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Abstract: In order to improve the prediction accuracy of wind speed, this paper proposes a hybrid
wind speed prediction (WSP) method considering the fluctuation, randomness and nonlinear of
wind, which can be applied to short-term deterministic and interval prediction. Variational mode
decomposition (VMD) decomposes wind speed time series into nonlinear series Intrinsic mode
function 1 (IMF1), stationary time series IMF2 and error sreies (ER). Principal component
analysis-Radial basis function (PCA-RBF) model is used to model the nonlinear series IMF1, where PCA
is applied to reduce the redundant information. Long short-term memory (LSTM) is used to establish
a stationary time series model for IMF2, which can better describe the fluctuation trend of wind
speed; mixture Gaussian process regression (MGPR) is used to predict ER to obtain deterministic
and interval prediction results simultaneously. Finally, above methods are reconstructed to form
VMD-PRBF-LSTM-MGPR which is the abbreviation of hybrid model to obtain the final results of
WSP, which can better reflect the volatility of wind speed. Nine comparison models are built to verify
the availability of the hybrid model. The mean absolute percentage error (MAE) and mean square
error (MSE) of deterministic WSP of the proposed model are only 0.0713 and 0.3158 respectively,
which are significantly smaller than the prediction results of comparison models. In addition,
confidence intervals (CIs) and prediction interval (PIs) are compared in this paper. The experimental
results show that both of them can quantify and represent forecast uncertainty and the PIs is wider
than the corresponding CIs.

Keywords: wind characteristic; VMD; hybrid model; deterministic prediction; interval prediction

1. Introduction

Renewable sources of energy are gradually replacing tradition sources in many countries, not only
because of the limited of fossil and nuclear fuel energy sources but unprecedented and irreversible
damage to the environment caused by them, as well as the continuing reduction in the cost of renewable
technologies. Wind energy has been growing rapidly in recent years. In 2018, the global installed
capacity of offshore wind power increased by 4.3 GW with a total installed capacity of 23 GW. It has
grown by nearly 30% a year since 2010 [1]. According to a new report by Ember, a European think tank
on climate and energy, wind and solar power supply 10% of the global electricity demand in the first
half of 2020, double the level of 2015.

Compared with other major power generation, wind has nonlinear characteristics [2], and reliable
wind speed prediction (WSP) can reduce the impact of these characteristics on the power system [3,4].
Reference [5] study the existence of low-dimensional deterministic chaos in wind times series through
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characteristic extracting, estimation of invariant measures and noise removal. The results of reference [6]
indicate wind has diverse characteristics such as stochastic, deterministic and chaotic behavior and a
cluster of deterministic models built upon separate frequency components of a wind speed time series
can enhance the prediction accuracy. Reference [7] build an adaptive WSP model based on the chaotic
characteristic combined with the spatial reconstruction theory.

At present, WSP is mainly divided into deterministic prediction and interval prediction.
Deterministic prediction can obtain the prediction value of wind speed, while the interval prediction
can obtain the uncertainty of the measured wind speed occurring at a certain time in the future.
When large-scale wind power is connected to the power grid, wind power fluctuation will affect
the balance of supply and demand of the power grid, and may endanger the security of power system in
serious cases [3]. Interval prediction of wind speed can reduce the adverse impact of wind randomness
and fluctuation on power system reliability, and interval prediction is crucial in the planning of
economical dispatch, aiming to an efficient and economical wind power integration and operation [8].
In addition, wind speed is not only the main factor affecting wind turbine operation, but also is an
important indicator of wind field location, which mainly involves wind speed deterministic prediction.
Since the wind power has a cubic relationship with wind speed, any error in the wind speed forecast
leads to a larger error in wind power production. So WSP is a key to wind power forecasting.

WSP is directly related to the characteristics of original data, data processing methods and data
prediction models. In recent years, research reports on WSP is divided into four main categories [9–17].

• Physical modes, which mainly use numerical weather prediction (NWP) data to complete wind
speed prediction by establishing variable ratio expressions of wind speed and air pressure,
air density, air humidity, etc. [13].

• Statistical models, which mainly use time series modeling, including autoregressive integrated
moving average model (ARIMA) and Kalman filtering, etc. [14].

• Temporal-spatial correlation models, which mainly use data from different measuring points to
predict wind speed [15].

• Artificial intelligence models, which are hot spots for WSP, such as recurrent neural network
(RNN), support vector machine (SVM), and fuzzy logic method, etc. [16].

Most scholars choose one or more of above methods for prediction, but studies show that the single
statistical method is not accuracy enough in wind speed prediction. Therefore, the academia proposes
a hybrid model based on statistical methods of which prediction accuracy is better than the single
model [17]. In reference [18], the effective information is extracted by CNN sequence feature extraction
ability, and the data is input to LSTM network after other information is removed. Reference [19]
proposes using momentum item to speed up the convergence rate of BP, and taking the advantage of
the genetic algorithm (GA) to optimize the structure, weights and bias of BP. Reference [20] performs
grey correlation analysis on other meteorological factors such as temperature to achieve dimension
reduction, then build LSTM model based on that. Reference [21] uses EMD to depose wind speed
series into different IMFs, and build LSTM model, which has high prediction accuracy. In reference [22],
EMD and ensemble empirical mode distribution (EEMD) are used for decomposition of wind speed
data into IMFs, and an ANN is proposed to predict the wind speed with IMFs given as the inputs.
Reference [23] proposes a WSP method based on deep learning combined by CNN and RNN using
the big data of a certain wind form from 2014 to 2015.

Considering the characteristics of randomness, volatility, low energy density and non-linearity
and above analysis, wind speed should be decomposed into several components and studied separately.
At present, wavelet transform (WT), EMD methods and their modified versions such as complementary
EEMD, empirical wavelet transform (EWT), EEMD, and other signal decomposition methods have
been widely used [24]. Variational mode decomposition (VMD) was developed by Dragomiretskiy
and Zosso, which is a novel type of complex signal decomposition on the basis of EMD [25].
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VMD is a completely intrinsic, self-adaptive and non-recursive decomposition technique,
by which a signal can decomposed into a finite broadband mode set and show the partial feature
of the signal. It has significant advantages in solving the problem of signal noise and avoiding
mode overlap [25]. Wind speed series can be decomposed by VMD algorithm into intrinsic mode
functions (IMFs), which can effectively reflect the characteristics of randomness and fluctuation.
In addition, wind speed is affected by meteorological factors, such as wind direction, temperature,
humidity, air pressure and other parameters. Principal component analysis algorithm (PCA) can
effectively remove redundant data and realize data dimension reduction. In order to ensure the reliability
of the data, the number of data samples involved in this paper is 350, which belongs to small sample
data. It is more suitable to solve the problem by means of mechanical learning, such as LSTM.
On the contrary, deep learning is more suitable for the case of large quantity, because more parameters
and data quantity are needed to fully train the deep learning model. If the data quantity is small,
the parameters cannot be fully trained, and the accuracy of the deep learning model is not as good
as machine learning. This paper mainly includes two parts, deterministic prediction and interval
prediction. For deterministic prediction part, RBF neural network model is used to model IMF with
obvious nonlinear characteristic in this paper, because RBF has the advantages of infinite approximation
to nonlinear functions and overcoming local optimal solution [26]. LSTM is used to model and fit
the mode with small fluctuation and non-obvious nonlinear characteristics. Long short term memory
network (LSTM) extended from RNN network is a special algorithm for processing time-series problem,
which solves the problem of gradient explosion or disappearance of RNN and can learn long-term
dependent information and is suitable for time series classification and prediction [17]. The noise
sequence reflects the fluctuation and randomness of wind speed. In this paper, mixture Gaussian
process regression (MGPR) model is used to model the noise sequence and the prediction results of
error sequence are obtained. Finally, the final wind speed prediction results are obtained by summing
and reconstructing the initial prediction results of each mode and the error sequence. As for interval
prediction, confidence interval (CIs) and prediction interval (PIs) are two well-know methods for
quantifying and representing the uncertainty of predictions [27]. A quantitative comparison is made
between CIs and PIs of wind speed under a certain confidence degree, where CIs are obtained by a
single model MGPR and the hybrid model proposed in this paper respectively and PIs are obtained by
the hybrid model combining the lower and upper bound estimation method (LUBE).

In this paper, a new hybrid model is constructed by combining a variety of methods to predict wind
speed, and the proposed model in this paper can be applied for short-term deterministic and interval
WSP. Deterministic prediction can help optimize power system scheduling and improve the reliability
of wind power grid connection. Interval prediction can quantify the volatility and intermittent of wind
power, and improve the security and economy of wind grid. The primary innovations are as follows.

Firstly, VMD is used to decompose the original wind speed sequence into different IMFs, so as
to achieve de-noising while retaining the original information and enhance the predictability of
wind speed. Additionally, the comparison between EMD and VMD shows VMD is more suitable
for this paper. Secondly, as for prediction model with multiple input variables, PCA is applied to
data dimension reduction to remove redundant information. The experimental results show that
the prediction results with PCA is superior to those without PCA. Thirdly, corresponding reasonable
model is established for each IMF obtained from VMD algorithm to improve prediction accuracy.
Fourthly, the hybrid model VMD-PRBF-LSTM-MGPR which is obtained by reconstructing models
for each mode can be applied to deterministic prediction and interval prediction simultaneously,
where deterministic prediction has high accuracy and can represent the fluctuation of wind speed.
The mean absolute percentage error (MAE), relative mean square error (RMSE) and mean square
error (MSE) of deterministic prediction of the hybrid model proposed in this paper are only 0.0713
and 0.3158 respectively, which are more accurate than the prediction results of comparison models.
In addition, CIs and PIs are compared in this paper. The results show that the prediction interval is
wider than the corresponding confidence interval.
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This paper is divided into the five parts. The second section describes the basic introduction
of methods used in this paper. The third section mainly introduces the process of WSP including
deterministic and interval prediction, which consists of three parts, data processing, establishment
of comparison models and hybrid model, and validation of the proposed model. The fourth section
shows the WSP results and discussion through a numeral case, followed by conclusion.

2. Introduction of Basic Algorithm for Building the Model

2.1. Variational Mode Decomposition

Variational modal decomposition (VMD) is proposed by Desomimicskiy and Zosso on the basis of
EMD, and is an adaptive, quasi-orthogonal and completely non-recursive decomposition method based
on Hilbert transform, classical Weiner filtering and mixed frequency variational problem. EMD is a
classical mode decomposition method proposed by Huang et al., which is lack of mathematical theory,
ability to properly cope with noise and the hard band-limits of wavelet approaches [25]. Compared with
EMD, VMD decomposes the signal into finite bandwidth with different center frequency according to
the preset model number K. VMD uses alternating direction multiplier method (ADMM) to constantly
update each mode and its center frequency, and gradually adjusts each mode to the corresponding
base band, then exacts each mode and its corresponding center frequency, and eventually obtains each
component with no central frequency.

The essence of the VMD is the variational problem, which is divided into the construction
and solution of the variational problems, and the process is as follows.

Hilbert transform was used to calculate the correlation analysis signal of each mode uk,
and the unilateral frequency spectrum was obtained.

For each mode uk, the frequency spectrum of the mode is shifted to base-band by tuning to
the exponential mixing of the respective estimated center frequency.

The bandwidth is estimated by the H1 Gaussian smoothness of demodulation signal. The resulting
constrained variational problem is the following:

min
{uk},{wk}

{∑
k
‖∂t[(δ(t) +

j
πt ) ∗ uk(t)]e− jwkt

‖
2
2

}
s.t.

∑
k

uk = f
(1)

where, * denotes convolution, uk represents the k-th mode,wk represents the center frequency,
K represents the total number of modes, ∂t represents the Dirac distribution, f (t) is the original signal.

In order to eliminate the constraints of the above problems, quadratic penalty term and Lagrangian
multiplier are introduced to transform the constrained optimization into the unconstrained optimization
problem:

L({uk}, {wk},λ) = α

{
K∑

k=1
‖∂t[(δ(t) +

j
πt ) ⊗ uk(t)]e− jwkt

‖
2
2

}
+ ‖ f (t)−

K∑
k=1

uk‖

2

2

+
〈
λ(t) , f (t) −

∑
k

uk(t)
〉 (2)

where, α is the penalty parameter. λ is the Lagrange multiplier and⊗ represents the convolution operator.
The solution of the original minimization problem (1) is transformed into an optional model,

which can be solved by multipliers alternating direction method. Update uk and wk according to
ADMM. The expression is as follows:

Minimization uk and wk:

∧
u

N+1

k (w) =

∧

f (w) −
∑

i,k
∧
ui(w) +

∧

λ(w)
2

1 + 2α(w−wk)
2 (3)
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wN+1
k (w) =

∫
∞

0 w
∣∣∣∣∧uk (w)

∣∣∣2dw∫
∞

0

∣∣∣∣∧uk (w)
∣∣∣2dw

(4)

where, N represents the number of iterations.
∧
u

n+1

k ,
∧

f (w),
∧
ui(w),

∧

λ(w) is the Fourier transform of
un+1

k , f (t), ut(t),λ(t).

2.2. PCA-RBF Model

Principal component analysis is to reflect data characteristics and rules with as little information
as possible. It not only retains the information of the original data, but also achieves data
dimensional-reduction and reduces the complexity of the data itself [28,29]. The input variables
of RBF include six variables, namely wind speed (V), wind direction (WD), temperature (T),
humidity (H), air pressure (P) and battery energy (B) respectively in this paper. In order to achieve
dimensional-reduction and reduce the redundant data, PCA is selected in this paper.

Firstly, data are collected to determine the original data input matrix X and output variables
Y = (y1, y2, . . . , yn)

′ of RBF neural network.

X = (X1, X2, . . . , Xn) =


x11 x12 · · · x1h
x21 x21 · · · x2h

...
...

...
...

xn1 xn2 · · · xnh

 (5)

where, n represents the number of samples, h represents the number of input data.
Calculate the mean value and standard deviation of each variable, which can be expressed

as follows:
−
x j = (

n∑
i=1

xi j)/n, ( j = 1, 2, · · · , h) (6)

s j =

√√
1

n− 1

n∑
i=1

(xi j−
−
x j)2, ( j = 1, 2, · · · , h) (7)

The mean value and standard deviation are used to standardize the original data to eliminate
the dimensional influence, which can be expressed as:

x∗i j =
xi j −

−
x j

s j
, (i = 1, 2, · · · , n; j = 1, 2, · · · , h) (8)

The co-variance matrix R is obtained from the data after standardized processing, which can be
expressed as:

R =

 1
n− 1

n∑
i=1

x∗ksx
∗

kt

, (s, t = 1, 2, · · · , p) (9)

Secondly, calculate the cumulative variance contribution rate.

a(m) =
m∑

j=1

λ j/
h∑

j=1

λ j (10)

where, λ j represents the j-th eigenvalue. a(m) represents the cumulative contribution rate of the first m
principal components, and h represents the number of original variables.
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Extract principal components information, which can be expressed as:

Y = X·l (11)

where, Y is the principal component part of the original variable matrix X. l represents the eigenvectors
corresponding to the eigenvalues. The first m principal components whose eigenvalue is greater than 1
and whose cumulative contribution rate is greater than 90% are selected, while the rest components
are discarded.

Finally, the PCA-RBF model is established, and the principal components matrix Y is used as
the input matrix to build a new Radial Basis Function (RBF) model. Because RBF Network has strong
nonlinear fitting ability and can approximate arbitrary nonlinear functions. It has good generalization
ability and can map any complex nonlinear relationship. The structure of RBF neural network is shown
in Figure 1. RBF neural network is not repeated in this paper, detailed references [22].
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2.3. LSTM Model

Long-short term memory (LSTM) network is a special recurrent structure which can improve
the ability of RNN network to handle long-term dependent tasks and resists the problem of vanishing
gradient disappearance [17]. Compared with the traditional neural network, a feedback connection
is added in the hidden layer of RNN. The interconnection of nodes between hidden layers in RNN
makes the output of the hidden layer enter into the hidden layer of output and the next time step
simultaneously, as shown in Figure 2. The network can generate the memory state of the past data,
and establish the dependency relationship between the data of different time periods through this
structure, so it can better deal with the time series problems [30]. LSTM solves the problem that
the back propagation across time steps may lead to vanishing gradient problem of RNN when handle
long-term dependent tasks by introducing a memory unit instead of the implicit node of the traditional
RNN. The memory units of LSTM in hidden layer are shown in Figure 3. The repetition module of
LSTM consists of three sigmoid functions and one tanh function, and introduces threshold structure,
inputting gate, forgetting gate and outputting gate, so that the LSTM can selectively remember new
information or delete information.Energies 2020, 13, x FOR PEER REVIEW 7 of 24 
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Figure 2. The expanded structure of recurrent neural network (RNN).
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The process of information processing about LSTM model can be expressed by the following
equation respectively:

it = σ(Wixi + Hiht−1 + bi) (12)

ft = σ(W f x f + H f ht−1 + b f ) (13)

ot = σ(Woxt + Hoht−1 + bo) (14)
∼
ct = tanh(Wcxt + Hcht−1 + bc) (15)

ct = ft ∗ ct−1 + it ∗
∼
ct (16)

ht = ot ∗ tanh(ct) (17)

σ(x) =
1

1 + e−x (18)

tanh(x) =
ex
− e−x

ex + e−x (19)

where, it is the input gate, which determines the updated information within the unit. ft is the forget
gate, that determines the deleted information in the unit. ot is the output gate, that determines how
much information is output.

∼
ct is the candidate value of the element state at time t. ct is the state

of the unit at time t, calculated by the combination of parameters it,
∼
ct, ft, ct−1 through Element-wise

multiplication (*). ht is the output value filtered by the output gate. σ represents the Sigmoid function
in the range of 0 to 1, and uses the tanh function to trust the value between −1 and 1. xt represents
the input of memory unit at time t. Wi, W f , Wo, Wc, Hi, H f , Ho, Hc are the weight matrix. bi, b f , bo, bc is
the deviation vectors.

The flow chart of LSTM model for wind speed prediction is shown in Figure 4.

2.4. Mixture Gaussian Process Regression (MGPR)

Gaussian process regression model (GPR) is a non-parametric probability model based on
nuclear [31], and MGPR is based on the mixed Gaussian process expert support GP approaching
the temptation of formalism, as shown in Figure 5. Each expert uses a set of guidance to supplement,
and according to the proximity of data points to the experts, and the data point are defined and assigned
to the experts probability.
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Set the input eigenvector be X = {xn}
N
n−1 and the actual output signal be Y =

{
yn

}N
n=1.

Defined function space fk(x) conforms to Gaussian distribution, and each independent expert
model contains a potential function, which is expressed as:

fk(x) ∼ GP(0, k(x, x′;θk)) (20)

where, GP(·) is gaussian distribution function, k(x, x′;θk) is the kernel function of expert K and θk is
hyper parameter.

Each expert is supplemented by a set of M induction inputs Uk = {uk1, · · · , ukM}, whose inducement
points are expressed as:

gk = ( fk(uk1)), · · · , ( fk(ukM))T (21)

Suppose that each observation xn, yn are associated with only one expert identified by zn, denoted
by z, g, f , U,θ, σ for zk, gk, fk, Uk,θk, σk. The total joint distribution of the model is expressed as:

p(y, z, f , g
∣∣∣U,θ, σ, X) = p(y

∣∣∣ f , σ)
·p( f

∣∣∣z, g, U,θ, X)·p(g|U, θ)·p(z|U,X)
(22)

where,

p(y
∣∣∣ f ,σ) =

K∏
k=1

N(yk; fk, σ2
kI) (23)

p(g|U,θ) =
K∏

k=1

N(gk; 0, K(Uk, Uk)) (24)
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p(z|U,X) =
K∏

k=1

p(zn
∣∣∣xn, U) (25)

p( f

∣∣∣∣∣∣∣z, g, U,θ, X) =
K∏

k=1

N( fk;
−

fk(Xk), Λk(Xk)) (26)

where,
−

fk(Xk) = K(Xk, Uk)K(Xk, Uk)
−1gk (27)

Λk(Xk) = diag(K(Xk, Xk) −K(Xk, Uk)K(Xk, Uk)
−1K(Xk, Uk) (28)

p(zn = k
∣∣∣xn, U) ) =

N(Xn; mk, V)
K∑

j=1
N(Xn; mk, V)

(29)

mk =
1
M

M∑
m=1

ukm (30)

v j =
1

K(M− 1)

K∑
k=1

M∑
m=1

(ukmj −mkj)
2 (31)

where, N(; , ) represents Gaussian distribution. K(Xk, Uk) is the co-variance matrix evaluated at all
points in Xk and Uk. And the results of interval WSP in the sense of probability distribution can be
obtained. In addition, the subscript k of the co-variance matrix is specified by the super-parameter of
expert K. Each mean mk is called the center of expert K corresponding to the output of point prediction.
V = diag(v1, · · · , vd) represents the co-variance.

3. Wind Speed Prediction Process

3.1. Data Analysis

3.1.1. Data Preprocessing

The research data of this paper are from the offshore small wind turbine test station of Shantou
University located on Nan’ao Island, Guangdong Province. Nan’ao Island is the largest island wind
farm traversed by the Tropic of Cancer with obvious marine climate characteristics in Asia and abound
in wind resources with average wind speed of 8.54 m/s. We selected samples collected for three
consecutive days in September 2017 (1 September 2017–3 September 2017), and the number of sample
is 350, and the sampling time interval is 10 min. The first 300 samples of all samples is taken as
the training set, and the remaining 50 samples is taken as the test set. The method of this paper is
applicable to short term WSP. The sampled variables include six variables, namely wind speed (V),
wind direction (WD), temperature (T), humidity (H), air pressure (P) and battery energy (B) respectively.
Figure 6. shows the wind speed series distribution. As we can see from Figure 6, the strong stochastic
characteristic of wind speed is observed, with daily average wind speeds values changing from 1 to
15 m/s, where Y axis represents the wind speed and X axis represents the sample with an interval of
10 min.

There are correlations between sampled variables, but multidimensional data may lead to
information redundancy and increase the computational complexity. The main objective is to find
how the additional sampled variables can help improving wind speed prediction. Therefore, PCA is
used to eliminate redundant information between input parameters, and replace the original input
parameters with new uncorrelated input parameters, so as to reduce the dimension of the original data
on the premise of retaining the original information. PCA algorithm is used to obtain the principal
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component scores of each variable, and the standard orthogonal principal component score coefficient
of each variable is visualized, as shown in the Figure 7.
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The eigenvalue of each principal component and the cumulative contribution rate of the sample
data are shown in Table 1. As we can see from Table 1, the eigenvalues of the first two principal
components of the sample data are both greater than 1, but the cumulative contribution rate is only
68%. The eigenvalues of the third and fourth principal components are close to 1, and the cumulative
contribution rate of the first four principal components reaches 93.3%, therefore the first four principal
components are selected as the model input data.

Table 1. Principle component analysis.

Principal Component Principal Component
Eigenvalues

Eigenvalue
Contribution Rate

Cumulative
Contribution Rate

First 3.053 0.508 0.508
Second 1.031 0.172 0.680
Third 0.929 0.155 0.835

Fourth 0.587 0.098 0.933
Fifth 0.352 0.059 0.992
Sixth 0.049 0.008 1
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3.1.2. Decomposition of Wind Speed Data

Variational mode decomposition (VMD) is used to extract the wind speed series into different
intrinsic mode functions. As shown in Figure 8, it is the original wind speed series results decomposed
by Empirical mode decomposition (EMD) and VMD respectively, which include decomposition modes
and corresponding spectrum. If the number of modes K is too small, it will lead to undersegmentation
of the sample data, and some components are contained in other modes or discarded as “noise”.
On the contrary, if K is too big, it will lead to capture extra noise or mode to mode duplication.
As shown in Figure 8b, EMD can not preset K, which is not convenient to observe the fluctuation of
wind speed. Optimization of VMD is on the basis of the EMD algorithm, which can preset K, as well as
can obverse the fluctuation and randomness of wind speed. K is 3 in this paper. Therefore, the mode is
extracted by denoising VMD algorithm in this paper.
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Figure 9 shows the 3D visualization of VMD decomposition modes. As we can see from Figure 9,
IMF1 has strong volatility and obvious nonlinear characteristics. IMF2 has a weak fluctuation
range from −3 to 3, and is randomly distributed around 0 without obvious nonlinear characteristic
and the fluctuation range is small. IMF3 is randomly distributed around [−1.5, 1.5] and scatter points
fluctuate around 0 randomly, and they do not have distinct trend and fluctuation. Therefore, IMF3 can
be considered as a noise series. The ADF in Matlab is used to test whether the time series is stable.
The return value of IMF1 is 0 but IMF2 and ER series return a value of 1. Thus, according to the ADF
test and the characteristic analysis of the decomposed series, as can be seen that, IMF1 is non-stationary
series, IMF2 and ER are all stationary series. VMD algorithm decomposes the original wind speed
series into nonlinear part, stationary time series part and noise part, and corresponding reasonable
models are built for each part, which can reduce the impact of randomness and fluctuation.
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3.2. The Process of Modeling

The WSP modeling process mainly consists of three parts: data pre-processing, establishment of
hybrid models and comparison models including deterministic prediction and interval prediction,
and validation of the proposed model. Finally, a numeral case is given to introduce these three parts in
details respectively. The specific modeling process is shown in Figure 10, where the green part shows
the entire process of the hybrid model proposed in this paper and the dotted lines are connected to
the comparison models flow.Energies 2020, 13, x FOR PEER REVIEW 13 of 24 

 

 
Figure 10. The flow chart of the proposed wind speed prediction (WSP) model and comparison 
models. 

1. Data processing section. 

First, PCA is used to extract the principal components of multidimensional variables (like wind 
speed (V), wind direction (WD), temperature (T), humidity (H) and air pressure (P)), which the 
cumulative contribution rate is greater than 90%. The partial auto-correlation function is used in time 
series to determine the state variables and construct the appropriate training set. Figure 11 shows the 
auto-correlation function and partial correlation function of the original time series. As we can see 
from Figure 11, the auto-correlation function has the trailing feature, while the partial auto-
correlation function truncates the tail, so that the wind speed series satisfies the autoregression (AR) 
model. 

 

Figure 11. The auto-correlation function and partial correlation function of wind speed series. 

Wind speed

RBF vs BP PCA-RBF VMD-RBF

RBF3

IMF1

Wind speed

WD、R、T、H etc.

IMF2 ER

RBF1 RBF2

PCA VMD

VMD

IMF1 IMF2 ER

LSTM1 LSTM2 LSTM3

VMD-LSTMLSTM vs ESN

Comparison models

WD、R、T、H etc.Data 
standardization

Eigenvalues and 
contribution rate

Determine principal 
components

Wind speed

IMF2 ER

VMD

IMF1

PCA-RBF LSTM MSGP LUBE

VMD-PCA-RBF-LSTM VMD-PCA-RBF-
LSTM-MSGP-LUBE

Deterministic prediction
results

Interval prediction 
results

Comparion

Evaluation of prediction 
results

Proposed hybrid model

MSGP

VMD-PCA-RBF-
LSTM-MSGP

EMD

IMFs

EMD-LSTM

EMD

EMD-RBF

IMFs

RBFs

LSTMs

PCA
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1. Data processing section.

First, PCA is used to extract the principal components of multidimensional variables (like wind
speed (V), wind direction (WD), temperature (T), humidity (H) and air pressure (P)), which the cumulative
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contribution rate is greater than 90%. The partial auto-correlation function is used in time series
to determine the state variables and construct the appropriate training set. Figure 11 shows
the auto-correlation function and partial correlation function of the original time series. As we can see
from Figure 11, the auto-correlation function has the trailing feature, while the partial auto-correlation
function truncates the tail, so that the wind speed series satisfies the autoregression (AR) model.
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Secondly, VMD decomposition is used to extract the original wind speed series into IMFs and error
series. A nonlinear model is established for IMF1 with strong volatility and obvious nonlinear
characteristics. IMF2 is a stationary time series, and a linear time series prediction model is established
for IMF2. MGPR is used to predict ER series.

2. Modeling part.

First of all, according to the previous analysis, the RBF nonlinear model is established for IMF1
obtained by VMD with obvious nonlinear characteristic, where the input of RBF model is the principal
component matrix obtained by PCA. Combined with PCA, this model is referred to as VMD-PCA-RBF,
and the prediction result is vpi1.

As for IMF2, a stationary time series model is established by LSTM, which is named as VMD-LSTM
and the prediction result is vpi2. So, we can obtain the deterministic prediction result of hybrid model
VMD-PRBF-LSTM vpi, which is expressed as follows:

vpi = vpi1 + vpi2 (32)

The ER series satisfies Gaussian distribution according to the JARque-Bera test in Matlab,
and the error distribution is shown in Figure 12. The MGPR model is built to predict ER series,

and the deterministic prediction results
∧

Ei and interval prediction results
∧
vpi of ER are obtained

simultaneously, where the upper limits and lower limits of interval prediction of ER are denoted
as vupi and vlowi respectively. The final deterministic prediction result of hybrid model vpi is
obtained by sum reconstruction. The hybrid model combined above methods is named as
the VMD-PCA-RBF-LSTM-MGPR.

vpi = vpi1 + vpi1 +
∧

Ei (33)

∧
vpi = [vpi1 + vpi2 + vupi, vpi1 + vpi2 + vlowi] (34)

where,
∧
vpi is the CIs under the confidence degree 100(1− α)%.
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Based on the deterministic prediction of VMD-PCA-RBF-LSTM-MGPR model, an interval
prediction model is made by using the lower upper estimation method [16]. The wind speed
PIs is obtained under the confidence degree 100(1 − α)%, where α stands for significance level.
Which can be expressed as:

∧
vpi = [Lαt (vpi), Uα

t (vpi)] (35)

where Lαt (vpi) means the lower limit of PIs and CIs, Uα
t (vpi) means the upper limit.

Secondly, establish comparison models. In this paper, a total of nine comparison models are
established. RBF and BP neural network models are built respectively with taking wind speed (V)
and other variables as input data. Only use PCA in data processing to obtain the input matrix of
RBF, so as to establish PCA-RBF model. As for each mode obtained by VMD, establish RBF model
and then build VMD-RBF model by reconstituting three RBF. Similarly, LSTM, ESN and VMD-LSTM
comparison models are established respectively, where all three models have only one input, wind speed.
Meanwhile we build two other comparison models, EMD-RBF and EMD-LSTM. In addition, a single
model MGPR is used for deterministic WSP and interval WSP, so the MGPR comparison model
is obtained.

3. The validity of the model is illustrated in detail in Section 4.

3.3. Evaluation of Prediction Results

For deterministic prediction, this paper takes mean absolute error (MAE), mean square error
(MSE), relative mean square error (RMSE) and mean absolute percent error (MAPE) as evaluation
indexes of the prediction model. The larger the evaluation indexes value are, the larger the prediction
error is. They are expressed as follows respectively.

MAE =
1
n

n∑
i=1

∣∣∣vpi − vri| (36)

MSE =
1
n

n∑
i=1

(vpi − vri)
2 (37)

RMSE =

√√
1
n

n∑
i=1

(vpi − vri)
2 (38)

MAPE =
100%

n

n∑
i=1

∣∣∣∣∣vpi − vri

vri

∣∣∣∣∣ (39)
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where, n represents the number of samples. vri represents the actual wind speed. vpi represents
the prediction wind speed.

The PIs and CIs indicators include mean absolute percentage error IMAPE, prediction interval
coverage percentage IPICP, mean prediction interval width IMPIW. The smaller the IMAPE and IMPIW

values, the higher the forecasting accuracy. The larger IPICP value, the more actual value falling into
the interval, that represents the reliability of interval prediction is higher.

Mean absolute percentage error IMAPE is used to evaluate the error between true and predicted
value. Its expression is as follows.

IMAPE =
1
n

n∑
i=1

∣∣∣∣∣vri − vpi

vri

∣∣∣∣∣× 100% (40)

Mean prediction interval width IMPIW is used to test the suitability of the width of CIs and PIs,
which used to prevent excessive interval width. Its expression is as follows.

IMPIW =
1
n

n∑
i=1

(U(vpi) − L(vpi)) (41)

where, U(vpi) represents the upper limit of the prediction interval. L(vpi) denotes the lower limit of
the prediction interval.

Prediction interval coverage percentage IPICP is used to express the probability of the actual value
in the prediction interval. Its expression is as follows:

IPICP =
1
n

n∑
i=1

ci (42)

where, If vpi ∈ [L(vpi), U(vpi)], ci = 1, or ci = 0.

4. Analysis of Prediction Results

4.1. Analysis of Deterministic Prediction Results

In order to verify the availability of the model, a total of nine comparison models are proposed in
this paper. Figures 13–16 respectively show the deterministic prediction results of different WSP models,
where Y axis represents the wind speed and X axis represents prediction samples with an interval of
10 min. The error evaluation indexes are listed in Table 2. Figure 13 shows the deterministic prediction
results of Back Propagation model (BP), Radial Basis Function moedl (RBF), Principal component
analysis-Radial Basis Function model (PCA-RBF) and Variational mode decomposition-Radial Basis
Function moedl (VMD-RBF) respectively. According to Table 2 and Figure 13, the prediction performance
of RBF model is better compared with the single BP model, where all of the evaluation index of
RBF is lower than BP. The MAE of VMD-RBF is 2.6233, which is 10.7243 lower than BP model.
The prediction results of VMD-RBF and PCA-RBF have some improvement effect but compared with
the single RBF model. It proves PCA and VMD can help improve the accuracy of WSP. The prediction
results of RBF, VMD-RBF and PCA-RBF can only reflect the volatility trend of some actual values,
however, there is a big difference between the prediction values and the actual values. In addition,
VMD-RBF and PCA-RBF both have stronger volatility. The VMD-RBF model improves the predicted
value of RBF model to some extent, but it does not improve the volatility tendency of the predicted
values significantly. MAE, MSE and RMSE of VMD-RBF model are the lowest among all the models in
Figure 13, and MAPE of VMD-RBF model is only 0.0263 different from that of PCA-RBF model but
the prediction effect is not evident.
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Table 2. Analysis table of point prediction evaluation index.

MAE MSE RMSE MAPE

BP 2.9010 13.3476 3.6534 0.4426
RBF 3.1535 6.0185 2.4533 0.3128

PCA-RBF 1.3507 3.0501 1.7465 0.1886
VMD-RBF 1.2884 2.6233 1.6197 0.2149
EMD-RBF 2.6530 8.9093 2.9848 0.3539

ESN 83.5093 4.5839 2.141 0.2413
LSTM 58.4243 2.0863 1.4444 0.1586

VMD-LSTM 33.594 0.6765 0.8225 0.1008
EMD-LSTM 75.3289 3.0046 1.7334 0.2431

MGPR 2.2739 7.0604 2.6571 0.3714
VMD-PCA-RBF-LSTM 0.8049 1.0229 1.0114 0.1183

VMD-PCA-RBF-LSTM-MSGP 0.4796 0.3158 0.5619 0.0713

Figures 14 and 17 describe the Echo State Network model (ESN), Long-Short Term Memory
model (LSTM) and Variational mode decomposition-Long-Short Term Memory model (VMD-LSTM)
and MGPR four comparison models for deterministic prediction. Compared with the single ESN
model, LSTM can better describe the fluctuation of wind speed series. Compared with the single LSTM
model, from Table 2 combined with Figures 14 and 17, VMD-LSTM improve the prediction value with
lower RMSE 0.6765, which reduces 3.9074 than ESN model. MAE of LSTM is 33.594, which shows
the prediction value is far from actual wind speed even though it is lower than ESN model with 49.9153.
On the contrary, MAE of MGPR is just 2.2739, but the MSE 7.0604 is second only to BP neural network
model with 13.3476, and there is a large gap between the prediction value and the actual value as
we can see from Figure 16.
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Figure 17. Interval and point prediction results of mixture Gaussian process regression (MGPR).

Figure 15 shows the deterministic prediction results of Empirical mode decomposition-Radial
Basis Function model (EMD-RBF) and Empirical mode decomposition-Long-Short Term Memory
model (EMD-LSTM). As we can see from Figure 15 and Table 2, the prediction result of EMD-RBF
is far from the actual wind speed and MSE of EMD-RBF is 8.9093, which is the second among
all models. Even though the prediction results of EMD-LSTM is closer to the actual wind speed,
but MAE of EMD-LSTM is 75.3289, and there is a difference between prediction value and actual value.
The prediction accuracy of both models is not ideal. In addition, the RMSE of VMD-LSTM is only
0.8225 which is lower than all model mentioned in Figures 14 and 15. The modes obtained by EMD is 7
which cannot be preset, it is complex to build prediction model for each modes and too modes will
lead to capture extra noise or mode to mode duplication, so as to cause poor prediction. Thus, VMD is
more suitable to build prediction model in this paper.

The deterministic prediction results of VMD-PCA-RBF-LSTM and the hybrid model
VMD-PCA-RBF-LSTM-MGPR proposed in this paper are shown in Figure 16. As we can see
from Figure 16, the prediction results of both models are observably closer to the actual values
than other comparison models. From Table 2 combined with Figure 16, MSE, RMSE and MAE
of VMD-PRBF-LSTM-MGPR is 0.3158, 0.5619 and 0.4796 respectively, and both of them are
the lowest among all the models, of which MAE of hybrid model is lower than ESN with 83.0297.
Therefore, the prediction accuracy of VMD-PRBF-LSTM-MGPR is greater than other comparison models.
The prediction results show that the proposed hybrid model has higher accuracy, and the distribution
characteristics of prediction results are closer to the actual series through combining the advantages of
nonlinear model and stationary time series model. Thus, the proposed model is more suitable for WSP
than other nine comparison models.

4.2. Analysis of Interval Prediction Results

According to the previous analysis, CIs of wind speed are obtained by MGPR
and VMD-PRBF-LSTM-MGPR-MGPR showed in Figures 17 and 18 respectively, and PIs is obtained
by VMD-PRBF-LSTM-MGPR-LUBE showed in Figure 19, where Y axis represents the wind speed
and X axis represents prediction samples with an interval of 10 min. As it can be seen from those
figures, wind speed CIs and PIs of 95% are greater than that of 90% which are greater than that of 85%,
which accords with the general statistical law, so the prediction results are correct and has statistical
significance. CIs are obtained based on deterministic prediction results, thus the results of MGPR cannot
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reflect the fluctuation and randomness clearly, while CIs of the proposed method can. The interval
width of the hybrid model is obviously narrower than that of single model MGPR from above pictures.
Figure 17 shows the deterministic prediction and interval prediction results of wind speed obtained by
the single model MGPR, where the interval prediction contains the results with confidence of 95%,
90% and 85% respectively. As can be seen from Table 3 and Figure 18, when the confidence is 85%,
the IPICP of MGPR is 86%, and the IMPIW is 8.1148. Compared with the 90% confidence level, the IPICP
increased by 10%, but the IMPIW also increased by 1.1575. When the confidence is 95%, the interval
coverage rate is 98%, but the IMPIW is 11.0486, therefore it can be seen that the prediction results of
the single model MGPR are poor.
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Table 3. Analysis table of interval forecast evaluation index.

100(1−α)% IMAPE IPICP IMPIW

MGPR
85%

0.3714
0.86 8.1148

90% 0.96 9.2723
95% 0.98 11.0486

VMD-PCA-RBF-LSTM-MSGP
85%

0.0713
0.86 1.5865

90% 0.94 1.8127
95% 0.94 2.16

VMD-PCA-RBF-LSTM-MSGP-LUBE
85%

0.0713
0.94 2.1240

90% 0.98 2.3996
95% 0.98 2.8079
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Figure 18 shows the interval prediction results obtained by the hybrid model
VMD-PRBF-LSTM-MGPR proposed in this paper, which includes the deterministic prediction results
and the confidence intervals under different confidence levels. Obviously, CIs of this method can
significantly reflect the stochastic volatility of wind speed and the interval width is narrower than CIs
of MGPR. Combined with Table 3, when the confidence level is 85%, the mean width of the confidence
interval IMPIW is only 1.5865, but the interval coverage rate is only 86%, which is the lowest IPICP
among the three confidence levels. Compared with 90% confidence, the interval coverage rate is 94%
with an increase of 8%, and the IMPIW is 1.8127. However, when the confidence is 95%, the interval
coverage rate is not improved and the IMPIW increases by 0.3473.

Figure 19 shows the PIs obtained on the basis of the deterministic prediction results of
VMD-PRBF-LSTM-MGPR combining LUBE. Combined with Table 3, when the confidence level
is 85%, the IPICP reaches 94% and the IMPIW is 2.1240. When the confidence is 90%, the IPICP only
increases by 4% and the IMPIW increases to 2.3996. When the confidence is 95%, the interval coverage
rate remains the same. The IMPIW increases to 2.8079. The interval prediction results show that PIs
of 95% and 90% contain most of the actual wind speed values. In addition, CIs and PIs can quantify
and represent forecast uncertainty. CIs predict uncertainty of unknown but fixed value, PIs express
the uncertainty in the prediction of a future realization of a random variable, and prediction width is
greater than corresponding confidence interval.

5. Conclusions

A new WSP model is proposed considering volatility and randomness of wind speed in this
paper, which can be applied to short-term deterministic and interval prediction with high accuracy
and strong stability. Based on the deterministic WSP, the randomness, volatility and low energy density
characteristics of wind speed can be expressed clearly and accurately, which is beneficial to the grid
scheduling plan optimization and can increase the reliability of wind power grid. Based on the interval
WSP, the volatility range of wind speed can be significantly predicted, which is beneficial to quantify
the intermittent risk of wind turbine. The prediction results show that this method is valid and feasible.

In this paper, the wind speed series is exacted into different IMFs by VMD decomposition,
and the corresponding models are built for each part. PCA analysis is used to realize multidimensional
reduction of the original input parameters, and the PCA-RBF model is established to reduce
the computational complexity of the model. LSTM model is established for IMF2 with low fluctuation
and a stationary time series model is carried out. The MGPR model is used to predict the error
series, and the results of both deterministic prediction and interval prediction are obtained meanwhile.
The prediction results obtained from the above models are reconstructed to obtain the final results of
WSP and complete the construction of VMD-PRBF-LSTM-MGPR model.

The experimental results show that the proposed hybrid model can effectively reduce the prediction
error caused by randomness and fluctuation of wind speed. MAPE, MSE and RMSE of deterministic
prediction of the hybrid model proposed in this paper are only 0.0713, 0.3158 and 0.5619 respectively,
which are more accurate than the prediction results of comparison models. The average absolute error is
0.4796, which is 83.0297 lower than the single model ESN, proving the validity of the model. In addition,
the interval prediction results obtained by the model presented in this paper show that, compared with
CTs obtained by the single model MGPR, when the confidence degree is 85%, the average interval
width decreases by 80.45%, and the interval coverage is about 95% with the confidence of 90% and 95%
respectively. However, the average interval width of the model proposed in this paper is narrower,
indicating that the prediction accuracy is higher. In this paper, we make a comparison between CIs
and PIs, and it shows that both of them can quantify and represent forecast uncertainty and the width
of PIs is wider than CIs under the same confidence degree.
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Nomenclature

WSP Wind speed prediction NWP
Numerical weather
prediction

VMD
Variational mode
decomposition

MSE Mean square error

PCA
Principal component
analysis algorithm

MAE Mean absolute error

RBF Radial Basis Function RMSE Relative mean bias error

RNN
Recurrent neural
network

MAPE
Mean absolute percent
error

ARIMA
Autoregressive
integrated moving
average model

ER Error series

SVM Support vector machine IMF Intrinsic mode function
ESN Echo State Network CIs Confidence interval

EMD
Empirical mode
decomposition

PIs Prediction interval

WT Wavelet transform ADF
Augmented
Dickey-Fuller

EWT
Empirical wavelet
transform

MPIW
Mean prediction interval
width

GPR
Gaussian process
regression

BP Back propagation

PRBF
The method combined
with PCA and RBF

LUBE
Lower and upper bound
estimation method

PICP
Prediction interval
coverage percentage

VMD-RBF
The method combined
with VMD and RBF

LSTM
Long-Short Term
Memory network

VMD-LSTM
The method combined
with VMD and LSTM

MGPR
Mixture Gaussian
Process Regression

VMD-PRBF-LSTM

Data is pre-processing by
VMD and PCA, and RBF
is used in IMF1, LSTM is
used in IMF2.The model
combined IMF1
and IMF2 is named as
VMD-PRBF-LSTM.

VMD-PCA-RBF-LSTM-MGPR
MGPR is built to predicted ER, and the model of
recombining IMF1,IMF2 and ER is named as
VMD-PCA-RBF-LSTM-MGPR

VMD-PCA-RBF-LSTM-MGPR-LUBE

Based on the deterministic result of
VMD-PCA-RBF-LSTM-MGPR, LUBE is used to
predictive the PIs of wind speed. The model
combined with VMD-PCA-RBF-LSTM-MGPR
and LUBE is named as
VMD-PCA-RBF-LSTM-MGPR-LUBE
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