
energies

Article

Energy-Efficient Autonomous Navigation of
Solar-Powered UAVs for Surveillance of Mobile
Ground Targets in Urban Environments

Hailong Huang and Andrey V. Savkin *

School of Electrical Engineering and Telecommunications, University of New South Wales,
Sydney 2052, NSW, Australia; hailong.huang@unsw.edu.au
* Correspondence: a.savkin@unsw.edu.au

Received: 8 September 2020; Accepted: 21 October 2020; Published: 23 October 2020
����������
�������

Abstract: In this paper, we consider the navigation of a group of solar-powered unmanned aerial
vehicles (UAVs) for periodical monitoring of a set of mobile ground targets in urban environments.
We consider the scenario where the number of targets is larger than that of the UAVs, and the targets
spread in the environment, so that the UAVs need to carry out a periodical surveillance. The existence
of tall buildings in urban environments brings new challenges to the periodical surveillance mission.
They may not only block the Line-of-Sight (LoS) between a UAV and a target, but also create some
shadow region, so that the surveillance may become invalid, and the UAV may not be able to
harvest energy from the sun. The periodical surveillance problem is formulated as an optimization
problem to minimize the target revisit time while accounting for the impact of the urban environment.
A nearest neighbour based navigation method is proposed to guide the movements of the UAVs.
Moreover, we adopt a partitioning scheme to group targets for the purpose of narrowing UAVs’
moving space, which further reduces the target revisit time. The effectiveness of the proposed method
is verified via computer simulations.

Keywords: unmanned aerial vehicles (UAVs); autonomous systems; solar-powered UAVs; control of
electric vehicles; applications of solar powered vehicles; energy-efficient UAV navigation; sensing coverage;
dynamic coverage; surveillance and monitoring; rapidly-exploring random tree (RRT)

1. Introduction

Unmanned aerial vehicles (UAVs) have found numerous applications in both military and civilian
domains. They are excellent tools for target surveillance and monitoring [1–3], thanks to their flexibility.
Because using a single UAV is often inefficient to conduct a complex mission, employing a UAV team
is the trend in order to complete missions quickly [4]. When multiple UAVs conduct some missions,
they are often regarded as a multiagent system. In the past few decades, the coordination issue of
multiagent systems has attracted great attention from different research communities [5–7].

This paper pays attention to the moving target surveillance by a group of UAVs. A practical
application of the considered scenario is that, in wireless sensor networks, the sensor nodes collect data
from the environment. UAVs function as data sinks to collect the sensory data from sensor nodes [8].
In general, the number of available UAVs is smaller than that of the sensor nodes. Thus, the UAVs
carry out a periodical surveillance of the sensor nodes.

Because UAVs often have limited onboard battery capacity, their operation duration is constrained.
Installing solar-panels enables the UAVs to harvest energy from the sun, which is promising for
prolonging the lifetime of the UAVs in the sunny daytime [9]. We consider the surveillance of mobile
targets by the solar-powered UAVs in urban environments. The tall buildings have some negative
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impact on the mission. Firstly, they may create some shadow region, where the Line-of-Sight (LoS)
between the UAVs and the sun is blocked, so that the UAVs cannot harvest energy if they fly in the
shadow region. Besides, the buildings may also block the LoS between the UAVs and considered
targets. This may prevent a UAV from successfully surveying a target.

The problem of interest is formulated as an optimization problem to minimize the target revisit
time by planning the UAVs’ paths. To address the problem, we present a path planning method that
is based on the Rapidly-exploring Random Tree (RRT). This method can quickly find a feasible path
for the UAV to intercept the target in the scenario where the target moves along a known trajectory.
We then consider the case with one UAV and multiple targets. We present a nearest neighbour (NN)
based navigation method. The so-called NN involves both the UAV-target distance as well as the
uncertainty level of a target. Finally, we consider the multi-UAV and multi-target case. We partition
the targets into groups according to the distance information between the targets and the UAVs.
Subsequently, each UAV takes care of the targets in its own partition.

The proposed autonomous navigation algorithm that navigates a UAV team in order to
periodically survey a group of mobile ground targets is the main contribution of this paper. It is
computationally efficient and easily implementable online, since it is a randomized RRT-based
approach. Extensive simulation results are reported in order to confirm the effectiveness of the
developed method.

The reminder of the paper is organized, as follows. Section 2 briefly reviews the relevant work.
Section 3 presents the system models and formulates the problem. Section 4 presents the proposed
UAV navigation approaches. Section 5 reports the computer simulation results, and Section 6 gives the
concluding remarks.

2. Related Work

The target surveillance problem that is considered in this paper has not been considered in any
existing publications. In this section, we present some closely relevant publications, so that we can
distinguish the contributions of the paper with others.

The target surveillance problem has been investigated from different levels in the literature.
In terms of sensing, a large number of image/video processing strategies have been developed in
order to estimate states of the targets from the measured images/videos [10–14]. In these publications,
attention has been paid to the quality of detection for a single target.

In the scenario with multiple targets, how to allocate the UAV resource becomes necessary to
achieve a good quality of surveillance. Many operational research results, such as the conventional
travelling salesman problem (TSP) [15] and the vehicle routing problem (VRP) [16], are the common
tools for planning the UAVs’ paths. When there are enough UAVs, the coverage control has been
investigated to achieve the optimal sensing coverage of the targets [17,18]. In cases where moving
targets are to be monitored, and to maintain the quality of sensing, the reactive algorithms have been
proposed [2,19].

This paper focuses on the scenario where the number of UAVs is not enough to persistently
monitor the targets, so a periodical surveillance is conducted by the UAVs. As the targets are moving
in the considered region, the problem is more relevant to the time-dependent TSP [20] and the
moving-target TSP [21,22]. In the time-dependent TSP [20], the common setting is to find the shortest
tour for the salesman in a graph with time-dependent edges. In the moving-target TSP [21,22],
the targets are assumed to move with a constant speed along a fixed direction. The problem considered
here is different from them. Firstly, the targets move along some trajectories, so that their speeds and
moving directions may change with time. Secondly, the existence of buildings in the urban environment
requires the UAVs to avoid collision with the buildings. Thirdly, the UAVs need to harvest energy
from the sun to enable the UAVs to operate in the given time period. However, each path depends
on the UAV’s initial position, the buildings’ positions and the target’s trajectory, which is challenging
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to be known in advance. Thus, both the moving-target TSP and the time-dependent TSP cannot be
applied to address the problem that is considered in the paper.

Path planning plays an important role in this work. Among various path planning algorithms,
RRT is a sampling-based approach. It generates a feasible (but may not be optimal) path quickly, even if
the environment is complicated. Many publications have reported that this method can be easily
applied in real-time applications, such as mobile ground robots [23] and autonomous driving [24].
To improve the solution quality and computing speed, many RRT variants have been developed.
Specific attention has been paid to the generation of samples and the control of the searching step
length. A lower bound tree-RRT is designed to find out the near optimal path [25]. Besides, a node
control strategy is proposed in order to restrict the expansion of the random tree [26]. Because of the
computational efficiency, RRT-based approaches are generally suitable to run in real-time, and it also
has potential to be implemented in a decentralized manner [27]. We adopt the RRT approach in this
paper. However, as will be shown in the following sections, we do not have a fixed destination for a
UAV. Instead, the destination of a UAV moves. Our objective is generate a feasible path in real-time,
so that the UAV can intercept the target as soon as possible.

3. System Model and Problem Statement

Suppose that we have a team of solar-powered UAVs labelled 1, 2, . . . , I. We consider that these
solar-powered UAVs fly at a fixed altitude z in an urban area to conduct some missions. For UAV
i, let pi(t) = [xi(t), yi(t), z] be its position in the ground frame at t, θi(t) be the horizontal heading
angle with respect to the x-axis; and, vi(t) and ωi(t) be its linear and angular speeds, respectively.
The motion of UAV i can be described by the following equations [28,29]:

ẋi(t) = vi(t) cos(θi(t)),

ẏi(t) = vi(t) sin(θi(t)),

θ̇i(t) = wi(t),

(1)

In this paper, the effect of wind has not been considered. The following constraints hold for any
UAV at any time: 

−Vmax
i ≤ vi(t) ≤ Vmax

i ,

−Ωmax
i ≤ wi(t) ≤ Ωmax

i ,

(xi(t), yi(t)) ∈ D,

(2)

Here, Ωmax
i and Vmax

i are the given constants, and D ⊂ R2 is the considered area. The movement
of many UAVs can be described by (1) and (2); see [30–33]. It is worth pointing out that, in (2),
the linear speed vi(t) can take a negative value. This allows for a UAV to move backward when
necessary. In Section 5, we will see some UAV trajectories with sharp turns, and the reason is that a
negative linear speed is applied. This avoids making a large turn by moving along a circle. Table 1
summarizes the frequently used symbols in the paper, together with their meanings.

Let Psun
i (t) be the harvesting power of the solar energy. It can be computed as follows [34]

Psun
i (t) = ηAi cos φ(t), (3)

where η represents the solar cell efficiency, Ai represents the area of the solar cells, and φ gives the
incidence angle. The incidence angle φ is further dependent on the azimuth angle αz and the elevation
angle αe of the sun, and in the day time, both αz and αe vary with time.
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Table 1. Symbols and meanings.

Symbol Meaning

pi(t) UAV i’s position at time t

θi(t) UAV i’s heading angle

vi(t) UAV i’s linear speed

ωi(t) UAV i’s angular speed

α Observation angle

R Radius of the vision cone

Pi(t) UAV i’s consuming power

Psun
i (t) UAV i’s harvesting power

Qi(t) UAV i’s residual energy

qi(t) Target j’s position

τj Target j’s revisit time

dij(t) Horizontal distance between UAV i and target j

The UAVs consume energy when they are flying. For the energy consuming power, we follow the
model that was used in [35]:

Pi(t) = λ0

(
1 +

3v2
i

U2
tip

)
+

1
2

ρκsSv3
i (t) + λ1

√1 +
v4

i (t)
4µ4 −

v2
i (t)
2µ2

 1
2

, (4)

where λ0, λ1 and µ are the blade profile power, the induced power and the mean rotor induced velocity
in hovering, respectively; Utip represents the tip speed of the rotor blade; κ is the fuselage drag ratio;
s represents the rotor solidity; ρ is the air density; and, Si rotor disc area.

Let Qi(t) denote the residual energy of the battery of UAV i. We have

Q̇i(t) = Psun
i (t)− Pi(t). (5)

Moreover, Qmax
i represents the upper bound of Qi(t).

Each UAV carries a ground-facing camera, and the camera’s observation angle is denoted by
α ∈ (0, π); see Figure 1. If a target locates in a disc centred at pi(t) of the radius

R = z tan
(α

2

)
, (6)

and has LoS with the UAV, it can be observed by the UAV. We assume that a gimble is available on the
UAV, so that, no matter how the UAV moves, the camera always faces the ground.

Now, we model the buildings. In this paper, each building is modelled as the smallest prism to
enclose this building. Each prism has two parallel and congruent bases and a number of flat sides
that are perpendicular to the xy-plane; see Figure 2. Each prism is characterized: Ψ, ψ and h. Ψ is a
κ-by-2 matrix and ψ is a κ-by-one vector. They determine the shape and size of the base. h is a scalar
indicating the height of the prism. For a point (x, y, z), if it is inside a prism, (7) holds:

Ψ

[
x

y

]
≤ ψ,

0 ≤ z ≤ h.

(7)



Energies 2020, 13, 5563 5 of 17
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𝛼

𝑧

𝑅

Figure 1. The observation of the ground-facing camera. The target at the green point can be viewed
by the unmanned aerial vehicle (UAV) while that at the red point cannot due to the blockage of
the building.

Given the environment information, Ψ, ψ and h are known for each building. Subsequently,
we can have a subset of space, denoted by Xbuilding, which corresponds to these buildings. At any time,
the UAVs must not be inside Xbuilding. Clearly, avoiding Xbuilding is similar to the collision avoidance
with steady obstacles [36,37].

𝑦

𝑥
𝑧

(a) Four sides

𝑦

𝑥
𝑧

(b) Five sides
Figure 2. Prisms.

Having the model of buildings is not sufficient to characterize the observation region of a UAV.
We also need a method to determine whether a position in the air and a position on the ground have
LoS. For this purpose, we consider the straight line segment between two points p and q, which is
described as 

x = xq + βxτ,

y = yq + βyτ,

z = zq + βzτ,

min{xp, xq} ≤ xq + ατ ≤ max{xp, xq},

(8)

where q = (xq, yq, zq), p = (xp, yp, zp), (βx, βy, βz) =
−→pq
‖−→pq‖ , and τ is a free variable.

Whether p and q have LoS can be tested by looking for the intersection points between the the
line segment connecting p and q (8) and any prism (7). Because the environment information is known,
whether p and q have LoS can be easily confirmed. We introduce a function LOS(p, q,Xbuilding):

LOS(p, q,Xbuilding) =

{
1, if p and q have LoS,

0, otherwise.
(9)

With this function, we can also test whether a UAV and the sun have LoS. To this end, the sun’s
location needs to be known. Let V, a unit vector, denote the sunlight direction. With V, we can imagine
that the sun is at qsun = p−Vτ, where the parameter τ takes a large value so that the sun is far from
the point p. We need to place the sun at a relatively far position. The reason is that we use the line
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segment to verify whether two points have LoS. When the sun is placed closely to the point p, we may
not obtain the correct verification.

Let bi(t) be a binary variable indicating whether UAV i has LoS with the sun. Subsequently,
UAV i’s residual energy can be computed by:

Q̇i(t) = Psun
i (t)bi(t)− Pi(t). (10)

There are N ground mobile targets in the given urban environment to be periodically surveyed.
These targets can be some sensor nodes to measure the environment information of interest. Instead of
continuously transmitting the sensory data, they only upload their sensory data to a control unit via
the UAVs in proximity. This setting can prolong the lifetime of the nodes when the sensory data are
of large size, such as videos. We assume that the UAVs know the current positions of the targets,
and this information can be provided by the targets, since the energy consumption of reporting the
position information can be ignored compared to the large size of sensory data. We also assume that
the targets’ future positions are predictable. This assumption is reasonable, since, when the targets
carry out some pre-defined missions, their trajectories can be known. Let qj(t) ∈ R3 denote target j’s
location (j = 1, . . . , N) at time t.

In this paper, we consider that I < N and the targets spread in the considered environment.
Subsequently, there may be some time in which a target is not under surveillance. From the common
sense, the uncertainty level of a target relates to the time in which it is not under surveillance.
Thus, a significant objective of the surveillance system is to maintain the uncertainty level of the
targets as low as possible. This can be formulated as the minimization of the maximum target revisit
time. Let τj denote the time gap between two consecutive visits of target j. Let dij(t) denote the
horizontal distance between target j and UAV i at time t.

Definition 1. Target j is under surveillance of UAV i at time t, if LOS(pi(t), qj(t),Xbuilding) = 1 and
dij(t) ≤ R.

Let sj(t) be a binary variable indicating if target j is under surveillance at time t. Subsequently,
we have

sj(t) =

{
1, if ∃i such that LOS(pi(t), qj(t),Xbuilding) = 1 and dij(t) ≤ R,

0, otherwise.
(11)

Afterwards, we can use sj(t) to calculate τj. Specifically, we have

τj = max
sj(t1)=1,sj(t2)=1,t1<t2,∀t1<t<t2,sj(t)=0

t2 − t1. (12)

In other words, τj is the time instant gap between the two consecutive visits. Note that, if there
is only one visit during the mission period [0, T], i.e., at t1, then, τj = T − t1. If there is not any visit
during the mission period, then τj = T.

The problem under investigation is to develop a navigation method for the UAVs modelled by (1)
and (2) in order to minimize the maximum revisit time during the mission period [0, T], i.e.,

min max
j=1,...,N

τj. (13)

subject to
Qi(t) > 0, ∀i, ∀t ∈ [0, T]. (14)

The problem under consideration is difficult to address optimally. Although we can have the
trajectories of targets and predict their positions for the period of [0, T], it is still hard to plan the
trajectories of the UAVs in advance. The main reason lies in the complexity of the flying space in
urban environments. In particular, due to the existence of buildings, the trajectory of UAV i (suppose
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that it is assigned to survey target j) depends on both the trajectory of target j and the position of
UAV i at which it is assigned with this task. Furthermore, the UAV’s position depends on its last task.
The coupling of the high-level task assignment problem and the low-level trajectory planning problem
makes it too complex to be addressed optimally. Even if an optimal solution can be obtained, it may
also take so long time that it cannot be applied online.

4. Proposed Navigation Method

4.1. Lifetime of UAVs

Before presenting the navigation method, it is necessary to discuss the lifetime of the UAVs.
As shown in (3), for a UAV, its energy harvesting power varies with time because of the movement of
the sun. Subsequently, the maximum harvested energy amount by UAV i is given by

∫ T
0 ηAi cos φ(t)dt.

According to (4), the energy consuming power Pi increases with the speed vi in the first and
second terms, while decreases with vi in the third term. Additionally, the third term weights more
when vi is relatively small, while the first and second terms weight more when vi is relatively large.
Thus, the energy consuming power Pi in (4) first decreases and then increases with vi. Figure 3 shows
an illustrative plot of the relationship between Pi and vi. There exists an optimal linear speed, such that
the energy consuming power is minimized. Let Popt

i denote the minimum energy consuming power.

0

𝑃𝑖(𝑡)

𝑣𝑖(𝑡)

Figure 3. Illustration of the relationship between Pi(t) and vi(t).

We assume that Qmax
i is the initial energy of UAV i. The necessary condition for the UAV to

conduct the surveillance mission is as follows:

Qmax
i +

∫ T

0
ηAi cos φ(t)dt− TPopt

i > 0. (15)

Once (15) holds, the UAV can complete the surveillance mission with the optimal linear speed,
although this does not guarantee the performance of surveillance. Moreover, a hidden assumption
of (15) is that the UAV always has LoS with the sun in [0, T]. Otherwise, the harvested energy amount
is smaller than

∫ T
0 ηAi cos φ(t)dt. However, if (15) does not hold, the UAV cannot conduct the mission.

If the capacity Qmax
i takes some larger value, it is allowed to have some part of the UAV trajectory

having no LoS with sun. The margin of capacity has the potential to reduce the revisit time. There are
two feasible paths for the UAV to intercept the target, as shown in Figure 4. The red one has some
part behind the building that prevents the UAV from harvesting energy, while the green path enables
the UAV to harvest energy during the trip. The red one leads to a shorter time for the UAV to survey
the target than the green. If there is no margin capacity, then the UAV has to follow the green path.
Otherwise, it can follow the red one to reduce the revisit time.

Though the margin energy capacity brings benefit in terms of the reduction of the revisit time,
it also creates challenges in the management of this amount of energy. Specifically, the UAV may need
to survey several targets during the mission. Subsequently, it is difficult to decide how to allocate the
margin capacity to the tasks. In the subsequent parts, we assume that there is no such margin capacity,
and the UAVs fly at their corresponding optimal linear speeds. Accordingly, the UAVs always look for
paths having LoS with sun. We leave the complex case with margin capacity for future study.
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Figure 4. Illustration of the potential benefit offered by the margin energy capacity. The margin energy
capacity allows the UAV to take a path with some part having no Line-of-Sight (LoS) with sun to reduce
the revisit time.

4.2. One UAV and One Target

In the simplest case, we consider that one UAV is assigned to survey a target. Suppose that
it is at t0 the UAV starts to move to the target. We denote the initial positions of the UAV and the
target as p(t0) and q(t0), respectively, and the initial heading angle of the UAV as θ(t0). We use
x(t) = [p(t), θ(t)] to represent the state of the UAV. Suppose we know the trajectory of the target in the
considered area D, and we make a prediction for its future positions in the time interval [t0, t0 + T0].
Formally, we know q(t), where t ∈ [t0, t0 + T0]. We select a suitable T0, so that the UAV can intercept
the target before t0 + T0.

For the purpose of implementing the method online, we adopt the computationally efficient RRT
approach. The common setting of the RRT approach looks for a feasible path between a start position
and a destination, and the obtained path can avoid obstacles. In our problem, the buildings that are
taller than the UAV flying altitude are regarded obstacles. Our problem has some additional features
compared to the common setting. Firstly, different from a stationary destination, the destination in our
problem, i.e., the target, is moving. Secondly, the UAV should avoid shadow region, because it needs
to always harvest energy during the trip.

The objective is to find a feasible UAV path, such that, at time instant t ∈ [t0, t0 + T0], the target
locates inside the vision cone of the UAV and they have LoS. Starting from the current UAV position,
i.e., p(t0), we generate a random tree. The termination condition of the tree generation process is that
d(t) ≤ R and LOS(p(t), q(t),Xbuilding) = 1 at time t, where d(t) is the horizontal UAV-target distance.

We present all of the procedures in Algorithm 1. Let T denote the random tree and δ be a
sampling interval. T consists of a set of vertices. A vertex is annotated with control inputs, parent
vertex and timestamp. Firstly, we initialize the tree T with x(t0). Subsquently, we keep generating
random samples in the space, find the nearest vertex from the tree to the sample, choose the suitable
control inputs to generate a new vertex xnew. We further check the conditions that whether xnew

belongs to Xbuilding and whether it has LoS with the sun. When both are verified, we associate the
parent vertex, the control inputs and the timestamp with this vertex, and add it to the random tree.
Here, the timestamp is an integer indicating the number of steps from the initial vertex to this vertex.
We stop growing the tree once there exist a timestamp k and a vertex x∗ with the timestamp of k,
such that d(t0 + kδ) ≤ R and the position of x∗ has LoS with q(t0 + kδ).
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Algorithm 1: Rapidly-exploring random tree (RRT)-based path planning algorithm to intercept
a target.

Input: x(t0), Xbuilding, q(t) where t ∈ [t0, t0 + T0]

Output: T
Initialize T .
while There do not exist a timestamp k and a vertex x∗ with the timestamp of k, such that

d(t0 + kδ) ≤ R and x∗ has LoS with q(t0 + kδ) do
Randomly generate a node in the space.
Select the closest vertex from T to the node.
Choose the appropriate control inputs to generate xnew, such that xnew cannot be closer to
the node after δ.

if xnew /∈ Xbuilding and has LoS with the sun then
Associate with xnew its parent, the applied control inputs and timestamp, and add xnew

to T .
end

end

When the tree growing process terminates, we obtain the final vertex on the UAV path, i.e., x∗.
We also know that it takes k steps for the UAV from its initial position to reach x∗. By a standard
backtracking algorithm, we can find the path from x∗ back to the initial position. An example is shown
in Figure 5, where t0 is set as 0. In this example, we stop growing the random tree, since, at time 3δ,
the condition d(3δ) ≤ R holds (suppose LOS(p(3δ), q(3δ),Xbuilding) = 1).

𝛿

0

2𝛿
3𝛿

2𝛿

𝛿

0

4𝛿

𝛿

2𝛿

3𝛿3𝛿

3𝛿

5𝛿

6𝛿𝑅

Figure 5. Illustration of the rapidly-exploring random tree (RRT)-based path planning.

4.3. One UAV and Multiple Mobile Targets

Now, we focus on the case, where one UAV periodically surveys multiple mobile targets.
The problem is a generalization of some variants of TSP. Different from the moving-target

TSP [21,22], which assumes that the targets move at constant speeds in fixed directions, the targets in
our problem may adjust their headings as well as speeds. Although we can make reasonably accurate
predictions on the targets’ movements, the time that is needed to intercept a target also depends on
how the UAV moves. Thus, the time-dependent TSP [20], which assumes knowing the cost of the
time-dependent arcs cannot be used directly to address our problem.
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We present a nearest neighbour (NN) based navigation algorithm. Different from the common
sense of NN, which uses distance information as a metric, we consider not only the distance, but also
the uncertainty level of a target. A target’s uncertainty level is modelled as a non-decreasing function
of time since its last visit. A typical uncertainty function, denoted by γ(t), is shown in Figure 6.
Here, the target was last seen at instant t0. For t ∈ [t0, t0 + σ], γ(t) = 0. After t0 + σ, γ(t) increases
with time. When σ = 0, γ(t) is a monotonically increasing function of time.

𝛾(𝑡)

𝑡
𝜎 + 𝑡0𝑡0

Figure 6. An illustrative example of the uncertainty level γ(t).

We use the symbol λj(t) to describe how close target j is to the UAV, and it is defined, as follows:

λj(t) :=
γj(t)
Lj(t)

, (16)

where Lj(t) represents the length of the path for the UAV to intercept target j. The path can be found
by the method that is discussed in Section 4.2. The metric λ couples the UAV-target distance and
target’s uncertainty level. The target with the maximum value of λ is the nearest neighbour (NN).

The navigation method is shown in Algorithm 2. It first selects the NN. Subsequently, the UAV
follows the path to move towards the NN. The UAV will choose a new NN once the selected NN is
surveyed. Note that since the targets are moving, it is possible that the UAV can have some other
targets in view before the NN. In this case, the UAV will update the targets’ status, but not change the
selected NN. As a heuristic algorithm, it does not guarantee obtaining the optimal guidance. However,
since it is a randomized method, it can complete the calculation quickly.

Algorithm 2: Navigating one UAV to survey multiple mobile targets.

while the time has not reached T do
Apply Algorithm 1 to find the paths to intercept the targets.
Choose the NN.
while the NN has not been surveyed do

Keep moving on the planned path.
Update the targets’ status if they are surveyed during the movement.

end
end

4.4. Multiple UAVs and Multiple Mobile Targets

Section 4.3 presents how to navigate one UAV to survey multiple mobile targets. This subsection
extends the navigation algorithm to the scenario having multiple UAVs.
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The target revisit time can be further reduced if multiple UAVs are available and their paths are
well planned. Subsequently, an important question is how the UAVs coordinate. For coordinating,
it requires some extra operations beyond intercepting targets. Firstly, the UAVs should exchange
their positions and their selected NN. Exchanging positions can effectively avoid collision with other
UAVs [37,38]. Exchanging the selected NN can avoid the case where two UAVs choose the same target
as NN. Additionally, a UAV should share the status of a target once this target is surveyed. By doing
this, all of the UAVs have a whole picture of the status of the targets, so that they can select their NNs
more effectively. Without this sharing, a UAV may move towards a target that was recently surveyed,
and this may increase the average revisit time of the targets.

With the shared positions of other UAVs, each UAV can construct a partition of the targets.
In particular, a target is assigned to UAV i if

dij(t) ≤ dhj(t), ∀h = 1, . . . , I, h 6= i, (17)

where dij(t) is the horizontal distance between target j and UAV i. Let Si(t) denote the set of targets
that are more closer to UAV i.

Algorithm 3 summarizes the navigation algorithm for this scenario. Each UAV determines its
partition according to the locations of other UAVs and the targets. Subsequently, it selects its NN in
the partition. After that, it starts to pursuit the target. Whenever it views a target other than the NN,
it shares the status of this target across the team. When the selected NN has been surveyed, the UAV
repeats the above procedures. The difference between Algorithm 3 and Algorithm 2 is an additional
operation in Algorithm 3 to update the partition of a UAV according to the UAVs’ and targets’ locations.
Because a UAV needs to calculate the distance from a target to I UAVs, the additional computation
complexity is O(NI) for the situation with N targets.

Algorithm 3: The navigation algorithm running at a UAV in the team.

while the time has not reached T do
Determine the partition.
Choose the NN in the partition.
while the NN has not been surveyed do

Keep moving on the planned path.
Update and share the targets’ status if they are surveyed.

end
end

It is worth pointing out that partitioning the targets following (17) assigns a target to exact one
group. Subsequently, the NN selected by each UAV is unique. Additionally, considering the existence
of buildings and the randomness of the RRT-based path planning, two UAVs’ paths may be close.
In this case, i.e., when two UAVs are within a range of dsa f e, one of the UAVs, such as the one with
the smaller index, continues to fly as planned, while the other UAV tries to avoid the former UAV.
To achieve this, the collision avoidance ability should be embedded. Many available UAV products that
have such a function, such as DJI Mavic Pro 2, Mavic 2 Zoom, skydio 2, etc, can be used. Fortunately,
this is a common ability in most commercial UAVs. When the two UAVs are at least dsa f e apart,
the latter re-starts to intercept its NN.

Remark 1. The considered problem in this paper may not be stable. A simple example is that all the targets
move away in different directions. Subsequently, the revisit time increases with time.
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5. Simulations

We show the performance of the proposed navigation algorithms. An urban environment is
constructed in MATLAB with various buildings, see Figure 7a. The heights of the buildings are
between 30 to 120 m. Five targets move on the xy-plane in the environment, and their trajectories are
shown in Figure 7b.

We first consider using one UAV to survey the targets. The used parameters are listed, as follows:
Vmax = 10 m/s, Ωmax = 0.5 rad/s, z = 65 m, R = 50 m, T = 500 s and σ = 0. It is worth pointing out
that the parameters of Vmax and Ωmax depend on the maneuverability of the UAV in use. Our method
is not restricted to these parameters. The function γ(t) is set to be increasing linearly with time. As will
be seen in the below results, because the UAV flight height is taller than some buildings and lower
than the others, a UAV needs to avoid the taller buildings but can fly above the lower buildings.
To make results more understandable, we assume that during the 500 s, the incidence angle does not
change. The fixed value can response to the average value during the 500 s. Subsequently, we can
pre-compute the shadow range. Similar to Xbuilding, the shadow region is not allowed for the UAV to
enter. Given an initial state, the trajectory of the UAV is obtained by applying Algorithm 2. In particular,
the randomized Algorithm 1 is used to generate UAV trajectories to intercept the five targets. In our
simulation, for the case with five targets, Algorithm 1 (runs on a normal computer with an Intel(R)
Core(TM) i7-8565U CPU and 8.00 G RAM) takes less than 1 s to return five random trajectories.
Although the onboard processor may not be as powerful as a normal computer, the algorithm can be
coded in the more efficient language C. Moreover, even if the practical computation time may be longer
than the simulation environment, in practice, the UAV can start to compute the random trajectories
before it intercepts the intended target. Experimental verification of the proposed methods is left as
our future work.

(a) (b)
Figure 7. (a) The simulated urban environment. (b) The trajectories of targets.

To make the trajectories visible, we demonstrate the 2D views in Figure 8 for each period of 100 s.
We also record the movements of the UAV and the targets in some videos, and links for both 2D and 3D
views are available at the caption of Figure 8. From Figure 8f, we can see that the five targets are visited
twice or three times in the operation period, and the maximum revisit time is about 220 s. For the same
targets movements, we increase the maximum of the UAV linear speed to Vmax = 15 m/s, and the
UAV’s trajectory is shown in Figure 9. From Figure 9f, we can see that target 1 was visited three times
and all the other targets are visited four times in the operation. The maximum revisit time is reduced
from 220 s to 180 s.

Finally, we add one more UAV to survey the same targets. Here, Vmax = 10 m/s, and all of the
other parameters remain the same as above. We show the trajectories of the two UAVs in Figure 10.
From Figure 10f we can see that compared to the results by one UAV, the maximum revisit time
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is reduced from 220 s to 150 s. The maximum angular speeds, i.e., Ωmax, has little impact on the
maximum revisit time, since it only influences the UAV trajectory when the UAV makes a turn.
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Figure 8. UAV trajectory when flying at 10 m/s. (2D view: https://youtu.be/7cx4jpr0W4I; 3D view:
https://youtu.be/eXdSWdH1Yd8). (a) The UAV trajectory between 1 and 100 s. (b) The UAV trajectory
between 101 and 200 s. (c) The UAV trajectory between 201 and 300 s. (d) The UAV trajectory between
301 and 400 s. (e) The UAV trajectory between 401 and 500 s. (f) The revisit time of each target during
the simulation.

https://youtu.be/7cx4jpr0W4I
https://youtu.be/eXdSWdH1Yd8
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Figure 9. UAV trajectory when flying at 15 m/s. (2D view: https://youtu.be/smvPf-fFdfw; 3D view:
https://youtu.be/anSTjbqGoa8).(a) The UAV trajectory between 1 and 100 s. (b) The UAV trajectory
between 101 and 200 s. (c) The UAV trajectory between 201 and 300 s. (d) The UAV trajectory between
301 and 400 s. (e) The UAV trajectory between 401 and 500 s. (f) The revisit time of each target during
the simulation.

https://youtu.be/smvPf-fFdfw
https://youtu.be/anSTjbqGoa8
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Figure 10. The trajectories of two UAVs flying at 10 m/s. (a) The UAV trajectory between 1 and
100 s. (b) The UAV trajectory between 101 and 200 s. (c) The UAV trajectory between 201 and
300 s. (d) The UAV trajectory between 301 and 400 s. (e) The UAV trajectory between 401 and 500 s.
(f) The revisit time of each target during the simulation.

6. Conclusions

We considered using UAVs to conduct periodical surveillance of moving targets. We formulated an
optimization problem in order to minimize the target revisit time. We proposed autonomous navigation
algorithms for different cases. Because these algorithms are based on RRT, they inherit the advantage
of computational efficiency, and they are promising to be applied in real-time. The simulation results
showed their effectiveness.

One limitation of the current work lies in the assumption that the targets’ trajectories are known.
When these trajectories are unavailable, the accuracy of the target position predictions may significantly
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decrease. Consequently, the UAVs may lose some targets. One future research work is to extend
the algorithms by including the searching operation. Another direction is to conduct experiments,
since this is the most effective way to practically verify the computational efficiency of the proposed
method. To this end, some ground mobile robots can play the role of targets and a small number of
UAVs can be tested in order to conduct the surveillance mission in a laboratory environment.
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