

Supplementary Material Surface-controlled Regeneration of Ammonia Borane from Boron Nitride

Tessui Nakagawa ^{1,*}, Hiroki Uesato ², Anthony K. Burrell ^{3,*}, Takayuki Ichikawa ⁴, Hiroki Miyaoka ⁴, Benjamin L. Davis ³ and Yoshitsugu Kojima ⁴

- ¹ Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
- ² Graduate school of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan; h.u.revolutioner@gmail.com
- ³ Materials Physics and Applications division, Los Alamos National Laboratory, MS J514 Los Alamos National Laboratory, Los Alamos, NM 87575, USA; bldavis@lanl.gov (B.L.D.)
- ⁴ Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan; tichi@hiroshima-u.ac.jp (T.I); miyaoka@hiroshima-u.ac.jp (H.M.); kojimay@hiroshima-u.ac.jp (Y.K.)
- * Correspondence: tessui@sci.u-ryukyu.ac.jp; Tel.: +81-98-895-8535 (T.N.); Anthony.Burrell@nrel.gov (A.K.B);

Received: 2 October 2020; Accepted: 20 October 2020; Published: 23 October 2020

This supporting information shows;

- 1. ¹¹B solution NMR spectra of N₂H₄/NH₃ treated neat BN, treated BN-NH_x, and mixture of authentic AB and treated BNH_x.
- 2. ¹H solution NMR spectra of BNH^x before and after the treatment.
- 3. XRD profiles of BNH^{*x*} before and after the treatment.
- 4. FT-IR spectra of BNHx and N2H4/NH3 treated BNHx without AB

1.¹¹B Solution NMR Spectra

Figure S1 shows 1H-decoupled ¹¹B solution NMR profiles of neat hexagonal boron nitride (h-BN) after the hydrazine/ammonia treatment (Hz/NH₃) and mixture of authentic ammonia borane (AB) and treated BNH_x. No AB was detected in the ammonia/NH₃ treated neat h-BN (Figure S1a) and BN-NH_x (Figure S1c), whereas the mixture of authentic AB and treated BNH_x shows single peak (–20.4 ppm) as mentioned in the main manuscript (Figure S1b).

Figure S1. ¹H-decoupled ¹¹B solution NMR profiles of (**a**) Hz/NH³ treated neat h-BN, (**b**) mixture of AB and Hz/NH³ BNH_x, and (**c**) treated BN-NH_x together with that of AB as a reference.

2. ¹H Solution NMR Profiles

Figure S2 illustrates ¹H NMR spectra of BNH_x before and after Hz/NH₃ treatment. The dashed lines in Figure S2 are corresponding to NH₃ signals of AB. Although BH₃ signals at 0.5–1 ppm are unclear due to a lot of peaks, NH₃ peaks in treated BNH_x locate the same position and pattern as those of the authentic AB (Figure S2a). The NMR spectrum is dominated by the residual protons in d-8 THF and non-deuterated THF used for filtering (The strong peak at 0 ppm in inset of Figure S2 is insoluble impurity in THF used for filtering). The simple BNH_x extracted shows same signals as solvent due only to THF and impurity peaks in the spectrum, indicating no soluble H species in BNH_x (Figure S2b). Above results are consistent with the results from ¹¹B solution NMR in the main manuscript.

Figure S2. ¹H solution NMR of BNH_x spectra (**a**) after and (**b**) before the Hz/NH₃ treatment together with AB, hydrazine borane (HzB), and d-THF as references. Inset shows the full scale of BNH_x before and after the treatment spectra with d-THF spectrum.

3. XRD Profiles

XRD profiles of BNH_x before and after Hz/NH₃ treatment are shown in Figure S3. A peak corresponding to B_3N_3 ring structure (*hklm* = 0002) of h-BN at 27° marked by arrow is observed in both profiles. All broad peaks in both profiles are background of protections from air ((a) polyimide film at 12–30° and (b) Be doom at 20–30°).

Figure S3. XRD profiles of BNH_x (**a**) before and (**b**) after the Hz/NH₃ treatment together with h-BN and AB patterns.

4. FT-IR Spectra

FT-IR spectra of BNH_x has strong N-H (~3500 cm⁻¹), B-H (~2500 cm⁻¹), and B-N (~1500 cm⁻¹) bonds. Residue of BNH_x after the treatment increases N-H peak and decreases B-H bond.

Figure S4. FT-IR spectra of BNHx and N2H4/NH3 treated BNHx without AB.