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Abstract: In this study, RF-based un-doped and nitrogen-doped aerogels were produced by
polymerisation reaction between resorcinol and formaldehyde with sodium carbonate as catalyst and
melamine as the nitrogen source. Carbon/activated carbon aerogels were obtained by carbonisation
of the gels under inert atmosphere (Ar) followed by activation of the carbons under CO2 at 800 ◦C.
The BET analysis of the samples showed a more than two-fold increase in the specific surface
area and pore volume of carbon from 537 to 1333 m2g−1 and 0.242 to 0.671 cm3g−1 respectively
after nitrogen doping and activation. SEM and XRD analysis of the samples revealed highly
porous amorphous nanostructures with denser inter-particle cross-linked pathways for the activated
nitrogen-doped carbon. The X-Ray Photoelectron Spectroscopy (XPS) results confirmed the presence
of nitrogen and oxygen heteroatoms on the surface and within the carbon matrix where improvement
in wettability with the drop in the contact angle from 123◦ to 80◦ was witnessed after oxygen
and nitrogen doping. A steady drop in the equivalent series (RS) and charge transfer (RCT)
resistances was observed by electrochemical measurements after the introduction of nitrogen and
oxygen heteroatoms. The highest specific capacitance of 289 Fg−1 with the lowest values of 0.11 Ω
and 0.02 Ω for RS and RCT was achieved for nitrogen and oxygen dual-doped activated carbon in
line with its improved surface chemistry and wettability, and its enhanced conductivity due to denser
inter-particle cross-linked pathways.

Keywords: electrochemical energy storage; aqueous supercapacitor; functionalised nanomaterials;
nitrogen and oxygen co-doping; capacitive performance

1. Introduction

Power generation using renewable energy from wind, tidal and solar as sustainable sources of
energy with low or even zero emissions requires efficient energy storage technologies to overcome
their intermittent nature of energy supply for our future energy demands. Electrochemical energy
storage technologies such as batteries and supercapacitors with suitable operational parameters
(i.e., energy density, power density and cycle life) will play a key role with this by responding to
the actual characteristics of energy supply through peak shaving and voltage regulation and also
by fulfilling the energy requirements of upcoming systems when a long-term flat voltage energy
supply or a short term power supply is required [1]. Among different energy storage technologies,
electrochemical capacitors also known as supercapacitors or ultra-capacitors are considered a promising
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technology for applications needing high power densities, long cycle life and excellent reversibility [2,3].
However, the technology suffers from inferior energy densities when compared with electrochemical
batteries [4,5]. This is mainly attributable to a limited surface charge storage at the electrode/electrolyte
interface in comparison to bulk Faradaic charge accumulation occurring in electrochemical batteries [2,6].
The energy density of an electrochemical capacitor can be calculated by Equation (1).

E =
1
2

CV2 (1)

where “E” is energy density, “C” is the specific capacitance and “V” is operating voltage.
The specific capacitance of an electrochemical capacitor is obtained by Equation (2).

C =
Sε
D

(2)

where “S” is the specific surface area of active material, "D” is double layer thickness and “ε” is the
relative permittivity of the solution.

According to Equation (1), the energy density of an electrochemical capacitor can be improved
by improving either its operating voltage or its specific capacitance. The former depends on the
electrochemical window of the electrolyte used in the device and different electrolytes with wide
electrochemical windows such as organic electrolyte and ionic liquids have been investigated to
improve the energy density of the electrochemical capacitors but they limit the power density of the
device due to their limited kinetic and diffusional effects [7–9]. The latter, given by Equation (2),
can be improved either by introducing new electrode materials with higher charge storage capability
through pseudocapacitive charge storage or by controlling and improving the porosity parameters
(i.e., S and D) of the electroactive material [10]. Transition metal oxide-based active materials store
energy pseudocapacitively and exhibit a higher specific capacitance and consequently a higher energy
density when compared with traditional carbon-based electrode materials that store energy in the
form of electric double-layer capacitance (EDLC) [10–13]. However, transition metal oxides suffer from
higher equivalent series resistance (ESR) which results in their lower power density [6,14]. The energy
density of an electrochemical capacitor can be improved without compromising its power density
by introducing functional groups on the surface or within the matrix of highly porous carbon-based
active material [4,15].

Numerous carbonaceous materials such as graphene [16], carbon nanotubes [17],
carbon tnanofibers [18] and activated carbon [19,20] have been widely used as electrodes in
supercapacitors. However, activated carbon is the most commonly adopted electrode material
in commercial applications due to its outstanding properties such as large specific surface area,
controlled porosity, high electric conductivity, cost-effectiveness, chemical inertness and ease
of process-ability [21]. Carbon-based materials have inferior specific capacitance since the entire
capacitance is contributed through physical charge storage with the formation of an electric double
layer associated with the porous structure of the active material [13]. Higher specific capacitance
can be achieved by introducing functional groups on the surface [22] or within the core of the active
material [23] where total capacitance is the sum of EDLC (through the formation of the electric double
layer at electrode/electrolyte interface physically) and Faradaic pseudo-capacitance (contributed by
heteroatoms capable of storing electric charge through fast and fully reversible Faradaic reactions
at the electrode/electrolyte interface accompanied by electronic charge transfer) of carbon [4,23–25].
Specific surface area (SSA) and pore size distribution (PSD) are two fundamental parameters with
a substantial effect on the EDLC of the cell [26]. For the maximum EDLC contribution, large SSA with
optimised pore size is desirable since higher SSA results in a higher level of charge storage across
the electrode/electrolyte interface whereas the optimized pore structure of active material can boost
the electrolyte ions mobility [27,28]. Moreover, heteroatoms doping helps in improving the overall
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performance of the supercapacitor cell by contributing through pseudo-capacitance and by enhancing
ion transfer kinetics (by improving electrode/electrolyte wettability) [21].

As discussed above capacitive performance of an aqueous supercapacitor can be maximised by
adjusting the following electrode’s parameters: (a) by optimising its pore size to increase electrolyte
ions mobility (b) by increasing its specific surface area to maximise the ability of charge storage (c)
through heteroatoms doping for its improved pseudocapacitive effects, wettability and electron transfer.
In this work, we report the synthesis of polymeric carbons with controlled porosity (SSA and PSD)
through the synthesis of a polymeric gel by polycondensation reaction between resorcinol and
formaldehyde its subsequent carbonization at 800 ◦C. The material was used as electroactive material
for the fabrication of electrodes used in an electrochemical cell with 6M KOH electrolyte where
a specific capacitance of 136 Fg−1 obtained at the scan rate of 5 mVS−1. A further increase in the specific
surface area of the carbon was achieved through its physical activation resulting in the improvement
of specific capacitance to 197 Fg−1. Nitrogen and oxygen heteroatoms were introduced within the
carbon matrix using melamine during the polymerization process and on the surface of the carbon
during the activation process under CO2 respectively. Oxygen and nitrogen functional groups assisted
in improving the wettability and capacitive performance of the material with the lowest contact angle
of 80 degrees and the highest specific capacitance of 289 Fg−1 obtained at the scan rate of 5 mVS−1.
Additionally, a significant drop in the equivalent series resistance RS and the charge transfer resistance
RCT to the corresponding lowest values of 0.11 Ω and 0.02 Ω was observed when the oxygen and
nitrogen co-doped carbon sample was used as the electroactive material in the cell.

2. Materials and Methods

2.1. Materials

Formaldehyde (F)/CH2O purity: 37% wt. in H2O, Resorcinol (R)/C6H6O2 purity: 99%,
Sodium Carbonate (C)/Na2CO3 purity: 99.5%, Melamine (M)/C3H6N6 purity: 99%, and Potassium
hydroxide solution KOH (6 M) were purchased from Sigma Aldrich (UK).

2.2. Synthesis of Resorcinol/Formaldehyde (RF) and Nitrogen-Doped Resorcinol/Formaldehyde (MRF) Aerogels

RF aerogels were prepared by polycondensation reaction between resorcinol (R) and formaldehyde
(F) where sodium carbonate (C) was used as the polycondensation catalyst with the molar ratios of R/F
and R/C kept at 0.5 and 100 respectively with a ratio of resorcinol to water (W) of R/W = 0.1 g mL−1

according to the procedure explained elsewhere [19,28].
Nitrogen-doped resorcinol/formaldehyde aerogels (MRF) were synthesised using melamine (M)

as the source of nitrogen with the same R/F, R/C and R/W ratios used for the synthesis of un-doped
aerogel samples and a resorcinol to melamine (R/M) molar ratio of 80 according to a detailed synthesis
procedure given in [23].

2.3. Carbonization of RF and MRF Aerogels

Both un-doped (RF) and nitrogen-doped (MRF) aerogel samples were carbonized at 800 ◦C for 3 h
under Ar. In each experiment, a gel sample weighing 3 g was loaded into a ceramic boat, placed in
the middle of a tubular furnace and purged with Ar for 30 min at 30 ◦C prior to the start of the
carbonization program. The furnace temperature was initially raised to 150 ◦C at a heating rate of 5 ◦C
min−1 and maintained at this temperature for 30 min followed by increasing it to 450 ◦C at the same
heating rate and holding it for another 30 min. The furnace temperature was finally increased to the
final carbonization temperature of 800 ◦C at 10 ◦C min−1 and the sample was kept at this temperature
for 180 min. Subsequently, the furnace was cooled down naturally to room temperature. The entire
carbonization programme was performed under Ar flowing at 240 mL min−1. The obtained carbon
samples are called RFC 100–800 and MRFC100–800–80 where the numbers 100, 800, and 80 stand for
the R/C ratio, carbonization temperature and R/M ratio respectively.
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2.4. Activation of RFC and MRFC Carbon Aerogels

Samples of both un-doped (RFC) and nitrogen-doped (MRFC) carbon aerogels were activated by
physical activation at 800 ◦C where CO2 was used as the activation agent. In each experiment, 3 g of
a carbon aerogel sample was loaded into a ceramic boat, placed in the middle of a tubular furnace
and purged with Ar for 30 min at 30 ◦C prior to the start of the heating programme. The temperature
was raised to 800 ◦C at 10 ◦C min−1 and the sample was maintained at this temperature for 5min
under Ar in order to stabilise its temperature. The gas was then immediately switched from Ar
to CO2 and the sample was kept at 800 ◦C under CO2 flowing at 240 mL min−1 for 120 min.
Finally, the gas was switched back to Ar and the sample was cooled down naturally to the room
temperature under Ar flowing at 240 mL min−1. The obtained activated carbon samples are called
RFCA100–800–800 and MRFCA100–800–800–80 where the numbers 100, 800, 800, and 80 stand for the
R/C ratio, carbonization temperature, activation temperature and R/M ratio respectively.

Schematic representation procedures adopted for the synthesis of carbons and activated carbons
for both un-doped and N–doped carbon aerogels samples are shown in Figures 1 and 2 respectively.
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3. Instrumentation

3.1. Physical/Chemical Characterization Techniques

The porous structure of the carbon/activated carbon aerogel samples was characterized by
a Tristar adsorption/desorption analyser (Micromeritics) at 77 K. All samples were evacuated
overnight in a vacuum oven at 80 ◦C followed by purging with nitrogen at 300 ◦C for 120 min using
a Flow-prep system (Micromeritics) prior to the porosity measurements. The specific surface area of
the samples was calculated by (BET) method whereas Barrett Joyner Herenda (BJH) and t-plot methods
were used for the analysis of their mesoporosity and microporosity respectively [29]. The adsorption
branch of the isotherms was used for determining pore size distributions by BJH method. The total
pore volume was calculated from the adsorbed volume of N2 at P/P0 = 0.99 [30].

A CAM 200 goniometer system manufactured by KSV Ltd. was used for the determination of
contact angle. In this system, video images are captured and analysed automatically by CAM software.
All measurements were carried out using 6 M KOH as a probing liquid.
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X-ray diffractometer (SIEMENS-D500) was used to perform X-ray diffraction measurements where
the crystal structure of the samples was characterised using voltage and current of 40 kV and 30 mA
respectively with Cu Kα radiation.

Structural properties and surface morphology of all samples were characterised using scanning
electron microscopy (SEM). The SEM micrographs of the carbons were acquired at the magnifications
of 100, 50, and 10 µm using a Hitachi S-4100 SEM.

X-Ray Photoelectron Spectroscopy (XPS) was used to quantify the elemental composition of both
un-doped and N-doped samples. In XPS measurements a Specs Phoibos 100 MCD-5 (5 single channel
electron multiplier) hemispherical analyser was used by employing a Specs XR-50 X-ray source with
Mg Kα (1253.6 eV) beam. Casa XPS software was used to analyse the recoded measurements while all
spectra were calibrated using the binding energy of adventitious C1s peak at 284.8 eV as the reference.

3.2. Electrochemical Measurement Techniques

Carbon electrodes with a thickness of 100–150 microns were fabricated by mixing a sample of
carbons/or activated carbons (un-doped/or N-doped) as electroactive material with Kynar as a binder
and Cabot carbon black as the conductivity enhancer in 80/10/10 wt% in acetone for 2 h under a vigorous
magnetic stirring followed by rolling the resultant paste into a thin sheet on an aluminium foil. The
electrochemical performance of the electrodes was evaluated by a Voltalab40 radiometer analytical
potentiostat (model-PGZ301) using a two-electrode sandwich-type symmetric electrochemical cell
with a 6 M KOH solution as the electrolyte. The cell was stabilized under open circuit for 15 min prior
to each electrochemical measurement. Cyclic voltammetry (CV) was used to assess the capacitive
performance of active material in the potential range of 0.5 to 1 V at scan rates of 5, 10 and 15 mVs−1.
Electrochemical impedance spectroscopy (EIS) measurements were performed to analyse the resistive
behaviour of the samples at AC amplitude of 10 mV in the frequency range of 100 KHz to 50 Hz.
All measurements were performed at room temperature.

The specific capacitance of the cell was calculated from the discharge CV curves by the
following equation:

C =
I

dV
dt

(3)

where “I” is the average discharge current in A and dV/dt is the scan rate in mVs−1.
The specific capacitance Csp of a single electrode in Fg−1 was calculated using Equation (4)

where m is the mass of the carbon as the electroactive material used in the electrode formulation.

Csp = 2×
C
m

(4)

4. Discussion

4.1. Physiochemical Characterization of RFC, RFCA, MRFC and MRFCA Carbon/Activated Carbon Aerogels

4.1.1. BET Analysis

Nitrogen adsorption–desorption isotherms of the samples are shown in Figure 3. BET curves
of the samples mainly show combined type I and type IV isotherms, with high nitrogen intake at
lower P/P0 (≤0.02) and hysteresis loops at higher relative pressures (0.4 ≤ P/P0 ≤ 1.0). This indicates the
transformation from microporosity to mesoporosity within the carbon porous structure with nitrogen
doping and activation since higher N2 intake at lower relative pressure represents the existence of
microporosity whereas the appearance of the hysteresis loops at higher relative pressure indicates
mesoporosity within the carbon samples [27]. The sample RFC100 possesses a typical type I isotherm
with a sharp increase in the volume of N2 in the low-pressure region, without the presence of any
significant hysteresis loop in higher pressure region. This is indicative of a predominantly microporous
structure as confirmed by the data given in Table 1 which show a level of microporosity of 90%
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for the sample [31,32]. Physical activation of this sample under CO2 (RFCA100–800) results in the
development of mesopososity within the sample structure with an increase in the level of mesoporosity
to 28% and subsequent increase in its specific surface area (from 537 to 678 m2) and pore volume
(from 0.242 to 0.371 cm3 g−1) presumably due to opening of closed pores and widening of the micropores
during the activation process.
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Table 1. Porosity parameters of un-doped and nitrogen-doped carbon/activated carbon aerogels
carbonized and activated at 800 ◦C.

Sample SBET
(m2g−1)

Vtotal
(cm3g−1)

Vmicro
(cm3g−1)

Vmeso
(cm3g−1)

Vmicro

%

Vmeso

%

Dave
(nm)

RFC100–800 537 0.242 0.217 0.025 90 10 1.80
RFCA100–800–800 678 0.371 0.267 0.104 72 28 2.21
MRFC100–800–80 841 0.430 0.283 0.147 66 34 2.05

MRFCA100–800–800–80 1333 0.671 0.376 0.294 56 44 2.01

Nitrogen adsorption isotherm of the N-doped carbon (MRFC100–800–80) shows a significant
increase in nitrogen intake by the sample at low relative pressures followed by the appearance of
a hysteresis loop at a relative pressure of 0.4 ≤ P/P0 ≤ 0.6. The porous parameters of the carbons given in
Table 1 show that nitrogen doping results in a significant increase in the specific surface area (from 537
to 841 m2) and pore volume (from 0.242 to 0.430 cm3 g−1) of the carbon with 34% mesoporosity
for the sample. This might be due to an increase in the number of gelation nuclei by the addition
of melamine into the gel solution [23]. Physical activation of the sample under CO2 results in the
evolution of its porous structure with a significant increase in its surface area to 1333 m2 and its pore
volume to 0.671 cm3 g−1 with 44% mesoporosity. Table 1 also shows a slight increase in average pore
size from 1.80 nm to 2.21 nm after nitrogen doping which can be attributed to the diffusion of nitrogen
functional groups within the gel structure [33].
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Pore size distribution (PSD) curves for un-doped and N-doped carbon/activated carbon samples
are shown in Figure 4. Detailed analysis of pore size distribution (PSD) curves illustrates that all
samples are mainly microporous with the pore size distribution centred around 2 nm and most of the
distribution is in the microporous region.Energies 2020, 13, x FOR PEER REVIEW 7 of 21 
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Detailed porosity parameters consisting of specific surface area, total volume, micropore and
mesopore volumes and their percentages, and average pore size of all samples are given in Table 1.

4.1.2. Scanning Electron Microscopy (SEM) Analysis

The microstructure of un-doped and N-doped carbon and activated carbon aerogel samples is
characterized by SEM. SEM micrograms of samples at different magnifications are shown in Figure 5.
Both un-doped and N-doped carbon/activated carbon aerogel samples show a highly amorphous
structure with extremely irregular particle morphological architecture giving rise to high specific
surface area and pore volume as shown by BET analysis.

The low-resolution micrographs of the carbon sample (a and e) show mostly homogeneous
structure with the presence of microcavities whereas the surface of all activated carbon sample (b and f)
display the formation of a spongy layer on the surface of carbon with the presence of micro-cavities
leading to a high surface area. Additionally, the micrographs of nitrogen-doped carbon sample (c and g)
exhibit a denser surface with filled inter-particle spaces in comparison to the more open structure of
the un-doped sample. This can be credited to the smaller particle sizes formed with the introduction of
melamine at the gelation stage which results in additional nucleation sites and can be the reason behind
the higher specific surface area of the nitrogen-doped carbon sample given in Table 1. Activation of
this sample results in the formation of further microcavities and a high level of porosity in its structure
as indicated by the micrographs of d and h. The SEM images (i–l) with higher magnification reveals
the expected granular structures in a random packing for the un-doped carbon attained through the
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carbonization of the aerogel sample and well developed porous structure indicative of a high level of
porosity for N-doped carbon and further development of porosity in the structure of the N-doped
carbon aerogel sample after activation.Energies 2020, 13, x FOR PEER REVIEW 9 of 21 
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4.1.3. Contact Angle Measurements

Application of carbon as electrode material for electrochemical capacitors rely on its wettability
with electrolyte. Therefore, contact angle measurements were performed as a key characterization
technique to characterize electrode/electrolyte interactions and to elucidate the intrinsic electrolyte
wettability of the electrode surface. The contact angle directly provides information on the interaction
energy between the surface and the liquid and determines the level of wettability of a solid with
a probing liquid. The contact angle of flat surfaces is determined from a drop of a suitable liquid resting
on a surface using a high-resolution camera with software to capture and analyse the angle formed
between the solid/liquid/vapor interfaces. Figure 6 shows the schematic diagram of measured contact
angles at a three-phase boundary (solid to liquid to vapour) arisen from a thermodynamic equilibrium
between the liquid phase of the droplet (L), the solid phase of the substrate(S), and the gas/vapor
phase of the ambient atmosphere (V). In the case of a strong liquid/surface, the droplet will completely
spread out on the solid surface and the contact angle will be close to zero degrees. Weaker liquid/solid
interactions lead to a contact angle up to 90◦ and for situations in which the liquid droplet simply rests
on the surface without wetting it to any significant extent the contact angle will be larger than 90◦.
The degree of wetting described by the contact angle depends on the energies (or surface tensions)
of the interface between phases involved where the total energy is minimized. Thus in addition to
offering information about the type of solid surface, i.e., hydrophilic or hydrophobic, interfacial contact
angle also gives an estimation of surface energy [34].
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In this study, the wettability of the electrodes prepared by using a sample of un-doped/N-doped
carbon/activated carbon in their formulation was investigated by contact angle measurements using
6M KOH solution as the probing liquid since the same solution was used as the electrolyte in the
electrochemical cell during electrochemical measurements. The measured values of the contact angles
are given in Table 2. It can be seen that the wettability of the carbon by KOH solution improves
immensely with the drop in the contact angle after the introduction of oxygen through the activation
process and incorporation of nitrogen into the carbon structure through nitrogen doping [35,36].
A significant decrease in contact angle from 123◦ to 91◦ was observed for the sample RFCA100–800–800
after the introduction of oxygen functional groups on the carbon surface through the activation
process. A further drop in contact angle to 80◦ was recorded for the carbon sample containing both
oxygen and nitrogen functional groups obtained by the activation of nitrogen-doped carbon aerogel
sample (MRFCA100–800–800–80) as given in Table 2. Wang et al. also observed the same effect of
nitrogen and oxygen dual doping on the wettability of the carbons with aqueous electrolytes and
argued that functional dopants such as oxygen and nitrogen modify and improve the hydrophilicity of
carbon significantly [37].

Table 2. Contact angle measurements of un-doped and nitrogen-doped carbon/activated carbon
aerogels carbonized and activated at 800 ◦C.

Samples Contact Angle (θ)

RFC100–800 123
RFCA100–800–800 91
MRFC100–800–80 103

MRFCA100–800–800–80 80

Since all samples have similar average pore sizes around 2nm, the data given in Table 2 suggest
that a positive effect on wettability (substantial drop in contact angle) and the transformation of carbon
aerogel samples surface from hydrophobic to hydrophilic is due to the combined treatment of the
electrode material with nitrogen and oxygen heteroatoms. Many pieces of literature have pointed
out that improved wettability of nitrogen and oxygen functionalized surfaces can be credited to
heterogeneous polar species with an improved affinity towards KOH aqueous solution resulting in
improved wettability and ion transportation leading to a lower equivalent series resistance [23,38,39].
Figure 7 shows the images of 6M KOH droplets in contact with electrode surface using N-doped carbon
MRFC100–800–80 and N-doped activated carbon MRFC100–800–800–80 as electroactive material
where a considerable drop in contact angle from 103 to 80 degree was observed after the activation of
nitrogen-doped carbon aerogel sample. This is mainly due to the introduction of oxygen functionalities
in addition to nitrogen heteroatoms resulting in an increase of the hydrophilicity and polar character
of the carbon surface [40]. This will be discussed in the XPS analysis of the electrodes below.
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4.1.4. X-ray Photoelectron Spectroscopy (XPS) Analysis

The elemental composition of electrodes using the carbon samples as the electroactive material
was determined by XPS to gain information on their chemical configurations and assess the role
of oxygen and nitrogen on their electrochemical performance. The wide survey scan spectra of
prepared carbon electrodes given in Figure 8 shows that all samples are composed of fluorine, carbon,
oxygen and smaller quantities of nitrogen. Therefore, high-resolution spectra of all mentioned elements
were additionally measured to assess the molar composition of the surface of the sample for the
quantification of oxygen and nitrogen content. The appearance of fluorine on XPS spectra is related to
the use of polyvinylidene fluoride in Kynar as a binding material for the fabrication of the electrodes.
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The elemental composition with % molar concentration of oxygen and nitrogen heteroatoms in
electrode made of un-doped and N-doped carbon/activated carbon aerogel samples is summarised
in Table 3. The data shows the presence of both oxygen and nitrogen in the carbon where oxygen is
introduced on the samples surfaces through the activation process and nitrogen is introduced within
the carbon structure using melamine as a nitrogen source during the gelation process. The low value
of contact angle obtained for MRFCA100–800–800–80 carbon could be a result of the presence of both
oxygen and nitrogen functional groups improving its wetting behaviour and ionic conduction which is
in good agreement with other literature [39,41].

Table 3. Chemical composition of the plain and N-doped carbons/activated carbon used as active
materials in electrodes formulation in molar % obtained by XPS.

Sample
Chemical Composition (molar %)

Carbon Oxygen Nitrogen

RFCA100–800 94.77 5.20 0.03
MRFC100–800–80 95.55 3.90 0.55

MRFCA100–800–800–80 95.93 3.66 0.41

The high-resolution XPS F1s, C1s, O1s and N1s spectra for electrodes using nitrogen-doped carbon
(MRFC 100–800–80) and activated nitrogen-doped carbon (MRFCA 100–800–800–80) as electroactive
material are shown in Figure 9a–d respectively. The F1s spectra of the electrodes shown in Figure 9a
depict peaks at a binding energy of 688 eV which corresponds to the fluorine from PVDF in Kynar
used as the binder [42,43]. The peaks on C1s spectra shown in Figure 9b correspond to C-H/C-C
at a binding energy of 285 eV, C=O/O-C-O at a binding energy of 287.2 eV, and also C-O-C, C=O
and O-C=O contributions at a binding energy of 291 eV [43–47]. The O1s spectra in Figure 9c show
surface oxygen peaks at 532 and 531.7 eV corresponding to the presence of surface oxygen groups and
phenolic and carboxyl groups [40]. These groups are related to the activation of carbon and are polar in
nature, thus they are responsible for the electrode’s hydrophilic behavior [48,49]. Figure 9d shows the
low-intensity component of N1s spectra with weak peaks at a binding energy of 400 eV. These peaks are
the characteristics of C–N and/or O = C–N types of functionalities in the carbon matrix [50]. Peaks at
401 eV could be related to different forms of quaternary nitrogen atoms including graphitic nitrogen,
with nitrogen atom is attached to the carbon layer substituting a carbon atom [51]. All these peaks
correspond to the low level of nitrogen in the carbon matrix below 1 mole% nitrogen.

4.1.5. XRD Analysis

XRD spectra of un-doped and N-doped carbon/activated carbons are shown in Figure 10.
All samples have two broader low-intensity peaks commonly assigned to phase planes (002) (2θ = 23◦)
and (100) (2θ = 43.7◦) respectively representing highly amorphous structures for these types of
carbons [23]. The un-doped carbon sample shows significantly stronger peaks around 2θ = 23◦ with
a gradual drop in its intensity after N-doping and activation. A significant decrease in the intensity of
(002) peaks can be probably due to an increased crystallite disorder with more defects in the carbon
structure after the nitrogen doping and activation process [52].
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Figure 10. XRD spectra of un-doped and N-doped carbon/activated carbon aerogel samples.
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4.2. Electrochemical Characterization of RFC, MRFC, RFCA and MRFCA Carbon/Activated Carbon Aerogels

4.2.1. Cyclic Voltammetry (CV)

Cyclic voltammetry is a commonly used technique for the calculation of capacitive value and also
a useful tool for the estimation of electric double layer and pseudo-capacitive charging behaviour of
electrode materials [53]. Figure 11a–d shows cyclic voltammograms of un-doped carbon (RFCA100–800),
activated carbon (RFCA100–800–800), N-doped carbon (MRFC100–800–80) and N-doped activated carbon
(MRFCA100–800–800–80) respectively used as electroactive material with 6 M KOH solution as an
electrolyte in a two-electrode symmetrical cell, measured at scan rates of 5, 10 and 15 mV s−1. The specific
capacitance of all samples calculated by Equations (3) and (4) are given in Table 4.
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Figure 11. Cyclic voltammograms of (a) carbon aerogel (RFC100–800), (b) activated carbon aerogel
(RFCA100–800–800), (c) N-doped carbon aerogel (MRFC100–800–80) and (d) N-doped activated
carbon aerogel (MRFCA100–800–800–80) used as electroactive material with 6 M KOH electrolyte in
a two-electrode symmetrical cell at different scan rates.
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Table 4. Specific capacitance of the electrodes at different scan rates in 6 M KOH electrolyte.

Sample SBET
(m2g−1)

Davg
(nm)

Specific Capacitance
(Fg−1)

Scan Rate (mVs−1)

5 10 15

RFC100–800 537 1.80 136 71 51
RFCA100–800–800 678 2.21 197 120 42
MRFC100–800–80 841 2.05 208 70 19

MRFCA100–800–800–80 1333 2.01 289 75 31

The porosity parameters of the samples given in Table 1 show that all samples have similar pore
sizes with an average pore size (APS) of around 2nm. This was found to be the optimum pore size
for achieving the highest capacitance of 136 Fg−1 for RFC100–800 carbon using a 6 M KOH solution
as the electrolyte in our previous study [28]. It has been also demonstrated by other studies that the
maximum specific capacitance of electrode material is achieved when its APS is in excellent fit with
electrolyte ion size [27,54–56]. An increase in APS results in inferior specific capacitance due to a drop
in dielectric constant “ε” (relative permittivity) and increase in “d” (distance between the centre of
ion and carbon pore walls) as given by Equation (2) whereas, smaller pore size can result in issues
such as electrolyte ions inaccessibility to the internal surface area of the carbon and also kinetic effects
due to a limited ionic diffusion [27,57,58]. Improvement of the specific capacitance with activation
from 136 to 197 Fg−1 for activated carbon RFCA100–800–800 (Table 4) was realised by enhancing the
specific surface area and introducing oxygen functional groups as a result of the activation process
while maintaining the average pore size around 2nm. Improved specific surface area “S” results in
enhanced specific capacitance according to Equation (2) although the relationship between specific
capacitance and the BET specific surface area of the electroactive material is not always linear since the
total measured specific surface area of the electrode might not be fully accessed by electrolyte ions.
The presence of oxygen functional groups on the surface of carbon is another contributor towards
its improved capacitive performance due to the addition of pseudocapacitance through the Faradaic
redox reaction originated from fully reversible oxidation/reduction of hydroquinone/quinone groups.
Fan et al. has recently reported that the oxygen doubly bound to carbon groups might be responsible
for redox reaction which can be a key contributor to pseudocapacitive element in the overall capacitive
performance of activated carbon-based electrodes in an electrochemical capacitor since oxygen has
electron acceptor characteristics [39].

Similarly, the capacitive performance of the electroactive material can be also improved by the
introduction of nitrogen functional groups on the surface or within the carbon matrix [23,37,39].
Nitrogen is one of the most extensively investigated elements added to carbons to improve their
capacitance in aqueous electrolytes since its incorporation into carbon is comparatively easier attributable
to its similar size and the same number of valence electrons with carbon [59]. Data in Table 4 shows
that further enhanced specific capacitance of 208 Fg−1 for N-doped carbon compared to the specific
capacitance of 136 Fg−1 obtained for an un-doped carbon aerogel sample with similar porous structure
is attained. This higher specific capacitance is the sum of both electric double-layer capacitance and the
pseudocapacitance due to redox reactions of nitrogen heteroatoms where the former originates from the
increased surface area of the active material (Table 1) and the later instigates from its nitrogen content
(Table 2) [60]. A number of studies have shown increased capacitance of nitrogen-doped carbons in
alkaline solutions [4,23,39]. In their study of the effects of nitrogen and oxygen functional groups on the
electrochemical performance of activated carbon nanotubes in supercapacitors, Liu et al. proposed the
Faradaic redox reactions shown in Figure 12 for nitrogen functional groups in alkaline medium [61].
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The highest specific capacitance of 289 Fg−1 was obtained for nitrogen and oxygen dual-doped
carbon (MRFCA100–800–800–80) synthesized by the activation of N-doped carbon as compared to
the specific capacitance of 208 Fg−1 for non-activated N-doped carbon. This improved capacitive
performance can be attributed to the electric double layer contribution of porous carbon and synergic
effect of oxygen functional groups present on the surface of carbon as a result of the activation process
and nitrogen functional groups introduced into its structure through the addition of melamine as
a nitrogen source during the gelation process respectively.

CV curves of un-doped and doped carbon/activated carbon aerogel samples in Figure 11 show
largely symmetric and quasi-rectangular shapes. The moderate distortion of the CV curves from
an ideal rectangular shape which is typically associated with electric double layer capacitive behaviour
can be attributed to the pseudo-capacitance contribution arisen from Faradaic redox reactions involving
both oxygen and nitrogen functional groups attached to the carbon surface and fused into its inner
network respectively [62,63]. All carbon samples show a steady drop in specific capacitance with
an increase in scan rate due to limited ion mobility at higher scan rates [64].

4.2.2. Electrochemical Impedance Spectroscopy (EIS)

Electrochemical impedance spectroscopy (EIS) is a suitable technique to analyse capacitive/resistive
behaviour and charge transfer kinetics of an electroactive material. Nyquist plots of the cell using
un-doped and N-doped carbon/activated carbons as the electroactive material obtained in the frequency
range of 100 KHz to 50 Hz with an AC wave amplitude of 10 mV are shown in Figure 13. All Nyquist
plots show an incomplete semicircle in higher frequency region (inset) related to charge transfer
and polarization resistance (RCT) where smaller diameters correspond to faster kinetics representing
a faster transport process. The equivalent series resistance (Rs) as a combination of the current collector
resistance, ionic resistance of the electrolyte, and the electrode/electrolyte interfacial resistance can be
calculated from the high-frequency intercept of EIS spectra to the real axis [63,65] whereas, the nearly
vertical line in low-frequency region (absence of semicircle) depicting Warburg like behaviour signifies
mainly capacitive behaviour with low ion diffusion resistance within highly porous media [66,67].

The resistive behaviour of the cell was further investigated in detail by fitting the experimental
impedance data with the depicted equivalent circuit model given as an inset in Figure 14 for the
quantitative analysis of the EIS spectra using “Zview” software. It can be seen that there is a good
agreement between the experimental and fitted curves shown in Figure 14.
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Figure 13. Nyquist plots of the EC cell using electrodes made of un-doped and N-doped carbon/activated
carbons with 6M KOH solution as electrolyte. A magnification of the high-frequency region of the
Nyquist plots is shown ad inset.
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Numerical values of the equivalent series resistance, RS, and the charge transfer resistance, RCT,
as the barrier between the anodic and cathodic current flows through the cell are given in Table 5.
These elements are also shown in the equivalent circuit embedded as an inset in Figure 14.

Table 5. Equivalent-circuit parameters for un-doped/N-doped carbon/activated carbon samples used
in the electrode formulation.

Sample Equivalent Series Resistance RS (Ω) Charge Transfer Resistance RCT (Ω)

RFC100–800 0.81 0.29
RFCA100–800–800 0.30 0.40
MRFC100–800–80 0.15 0.44

MRFCA100–800–800–80 0.11 0.02

A decline in the equivalent series resistances from 0.81 Ω to 0.30 Ω and a slight increase in
charge transfer resistance from 0.29 Ω to 0.40 Ω were observed after activation of un-doped carbon
aerogel sample RFC100–800. The drop in equivalent series resistance after activation can be credited
to improved wettability and change in surface chemistry of the electrode due to the introduction of
oxygen surface functional groups [39] for activated carbon aerogel (RFCA100–800–800) whereas a slight
increase in charge transfer resistance after physical activation can be attributed to an increase in porosity
of the carbon as shown in Table 1, affecting its electric conductivity [28]. Furthermore, a gradual drop
in equivalent series and charge transfer resistances was witnessed after the introduction of both oxygen
and nitrogen functional groups on the surface and within the carbon matrix with the lowest measured
equivalent series and charge transfer resistances of 0.11 Ω and 0.02 Ω respectively for oxygen and
nitrogen dual-doped sample as shown in Table 5. This decline in overall resistive behaviour of samples
after oxygen and nitrogen doping can also be linked to the modification of surface chemistry resulting
in enhanced conductivity and electron transfers due to improved wetting behaviour for oxygen and
nitrogen co-doped activated carbon aerogel sample (MRFCA100–800–800–80) in contact with 6M KOH
electrolyte solution (with the lowest recorded contact angle of 80◦) as shown in Table 2 [68]. All samples
show excellent capacitive behaviour with very low solution and charge transfer resistances particularly
the oxygen and nitrogen dual-doped sample MRFCA100–800–800–80 exhibiting the lowest equivalent
series and charge transfer resistances can be adopted as a suitable electroactive material for aqueous
electrolyte electrochemical capacitors.

5. Conclusions

Highly porous nanostructured un-doped/N-doped carbon and activated carbon aerogels were
produced with an average pore size of ~2 nm. The carbons were used as electroactive material with
a 6M KOH solution as the electrolyte in an electrochemical cell. Cyclic voltammetry measurements
of the cell showed a significant improvement in its specific capacitance after activation and nitrogen
doping of the carbon used as electroactive material in its electrode formulation. It was shown
that incorporation of nitrogen and oxygen functional groups witnessed by XPS analysis of the
materials, transforms the surface of the electrode from a hydrophobic to hydrophilic surface with
steady improvement in electrode/electrolyte wettability and decrease in contact angle from 123◦

obtained for un-doped carbon aerogel to 80◦ for nitrogen and oxygen co-doped carbon aerogel sample.
This resulted in a significant increase in the specific capacitance of the cell, with the highest specific
capacitance of 289 Fg−1 attained for nitrogen and oxygen dual-doped sample MRFCA100–800–800–80
which is attributed to both EDLC and pseudocapacitive contributions originated from the highest
specific surface area of the carbon and also the presence of nitrogen/oxygen functional groups
within the carbon matrix and on its surface respectively. EIS measurements also showed a strong
relationship between surface chemistry and equivalent series/charge transfer resistances for un-doped
and nitrogen-doped carbon/activated carbon aerogel samples. The surface modification of the carbons
through activation and nitrogen doping resulted in the lowest equivalent series and charge transfer
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resistances obtained for the electrode fabricated by using N-doped activated carbon sample as
electroactive material in electrochemical capacitor cell, making this sample an ideal and cost-effective
candidate for aqueous-based electrochemical capacitors.
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