electricity data of 5000 users within 535 days in Ireland, and smart meters
collected 48 data per day (sampling every half hour), which means the number of data points from
one day F was 48. These users were all normal users, so the dataset lacks electricity theft samples.
As a result, we adopted a method introduced in [11] to produce electricity theft samples artificially.
Since the electricity theft samples in this dataset are completely artificially generated, their number can
be easily changed without using the data augmentation.

The details of each dataset are shown in Table 1.

Table 1. Datasets’ information.

Datasets (a) (b) (c)

Time 1 October 2015–31 March 2019 1 October 2015–31 March 2019 1 January 2009–31 December 2010
Total uses 4627 8144 5000

Normal uses 3564 8052 5000
Electricity thieves 1063 92 0

In dataset (a), the ratio of normal users to electricity thieves is 3.3:1, which satisfies the balance
between positive data and negative data for training. However, in dataset (b) and dataset (c), electricity
theft data needs to be augmented in order to satisfy the balance. In dataset (b), the proposed data
augmentation method increases the electricity theft data in the training set to 520, and the ratio of
normal data to electricity theft data in the training set is 2.2:1. In dataset (c), 1800 electricity theft
samples are artificially generated, and the ratio is 2.8:1.

4.2. Baselines

Other than our proposed model, four classical models in machine learning are given for comparison.
The basic parameters setting for baseline methods are summarized in Table 2.

• Logistic regression (LR). Logistic regression is a statistical model that models the probabilities for
classification problems with the dependent variable being binary. It uses maximum likelihood
estimation to estimate regression model coefficients that explain the relationship between input
and output.

• Support vector machine (SVM). A support vector machine is a supervised learning model and
can be used for classification. It uses a kernel trick to map the input into high-dimensional
feature spaces implicitly. Then, SVMs construct hyperplane in high-dimensional space, and the
hyperplane can be used for classification.
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• Deep neural network (DNN). A deep neural network is a feedforward neural network with
multilayered hidden layers. DNN can model complex non-linear relationships through the neurons
in the hidden layer, which can be used for classification problem. Moreover, backpropagation
algorithm is used to update the weight in DNN, because it can compute the gradient of the loss
function with respect to the weights of the network efficiently.

• One-dimensional CNN (1D-CNN). The 1D-CNN is a classifier model which is similar to the
proposed model. However, the user data are 1D electricity consumption data, and the dimensions
of input data would be D(N, 1, T). The structure of 1D CNN is the same as the proposed model
mentioned in Section 3.2.

The general process of the experiments for all methods is as follows:
At first, we divide one dataset into two parts, one for training and the other for effect evaluation.

The ratio of these two parts is called the training ratio. It is worth noting that positive samples and
negative samples are divided separately, so the ratio of positive and negative samples in the training
dataset is the same as that in the test dataset. At each training ratio, we implement ten experiments.
The division of the training dataset and the test dataset is random and independent in each experiment.
At last, we use the average result of these ten experiments to represent the final results.

Table 2. Parameter settings.

Baselines Data Dimension Parameters

LR 1-D
Penalty: L1

Solver: Liblinear
Inverse of regularization strength: 1

SVM 1-D Regularization parameter: 1.0
Kernel: RBF

DNN 1-D Hidden layer: 3
Neurons in the hidden layer: 100, 60, 60

1D-CNN 1-D Same as parameters of the proposed method
Proposed Method 2-D Introduced in Section 3.2.4

4.3. Metrics

There are many ways to evaluate the classification accuracy. The evaluation metrics used in this
paper are accuracy rate, precision rate, recall rate and F1.

The above four metrics were calculated based on the confusion matrix shown in Table 3.

Table 3. Confusion matrix.

Confusion Matrix
Actual

Negative (Normal) Positive (Theft)

Classified
Negative (normal) True Negative (TN) False Negative (FN)

Positive (theft) False Positive (FP) True Positive (TP)

In this paper, our purpose is to detect electricity theft. Therefore, we define electricity theft
samples as positive samples, and normal samples as negative samples. Furthermore, metrics true
positive (TP), true negative (TN), false positive (FP) and false negative (FN) can be obtained from
the confusion matrix. TP and TN indicate that the actual attribute of the sample is the same as the
classified one, which means the classification result is accurate. FP indicates that the sample is actually
negative, but the classified result is positive. FN indicates that the sample is actually positive, while the
classified result is negative. The contrast between actual and classified results reflects the inaccuracy of
the classification model.
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Accuracy rate (AR) is the proportion of correctly classified samples in all samples. It is the most
intuitive and commonly used criterion to measure the classification effect of the model. The formula is
as follows:

AR =
TP + TN

TP + TN + FP + FN
× 100% (14)

However, most samples in the training set are normal, and only a few of them committed electricity
theft, which means that there are far more actual negative samples than actual positive samples. If the
model classifies all actual positive samples into negative, the accuracy rate of the model will still be
very high. Therefore, only using the AR criterion to evaluate the accuracy is not comprehensive.

Precision rate (PR) refers to the proportion of actual positive results in the classified positive
samples, which indicates the classification accuracy in the classified positive samples. The formula is
as follows:

PR =
TP

TP + FP
× 100% (15)

Recall rate (RR) is defined as the proportion of classified positive results in the actual positive
samples, which means the classification accuracy in the actual positive samples. The formula is as
follows:

RR =
TP

TP + FN
× 100% (16)

F_score is the harmonic mean of the precision rate and the recall rate, so it is more comprehensive
to evaluate the accuracy. The formula is as follows:

F_score =

(
α2 + 1

)
× PR×RR

α2 × (PR + RR)
× 100% (17)

where α is a parameter greater than 0. In particular, when α equals one, the F_score is expressed as F1,
which is the most representative criterion in common use. The formula is as follows:

F1 =
2× PR×RR

PR + RR
× 100% (18)

All in all, we construct a confusion matrix and four indicators AR, PR, RR and F1 to comprehensively
consider the accuracy of the classification model. In the next section, we will analyze different models
in different datasets based on the proposed metrics.

5. Results and Analysis

In this Section, we present the experimental results and analysis. We compare the performances of
the proposed model with those of other methods first. Then, we study the influences of the parameters
on the results. Last, we discuss the effectiveness of the proposed data augmentation method.

5.1. Performance Comparison

The performance comparison between the proposed model and other models in three datasets is
demonstrated in Table 4.

The proposed model performs better than other models in different training ratios, as shown in
Table 4. Take the result of a 70% training ratio as an example. The proposed model has the highest
PR and RR for each dataset. However, other models had better ARs in some dataset. For example,
the AR of the 1D-CNN model was the highest for dataset (a)—4.3% higher than that of the proposed
model. However, F1 (which is the most comprehensive indicator of the classification performance)
of the proposed model was the highest in each dataset and reached 0.757, 0.850 and 0.904 in dataset
(a), dataset (b) and dataset (c), which is 20.1%, 15.2% and 8.9% higher than the second-place model
respectively. Meanwhile, the proposed model performed better with the increase in the training ratio.
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For example, in dataset (c), the F1 increased from 0.759 to 0. 896 as the training ratio increased from 50
to 80%.

Table 4. Results on different datasets with different models.

Training = 50%

Model
Dataset (a) Dataset (b) Dataset (c)

AR PR RR F1 AR PR RR F1 AR PR RR F1

LR 0.851 0.623 0.488 0.547 0.577 0.487 0.442 0.463 0.867 0.706 0.827 0.762
SVM 0.694 0.733 0.022 0.042 0.523 1.000 0.023 0.045 0.793 0.886 0.223 0.356
DNN 0.843 0.596 0.429 0.487 0.514 0.384 0.349 0.366 0.844 0.655 0.543 0.575

1D-CNN 0.871 0.689 0.439 0.536 0.714 0.913 0.488 0.636 0.843 0.682 0.677 0.787
Proposed CNN 0.830 0.956 0.601 0.738 0.795 0.945 0.634 0.759 0.870 0.719 0.803 0.835

Training = 60%

Model
Dataset (a) Dataset (b) Dataset (c)

AR PR RR F1 AR PR RR F1 AR PR RR F1

LR 0.851 0.614 0.519 0.562 0.654 0.586 0.531 0.557 0.898 0.748 0.888 0.812
SVM 0.700 0.917 0.027 0.052 0.676 0.727 0.094 0.167 0.810 0.838 0.290 0.431
DNN 0.851 0.618 0.429 0.497 0.732 0.375 0.562 0.450 0.863 0.683 0.600 0.635

1D-CNN 0.890 0.730 0.500 0.594 0.719 0.944 0.531 0.680 0.812 0.610 0.615 0.744
Proposed CNN 0.846 0.931 0.669 0.779 0.834 0.952 0.720 0.819 0.919 0.825 0.876 0.897

Training = 70%

Model
Dataset (a) Dataset (b) Dataset (c)

AR PR RR F1 AR PR RR F1 AR PR RR F1

LR 0.852 0.633 0.496 0.556 0.678 0.714 0.400 0.513 0.907 0.725 0.930 0.815
SVM 0.700 0.833 0.030 0.058 0.660 0.500 0.094 0.158 0.833 0.793 0.324 0.460
DNN 0.855 0.636 0.411 0.494 0.833 0.692 0.360 0.474 0.856 0.660 0.624 0.636

1D-CNN 0.875 0.778 0.398 0.527 0.735 0.833 0.600 0.698 0.840 0.750 0.500 0.750
Proposed CNN 0.893 0.839 0.690 0.757 0.844 0.952 0.756 0.850 0.920 0.785 0.966 0.904

Training = 80%

Model
Dataset (a) Dataset (b) Dataset (c)

AR PR RR F1 AR PR RR F1 AR PR RR F1

LR 0.837 0.610 0.472 0.532 0.652 0.529 0.529 0.529 0.917 0.712 0.977 0.824
SVM 0.695 0.778 0.035 0.066 0.660 0.615 0.094 0.163 0.833 0.684 0.302 0.419
DNN 0.856 0.630 0.434 0.511 0.784 0.522 0.706 0.600 0.857 0.653 0.630 0.635

1D-CNN 0.859 0.800 0.359 0.496 0.714 0.909 0.588 0.741 0.833 0.705 0.574 0.762
Proposed CNN 0.723 0.908 0.742 0.816 0.901 0.958 0.841 0.896 0.958 0.857 1.000 0.947

It is also worth noting that the proposed model had better universality and performance in the
realistic dataset. Comparing dataset (c) with the realistic dataset (a) and dataset (b), the F1 of the
proposed model with dataset (c) reached about 0.95, but 0.816 for dataset (a) and 0.896 for dataset (b)
when the training ratio was 80%. This is mainly because that the electricity theft data in dataset (c)
were artificially generated, of which the data features can be identified and extracted easily by machine
learning models. However, realistic electricity theft data are more complicated and lack regularity.
Therefore, the results in realistic datasets are relatively worse than those in dataset (c). However,
compared with other models, the performance of the proposed model was still the highest.

The comparing results show that the proposed model has better performance overall, which implies
that the proposed model has higher accuracy in electricity theft detection.

5.2. Parameter Study

To study the effect of the length of the intercepted window T on the proposed model, we conducted
an experiment on dataset (a) and dataset (b) by changing the value of T from 10 to 500 with a step size
of 10. Figure 8a,b shows the experiment results of dataset (a) and dataset (b), respectively.
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Figure 8. Performances of different T. (a) Trends of indicators in dataset (a); (b) trends of indicators in
dataset (b).

The length of the intercepted window has an important impact on the performance, as shown in
Figure 8. Four indicators all increased with the increasing of T at first. Then they no longer increased
and began to fluctuate when T exceeded a certain value and continued to increase. In Figure 8a, PR,
RR and F1 achieved their maxima when T was about 270. In Figure 8b, four indicators achieved their
maxima when T was about 200. This is mainly because that the features of electricity theft data are
easier to be extracted with more electricity consumption information when T increases, which leads to
the improvement of the performance.

Therefore, to achieve the best performance of the proposed model, it is necessary to investigate an
appropriate length of the intercepted window T for electricity theft detection.

5.3. Data Augmentation Analysis

The proposed data augmentation method was used to augment the electricity theft data in
dataset (b). To study the effectiveness of the proposed data augmentation method, we varied the
value of AG, which represents the repeated times, from 0 to 20 with a step of 1. At the same time,
other parameters were fixed.

The comparison results of different AG in training ratios of 50% and 80% are given in Figure 9a,b
respectively. The four indicators all increased at first as AG increased, while the classification accuracy
decreased after AG exceeded a value. The indicators had a positive relationship with AG in the early
stage because the increase in the amount of electricity theft data during the training was of great help
to the classification accuracy, which can effectively increase the number of TP (true positives) in the
classification result. Therefore, all four indicators had an upward trend.Energies 2020, 13, x FOR PEER REVIEW 15 of 17 
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When AG continued to increase, AR, RR and F1 dropped, while PR fluctuated. The main reason is
that the normal data were labeled as electricity theft during the data preprocessing when the repeated
time was too large, so the training model tended to classify the normal users into abnormal users. As a
result, the numbers of FP (false positives) and FN (false negatives) increased, while the numbers of
TP and TN (true negative) declined in the classification result. Therefore, the classification accuracy
dropped and most indicators decreased, especially the most important indicator F1.

All in all, the data augmentation which increases the number of electricity theft data points for
CNN training can improve the classification accuracy effectively. It is also important to choose an
appropriate AG to achieve better classification results, because the indicators for accuracy may fluctuate
with inappropriate AG.

6. Conclusions

In this paper, we propose a novel electricity theft detection scheme based on TextCNN.
We innovatively formulated the electricity data into two-dimensional time-series in order to capture
the intraday and daily correlations of electricity consumption data. Then, we discussed the relationship
between DNN, CNN and TextCNN, and explained why TextCNN is the most suitable classifier for
our purposes, considering both the efficiency and effectiveness. Additionally, in order to balance the
electricity consumption dataset, we proposed a data augmentation method. We conducted extensive
experiments on different realistic datasets to prove the effectiveness of the proposed scheme, including
the residential and industrial datasets from a province in China and the public Irish residential
dataset. The experimental results show that the proposed method outperforms other methods, such
as LR, SVM, DNN and 1D CNN. At the same time, we analyzed the importance and effectiveness of
data augmentation.

Author Contributions: Conceptualization and methodology, X.F. and H.H.; software, Z.L. and Y.Y.; validation,
W.G., H.Q. and H.F.; writing, H.H., Z.L., Y.Y. and C.Y.; supervision and project administration, X.F., H.Q., H.F. and
Y.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Project Supported by the China Southern Power Grid Corporation, grant
number GDKJXM20185800.
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