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Abstract: Declining costs for high-performance batteries are leading to a global increased use of
storage systems in residential buildings. Especially in conjunction with reduced photovoltaic (PV)
feed-in tariffs, a large market has been developed for PV battery systems to increase self-sufficiency.
They differ in the type of coupling between PV and battery, the nominal capacities of their components,
and their degree of integration. High system performance is particularly important to achieve
profitability for the operator. This paper presents and evaluates methods for a uniform determination
of PV battery system performance. Already the requirement analysis reveals that a performance
comparison of PV battery systems must cover the efficiency and effectiveness during system operation.
A method based on a derivation of key performance indicators (KPIs) for these two criteria through
an application test is proposed. It is evaluated by comparison to other methods, such as the System
Performance Index (SPI) and aggregation of conversion and storage efficiency. These methods are
applied with five systems in a laboratory test bench to identify their advantages and drawbacks.
Here, a particular focus is on compliance with the initially formulated requirements in terms of both
test procedures and KPI derivations. Analysis revealed that the proposed method addresses these
requirements well, and is beneficial in terms of result comprehensibility and KPI validity.

Keywords: photovoltaic systems; residential battery systems; PV battery systems; performance
assessment; inverter efficiency; laboratory test procedures; key performance indicators; test profiles;
residential power supply

1. Introduction

1.1. Scope

In recent years, the steadily dropping prices for lithium-ion (Li-ion) batteries have led to a great
demand for residential photovoltaic (PV) battery systems to increase self-sufficiency. Especially in
markets like Germany, where the consumption costs per kWh significantly exceed the feed-in tariffs of
new PV systems [1], a rapid growth of newly installed battery systems can be seen. At the beginning
of 2020, more than 200,000 PV battery systems were in operation in German residential buildings,
while experts still expect a continuous rise of these sales figures [2,3]. The range of available systems is
diverse. A fundamental classification can be made between the different types of connections between
the battery and the PV system (see Figure 1):

• AC-coupling: In AC-coupled systems; the battery is connected to the household installation via
a bidirectional inverter (see Figure 1a), that controls the power flow of the storage system and
ensures a safe and adequate battery operation. A separate PV inverter is required for connecting
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the PV generator and Maximum Power Point (MPP) tracking. An advantage of AC-coupling is
that the PV- and the storage system may be purchased, modified, and operated independently
of each other. The high number of conversion stages and associated losses which occur during
charging the battery from PV is a disadvantage of this topology.

• DC-coupling: To reduce conversion losses, PV and battery use a shared inverter in DC-coupled
systems (see Figure 1b). Here, the PV generator and the battery are connected on a DC link
via DC/DC-converters which control the MPP tracking and the desired battery operation.
With this topology losses can be significantly reduced, as no conversion to AC takes place during
charging. However, increased system complexity and control requirements are disadvantages of
DC-coupling.

• Generator-coupling: In generator-coupled systems, the battery is connected directly to the DC
line of the PV system via a DC/DC-converter (see Figure 1c). Thus, it is charged directly by
the PV generator and makes use of the PV inverter for connection to the household installation.
As the battery is connected to the PV system on the DC level, this technology can be regarded as a
special form of DC coupling.

(a) (b) (c)

Figure 1. Components and battery coupling of AC—(a), DC—(b), and generator (c) coupled systems
indicating points of measurements in laboratory setup.

In addition to fully integrated systems, which contain all the necessary elements of a PV storage
system in one cabinet, single components (e.g., battery or battery inverter) for use in an individual
modular system structure are widely available. As shown in [4,5], the storage capacities of residential
PV battery systems are mainly between 2 kWh and 10 kWh. Furthermore, it is indicated that these
capacities often correspond to the installed PV power and local energy consumption in such a way
that a full cycle of the battery can be used on many days of the year.

1.2. Requirements for Performance-Assessment Methods

To be a worthwhile investment for the end-user, the high performance of PV battery systems is
crucial. However, due to the diversity of system components and different technological concepts both,
defining adequate performance test procedures as well as a method for the subsequent derivation of
suitable key performance indicators (KPIs) are complex problems. As solar irradiance and (usually to a
minor extent) power consumption of a typical household are subject to seasonal fluctuations, the battery
utilization and loads on power conversions of PV battery systems vary over the year. While the battery
of systems in central Europe is typically fully charged on a clear summer day, PV power rarely exceeds
the local consumption on a cloudy winter day. As a result, the battery gets less utilized during the
winter, and the system may often remain in standby mode. Therefore, regional and seasonal conditions
must be appropriately considered in a performance evaluation. In addition to the efficient power
conversion and storage, the main purpose of system deployment is to increase self-sufficiency and
self-consumption. To achieve this, it is of great importance that the provided output energy follows the
household’s consumption as quickly and as accurately as possible. Here, deviations between required
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and provided battery power result in unnecessary energy exchanges with the mains and consequently
reduce self-sufficiency [6].

As the measurement results form the data basis of the KPI derivation, they must appropriately
quantify all relevant influences on system performance. These influences can be classified according to
their impact on efficiency or effectiveness:

• System efficiency

– Operational losses due to energy conversion, MPP tracking, and energy storage
– Auxiliary losses due to standby consumption and supply of external components

• System effectiveness

– Power exchange with the grid due to slow or inaccurate control of output power
– Power exchange with the grid or curtailments due to unfavourable energy management

Two different test categories (or a combination of both) may be applied for performance
assessment [7]:

• Modular tests: Application-independent tests to separately quantify various loss mechanisms via
targeted measurements of different operating states (e.g., by a separated analysis of the power
flows according to Figure 2)

• Application tests: tests that focus on system performance in multiday applications based on
laboratory emulations of irradiance and load profiles
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Figure 2. Power flows in PV battery systems

The ‘Efficiency Guideline for PV storage systems’ [8] (Efficiency Guideline), which was developed
in a German joint working group of manufacturers, test facilities, and scientists defines modular
test procedures for this purpose. It is based on investigations on the conversion efficiencies of the
power flows of Figure 2 and contains additional measurements on storage efficiency, usable capacity,
and standby consumption. Furthermore, tests to determine stationary and dynamic control deviations
are proposed to quantify the influences of system control. The test procedures defined in the
Efficiency Guideline have been continuously developed in recent years and are now in the process
of standardization.

Several requirements also exist for the subsequent determination of KPIs. To ensure applicability
for the end user, it is essential that the KPIs reflect the annual performance at the customer’s site
(Requirement (R)1), are easy to understand, and that as few as possible are necessary for the system
assessment (R2). Taking into account the market diversity, especially regarding the coupling of PV
and battery, KPIs must be derivable for all established technologies and thus allow a comparison
between systems of a different technical concept (R3). To provide results for systems that are available
with (modular) expandable battery capacities, they must enable an assessment of the fundamental
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components and their different combinations (R4). This is also important to estimate the resulting
performance when system components are replaced. Applicability or transferability to other technical
solutions to increase self-sufficiency (e. g. heat pumps or electrical cars) is of great benefit, as such a
feature enables a performance comparison of PV battery systems with technologies that use sector
coupling (R5). As electricity and PV feed-in tariffs are subject to change and vary widely within
Europe [1,9] a KPI derivation that is independent of economic considerations is beneficial to ensure
validity on an international level (R6). This is also of particular importance as studies show that in
Germany the decision to purchase a PV battery system is often made not only for economic reasons
but also to decrease dependency on utility companies [4,5]. Finally, the KPI calculation should only
require data that can be measured with a low laboratory effort and a high potential for test automation
to minimize costs of performance assessment (R7).

1.3. Structure and Contributions

In the presented study, different methods for performance evaluation are examined in theory and
practice. This includes a comparison of the Efficiency Guideline test procedures to application tests
and a discussion concerning their benefits for KPI determination. In this way, the work contributes to
the systematic elaboration of the advantages and disadvantages of both test approaches. A procedure
for performance evaluation based on a KPI for (i) efficiency and (ii) effectiveness is introduced and
compared to other methods such as the system performance index (SPI) [10], which is currently
prevalent in Germany. The methodologies are practically applied with five different devices under
test (DuT) and their advantages and drawbacks, especially focusing on peculiarities of the DuT,
are identified and discussed.

This article is structured as follows. In Section 2, methodologies for system testing and KPI
derivation, as well as the laboratory setup and the DuT are introduced. Section 3 presents the results
of test procedure applications and KPI determinations. Essential advantages and drawbacks are
analysed and evaluated within this section. The article concludes with the discussion and conclusions
in Section 4.

2. Materials and Methods

2.1. Test Procedures for Performance Evaluation

Two different test approaches, namely modular tests (Section 2.1.1) and application tests
(Section 2.1.2), are outlined and discussed in this section. Figure 1 indicates the positions of power
measurements in a test setup that may be used with both test categories. Here, the positive counting
direction of power flows is indicated by arrows. Hence, battery discharge and export of power
to the grid are counted positive. To facilitate readability, all measurement setups are depicted as
single-phase versions but can be implemented in a three-phase type likewise. Regardless of system
topology, power flows at the following terminals are measured: PV emulation (PPV(t)), battery (PBat(t)),
load emulation (PLoad(t)), and public grid (PGrid(t)). In addition to these, the MPP power at PV
emulation (PMPP(t)) shall be logged during the tests to allow an assessment of MPP tracking.

The output power may be calculated from the sum of PPVS(t) (PV inverter) and PBESS(t)
(battery inverter) in the case of AC-coupling or measured directly (PAC(t)) at DC- or generator-coupled
systems. The measurements enable a calculation of the energy efficiency of the entire system and its
major components. Furthermore, other important parameters, such as power exchanged with the
public grid and load covered by the PV battery system may be determined.

2.1.1. Modular Test Procedures

The Efficiency Guideline [8] contains various modular test procedures that have been continuously
reviewed and developed over the past years. The underlying approach and configuration of the tests
are briefly described in this paragraph.
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Concerning the diverse system types, the power conversions of Figure 2 may consist of several
steps as shown in Table 1. As power and terminal voltages are important influences on the conversion
efficiency of power electronic devices [11–13], the conversion efficiencies need to be identified at
different power levels with the terminal voltages occurring during system operation. Here, step profiles
similar to IEC 61683 may be used [14]. However, the focus of IEC 61683 is on PV inverter systems,
and the power at the battery terminals during typical operations of PV battery systems is different
from PV inverter applications [5]. Thus further steps in partial load range may be added to the step
profile. Regarding the influence of terminal voltage on conversion efficiency, the voltage dependency
on the SoC has to be taken into account. Consequently, measurements on charging (PV2Bat or AC2Bat)
and discharging (Bat2AC or Bat2PV) efficiency must be either performed over full battery cycles or
at a well-defined SoC. Here, the Efficiency Guideline proposes measurements in a medium SoC as
they are easier to represent in a generalized test procedure. In comparison to IEC 61683, the test
procedures to determine conversion losses contain additional steps at 20% and 30% of the conversion
path’s nominal power.

Table 1. Conversion steps of PV battery systems depending on type of battery coupling.

Topology
Power Conversion

PV2Bat PV2Grid PV2Load Bat2Load

AC-coupled PV2AC PV2AC PV2AC Bat2AC
AC2Bat

DC-coupled PV2Bat PV2AC PV2AC Bat2AC

Generator-coupled PV2Bat PV2AC PV2AC Bat2PV
PV2AC

Storage efficiency and capacity are tested by repeatedly charging and discharging the battery
at different power levels (25%, 50%, and 100% of the nominal charge and discharge capacity).
To determine dynamic control deviations the system operation is measured during several repetitions
of a dynamic load profile consisting of 14 steps. Here, the steps correspond to load changes in the
range of 25% to 75% of nominal discharging power and their duration is set to twice the response time
identified in a preceding step response test. In the evaluation, average response times and down times
are determined for charging and discharging operation. The stationary deviations are determined
either from the measurement series of the conversion efficiencies (Version 1.0) or from an investigation
based on the dynamic test profile (Version 2.0).

The obtained results by these test procedures are well-suited to allow for experts to assess
individual key influences on system performance (such as [15]). However, the large number and
complexity of the required measurements result in high expenditure of time in terms of laboratory tests
and evaluations. Application-independent system evaluation may be considered via smart aggregation
of the test results. However, it is unclear how the specific results can be used to derive KPIs as the
guideline does not introduce an aggregation method. The tests also do not include investigations on
energy management.

2.1.2. Application Test Procedures

The approach of application testing is to measure the power flows in a laboratory during realistic
system operation for several days. Therefore, suitable test profiles need to be defined to reproduce
the PV generation and electricity consumption applying PV and load emulations. The power flows
measured during the test can be used in the next step to calculate KPIs. The resulting operating
conditions and power flow on system components are highly dependent on the selected test profiles.
Consequently, it is of great importance that these profiles adequately reflect fundamental daily and
annual characteristics. Appendix A presents a corresponding method to derive test profiles from
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long-term measurement sets. For the investigations presented here, measurements from Kassel
(central Germany) were applied. To enable an assessment of system effectiveness, it is essential to
analyse the impacts of control speed and accuracy. Here, earlier studies have shown that sampling
rates below 1 Hz can significantly reduce the PV self-consumption [6], so a temporal resolution of
at least 1 s is recommended for the test profiles. To minimize test duration, effort, and associated
costs, the profiles should be as short as possible. This is obviously in contradiction with a high degree
of conformity to annual characteristics, so a solution must be found which satisfies both of these
requirements. Another important issue is the energy content of the battery at the beginning and end of
the test. Especially concerning efficiency calculations, an identical initial and final SoC needs to be
defined. To increase the reproducibility, either an empty (SoC = 0) or full battery (SoC = 1) should be
chosen here. Due to the energy demand in the evening and absence of PV power generation at night,
the battery is typically empty in early morning hours. Consequently, the start and stop instants of
the test profiles should be chosen to the times of sunrise and an empty battery as the initial and final
state. When the annual operation of PV battery systems is reflected in the test profiles, many important
influences on the system performance are directly taken into account as they occur in real operation.
However, the results gained from the test only apply for the investigated system, and any change
in the setup requires a new instance of the application test. For this reason, combined performance
assessment with additional modular tests may be advantageous, as it could facilitate a performance
estimation for use cases with consumption (or PV generation) profiles that are very different from the
performed application test [7], for example, when electrical consumers for heating and air conditioning
or electric cars strongly influence the electrical-load profile.

2.2. Derivation of KPI

A KPI derivation may be based on the results of both application tests and modular tests.
Here three different methods are considered:

• Hybrid Benchmark: A combined assessment based on the results of application testing and
modular tests with a focus on efficiency and effectiveness as proposed in [7,16,17]→ Section 2.2.1

• SPI: An assessment via estimation of the economic benefit generated by the system, based on
generic performance models (GPM) that are parameterized using test results of the Efficiency
Guideline as proposed in [10]→ Section 2.2.2

• Euro-Eta for PV battery systems: An assessment by aggregating the conversion and storage
efficiencies identified in the Efficiency Guideline tests to a KPI as proposed in [18]→ Section 2.2.3

Figure 3 schematically shows how laboratory measurements and simulation investigations are
combined to achieve KPIs in these methods.

Figure 3. Schematic overview of approaches to achieve KPIs
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2.2.1. Hybrid Benchmark

The basic concept of this methodology is to determine system performance in an application test
by considering one KPI for energy efficiency εEE and one for the effectiveness of system control εSC.

The points of measurements indicated in Figure 1 allow the calculation of important figures for
performance evaluation, e.g.,:

• MPP energy provided by the PV emulation:

EMPP =
∫

PMPP(t)dt (1)

• PV energy generated at the DC side of the PV system:

EPV =
∫

PPV(t)dt (2)

• AC output energy of the PV battery system:

PAC
AC (t) = PPVS(t) + PBESS(t) (3)

PDC,Gen
AC (t) = PAC(t) (4)

EAC =
∫

PAC(t)dt (5)

• Load covered by PV battery system:

PLoadCvr(t) =

{
PAC(t), ∀t ∈ PGrid(t) ≤ 0

PLoad(t), ∀t ∈ PGrid(t) > 0
(6)

ELoadCvr =
∫

PLoadCvr(t)dt (7)

• Energy consumed from the grid:

PGridIm(t) =

{
−PGrid(t), ∀t ∈ PGrid(t) ≤ 0

0, ∀t ∈ PGrid(t) > 0
(8)

EGridIm =
∫

PGridIm(t)dt (9)

• Energy fed to the grid:

PGridEx(t) =

{
0, ∀t ∈ PGrid(t) ≤ 0

PGrid(t), ∀t ∈ PGrid(t) > 0
(10)

EGridEx =
∫

PGridEx(t)dt (11)

With these energy values, εEE can be calculated as the ratio of output energy of the DuT
to input energy provided at the PV emulation. Thus, it describes the losses that have occurred
during the application test and corresponds to energy efficiency, which is a major parameter for
performance evaluation:

εEE =
EAC

EMPP
(12)

To assess effectiveness, εSC is determined by a combined use of laboratory measurements and
simulations. Figure 4 illustrates this methodology schematically. Here, the share of local consumption
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covered by the PV battery system is taken into account and compared to a generic reference case.
This case is characterized by an identically dimensioned but ideal system, i.e., with lossless components
and idealized operating strategy as presented in Table 2. For this reason, the nominal conversion
power capacities as well as the usable battery capacity are used for model parameterization. In the next
step, this model is simulated with the power flows measured at the PV and load emulators during the
application test. Finally, the effectiveness is calculated by comparing the load supply of the laboratory
test to this simulation reference:

εSC =
ELab

LoadCvr
EIdeal

LoadCvr
(13)

Table 2. Self-consumption maximizing operation strategy.

Operating State PV Power, Load Power and SoC Power Flows

Local consumption PPV(t) ≥ PLoad(t) PPV2Load(t) = PLoad(t)

+ Charging SoC(t) < 1 PPV2Bat(t) =
min(PPV(t)− PPV2Load(t), PPV2Bat, nom)
PPV2Grid(t) =
PPV(t)− PPV2Load(t)− PPV2Bat(t)

Local consumption PPV(t) ≥ PLoad(t) PPV2Load(t) = PLoad(t)
+ Feed-in SoC(t) = 1 PPV2Grid(t) = PPV(t)− PPV2Load(t)

Local consumption PPV(t) ≤ PLoad(t) PPV2Load(t) = PPV(t)

+ Discharging SoC(t) > 0 PBat2Load(t) =
min(PLoad(t)− PPV2Load(t), PBat2Load, nom)

Local consumption PPV(t) ≤ PLoad(t) PPV2Load(t) = PPV(t)
SoC(t) = 0 PBat2Load(t) = 0

This separate consideration of efficiency and effectiveness enables the assessment of the system
performance based on two KPIs. It should be noted that a reduced efficiency directly affects the
output energy provided by the system. However, in the case of sophisticated energy management,
it is primarily the amount of PV power fed directly to the grid that gets reduced. Therefore a division
with εEE is not advisable for the calculation of εSC. Nevertheless, it is desired to decouple both KPIs as
much as possible. Since MPP tracking losses are already contained in εEE, they are not in the focus of
the effectiveness assessment. Consequently, the measured input power after MPP tracking is used for
the system simulations.

A well-performing system must guarantee both: high energy efficiency and high effectiveness,
so that both KPIs may be viewed with equal importance for most applications. For use cases that differ
significantly from the application test, they can still be used, but a scaling review must be performed.
Since a larger PV system leads to increased energy flows through the PV battery system, a high εEE
becomes more important in this case. In contrast, higher power consumption in the household provides
increased potential for PV self-sufficiency, which makes εSC more important. Similar considerations
apply to different feed-in compensation and consumption tariffs. As long as the margin between both
is low, high efficiency is of paramount importance but when consumption tariffs far exceed the feed-in
compensation, high self-sufficiency and thus a good εSC gain in importance. As the results gained from
the test only apply for the investigated system, any change in the setup requires a new instance of the
application test. For this reason, a combined performance assessment with additional modular tests
on conversion and storage efficiency is advantageous as it also facilitates a performance estimation for
use cases with a partly different setup.
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Figure 4. Determination of εEE and εSC in the application test

2.2.2. SPI (System Performance Index)

This approach has been proposed to avoid application testing and thus provide results that are
independent of test profiles and the investigated setup [19]. For this purpose, the results obtained
by applying the Efficiency Guideline are used to parameterize GPMs. Here, three models for the
different types of battery coupling are introduced [20,21]. In addition to the nominal conversion
capacities and battery capacity, the required parameters include power-dependent conversion
efficiencies, battery losses, stationary and dynamic control deviations, and standby consumption.
The system operation is analysed by a simulation with PV generation and household consumption
profiles [22]. As with the Hybrid Benchmark method, the simulation of an identically dimensioned
ideal system is used as a reference [10]. For KPI calculation, the following values are derived following
Equations (8)–(11):

ERe f
GridIm Energy consumed from the grid without PV battery system

EIdeal
GridIm Energy consumed from the grid in the simulation of an ideal system

EGPM
GridIm Energy consumed from the grid in the simulation of a GPM

EIdeal
GridEx Energy fed to the grid in the simulation of an ideal system

EGPM
GridEx Energy fed to the grid in the simulation of a GPM

In the next step, the resulting electricity costs C are calculated, i.e., the balance of expenditures for
grid consumption and revenues for PV feed-in. Consequently, the PV feed-in compensation cFeed−in
and electricity tariff cConsume are essential parameters for deriving εSPI . A cFeed−in of 12 ct/kWh and a
cConsume of 28 ct/kWh are suggested for this purpose [10].

CRe f = ERe f
GridIm × cConsume (14)

CIdeal = EIdeal
GridIm × cConsume − EIdeal

GridEx × cFeed−in (15)

CGPM = EGPM
GridIm × cConsume − EGPM

GridEx × cFeed−in (16)

To determine εSPI , the realized cost savings of the generic performance model is divided by the
cost-saving potential of an identically specified ideal system.

εSPI =
CRe f − CGPM

CRe f − CIdeal
(17)

Following this methodology, different system combinations may be evaluated by varying model
parameters. However, estimation of conversion losses during the operation of DC-coupled systems
is a challenge as it is usually not possible to access the DC-link during laboratory investigations.
Since the efficiency of the power conversions of Figure 2 can not be assigned to individual components
here, modular measurements do not allow a loss calculation for the separate conversion steps in DC
systems. Additional efficiency measurements in mixed operation modes that may serve as a remedy
here [23] come along with a distinct increase of measurement effort and complexity. In addition,
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as application-independent testing provides no insight into energy management, specific features of
system operation have to be neglected within the GPMs.

2.2.3. European Efficiency for PV Battery Systems

The concept of this approach is to evaluate system performance on the basis of an aggregation of
the measurement results according to the Efficiency Guideline [24]. Here, the ‘Euro-η’ for PV inverter
as defined in EN 50530 [25] is used as a role model and a methodology to quantify the efficiency of the
power conversions and of the battery in a single figure is pursued. Therefore, a set of scaling factors
has to be defined to determine the average efficiencies of individual power conversions and storage.
This may be performed either individually for each system specification or with a uniform set of scaling
factors independent of nominal conversion power and storage capacity. Table 3 shows a suggested set
of scaling factors and Equation (18) shows the formula proposed to calculate the aggregated efficiency
of charging conversion. Analogous formulas are defined for the other operation modes.

ηPV2Bat = fPV2Bat,5 × ηPV2Bat,5

+ fPV2Bat,10 × ηPV2Bat,10 + ... + fPV2Bat,100 × ηPV2Bat,100
(18)

Table 3. Weighting factors of the Euro-η approach.

Parameter
Power Level

0.05 0.1 0.2 0.25 0.3 0.5 0.75 1

fPV2Bat [%] 3 5 7 8 12 29 25 11

fBat2AC [%] 4 9 16 19 17 11 10 13

fPV2AC [%] 3 6 13 0 10 48 0 20

fBat [%] 36 35 29

Subsequently, the resulting average conversion and storage efficiencies are aggregated into a KPI.
In [18], two methods are presented, each with different formulas for the types of battery coupling.
In the presented work, the ’Calculation including PV’ is used:

εAC
Euro−η = ηPV2AC × ηAC2Bat × ηBat × ηBat2AC (19)

εDC
Euro−η = ηPV2Bat × ηBat × ηBat2AC (20)

εGen
Euro−η = ηPV2Bat × ηBat × ηBat2PV × ηPV2AC (21)

As no scaling factors for the multiplicands are given, the share of the input energy that is not
stored in the battery is neglected. Consequently, the conversion efficiency of directly used PV power
is not reflected in the result. Nevertheless, the Euro-η approach offers significant advantages, as it
does not rely on application testing and only requires the measurement results of the conversion and
storage efficiencies.

2.3. Testbench

The test bench used for practical investigations includes PV and load emulators, control computer,
signal converters, and data acquisition and storage. The power flows are logged on the measuring
device, while the MPP power of the PV emulator is recorded by the control computer. For PV
emulation, a “PVS30000” from Spitzenberger & Spies GmbH & Co. KG [26] is used. It has a rated
output power of 30 kW and a maximum output voltage of 950 V. By using an analogue series regulator
at its output, the PV emulation achieves a very fast and dynamic simulation of the IV-characteristic [27].
The dynamic simulation of this curve is particularly important to properly emulate the system response
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of a PV system to the 100 Hz ripple at the DC input of the MPP tracker that is used in some tracking
algorithms [28]. As load emulation, three 7 kVA AC loads of the “ZSAC” product group from Höcherl
& Hackl GmbH are used [29]. Both PV and load emulation are remotely controlled using Python [30]
for test automation and signal processing from the control computer. For power measurements and
data recording, a “DEWE2600 all-in-one measurement instrument” from Dewetron GmbH including
various high-precision zero-flux transducers and current clamps is utilised [31].

2.4. Devices Under Test

Table 4 shows the fundamental technical details of the DuT. They differ in terms of usable capacity,
converter power ratings, the ratio of storage capacity to maximal charging and discharging power,
and the type of battery coupling to the PV system. They cover both fully integrated concepts and
setups with different degrees of modularity.

Table 4. Major specifications of the DuT.

Parameter
System

A B C D E

Battery coupling AC AC AC DC DC

Battery technology Li-Ion Li-Ion Li-Ion Li-Ion Li-Ion

CBat [kWh] 5.3 4.9 7.4 2.2 7.3

VBat,nom [V] 48 48 48 150 192

PPV
PV2Bat,nom [kW] 3.4 1.2 3.4 1.9 5.0

PAC
Bat2AC,nom [kW] 3.4 2.0 3.4 1.9 4.6

PAC
PV2AC,nom [kW] 4.6 4.6 4.6 4.6 5.0

System A is a battery inverter that is to be used in parallel with a PV system. It can be operated
with a lead-acid or a Li-ion battery that is either purchased separately or offered in a package with the
inverter. For the investigations presented here, a Li-Ion battery with a usable capacity of 5.3 kWh was
used [32]. Unlike System A, Systems B and C included a Li-ion battery and an associated inverter in
a shared cabinet. What is remarkable about the system design of System B is the comparatively low
ratio of charging power to usable battery capacity. System C has the same power ratings as those of
System A while offering a considerably larger battery. Systems D and E are DC-coupled Li-ion systems
that provide higher battery voltages compared to the AC-coupled DuT. With a usable capacity of only
2.2 kWh, System D offers the smallest battery, while its conversion power ratings are similar to those
of System B. In contrast, System E has the largest storage capacity and highest power ratings. Since all
AC-coupled systems do not include a PV inverter, an SMA Sunny Boy 5000TL [33] with a rated AC
power of 4.6 kW was used to complete the laboratory setup. At the time of performing the presented
measurements, the batteries of Systems A and E had already been in the laboratory for about three
years. Similarly, System D had been operated in the laboratory for approximately two years before the
measurements, while Systems B and C were tested in a new condition.

During preliminary investigations on the DuT, it became clear that all except System B finish the
charging operation with a short constant voltage phase. The charging behaviour of System B shows
an unexpected operation, in which shortly before reaching full charge, the charging power is initially
reduced to −165 W and then operated for several hours with an oscillating power in the range of
30 W (discharge) to −165 W (charge) (see Figure 5). It could also be observed that this system has
a threshold value for activating charging mode as a targeted charging of the battery with less than
−100 W is not possible. Another important observation of the preliminary tests concerns the power
control of System D. Here, different system reactions to ascending and descending step profiles are
detected during both, charging and discharging operations (see Figure 6). While the system power
almost instantly and completely adapts to descending steps, the response to ascending steps shows
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delays and the change of power flows often does not become fully compensated. As the step profiles
of the Efficiency Guideline are defined with descending steps, this behaviour is not of major concern
in these tests. However, the influence of the control of System D must be taken into account during
performance assessment.

Figure 5. Charging behaviour of System B.

Figure 6. Response of System D to different step profiles.

3. Results

This section presents and evaluates the results of laboratory measurements on the DuT and
the subsequent determination of KPIs. It is structured as follows. First, Section 3.1 introduces the
results of the investigations according to the Efficiency Guideline and highlights essential findings
on system performance. In the next step, Section 3.2 examines the operation of the DuT in a 7-day
application test and presents the resulting energy sums of grid feed-in, grid consumption, and load
coverage. The system operation is discussed concerning peculiarities of the DuT and their influence
on performance. Within Section 3.3, KPIs resulting from the laboratory measurements are determined.
It includes the direct calculation of the application-dependent KPIs εEE, εSC, and εSPI from the
measurement series of the application test, as well as the εEuro−η from the detected conversion and
storage efficiencies. Furthermore, a determination of the εSPI from simulations applying GPMs with
the time series of the application test is done to analyse resulting KPI deviations to the laboratory
operation. In Section 3.4, the resulting KPIs are discussed and compared concerning their conformity
to the requirements of performance assessment.

3.1. Investigations of Efficiency Guideline for PV Storage Systems

The Efficiency Guideline defines not only measurement and evaluation procedures but also
associated datasheets. These summarize essential results of the investigations and also serve as
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uniform data sources for the parameterization of GPMs. Appendix B contains the datasheets derived
for the five individual DuT. In this subsection, the results are briefly discussed.

3.1.1. Conversion Efficiencies

The investigations presented here base on separate consideration of the conversion paths shown
in Figure 2 and Table 1. For reasons of clarity, the following curves depict the conversion efficiency for
the relative load of the associated conversion path; i.e., the measured operating points divided by the
nominal power of the conversion path (see Table 4). The corresponding absolute conversion power
may vary considerably between the systems due to their different specifications.

PV2AC

Figure 7 depicts the PV2AC efficiency at nominal MPP voltage. Only one curve is plotted for
Systems A, B, and C as they use the same PV inverter. The PV2AC efficiency curves of this PV inverter
and System D show an efficient PV2AC operation over the entire range. Efficiencies greater than 95%
are reached at the power levels above 20%. The PV2AC efficiency of System E is significantly worse,
especially in the partial load range. However, it increases with the input power, achieving a similarly
efficient operation in the high-power ranges.

Figure 7. PV2AC efficiency over degree of power capacity utilization.

PV2Bat

The upper part of Figure 8 shows the PV2Bat efficiency at medium SoC levels, while the bottom
part depicts the AC2Bat efficiency of the AC-coupled systems. The results reveal a higher PV2Bat
efficiency of the DC-coupled DuT due to their omission of a second conversion stage. System D offers
the best overall efficiency and peak efficiency of 96.1% is more than 1 pp better than that of any other
system. However, it has a considerably smaller PV2Bat operating range than Systems A, C, and E and
prevents its battery from charging at power levels below 10% of nominal charging power. In contrast to
System D, the PV2Bat efficiency of System E is weak at low power levels. The advantage of DC-coupled
systems only becomes apparent at higher charging power here, where the efficiency of System E exceeds
that of the AC-coupled DuT. Systems A and C have an almost identical PV2Bat efficiency. Especially
in the partial load range, it is competitive or even higher than that of System E. Figure 8 reveals
very high conversion losses during charging of System B. This is mainly due to its very low nominal
charging power compared to the power capacity of the PV inverter. However, in contrast to Systems
A and C, the AC2Bat efficiency of System B is also unsatisfactory (see Appendix B). For example,
efficiency at 20% of the nominal charging power was almost 20 pp below that of other AC-coupled
systems. In summary, the DC-coupled DuT, in particular System D, showed an efficient charging
operation, while System B had clear weaknesses due to its comparatively inefficient AC2Bat operation.
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Figure 8. PV2Bat-efficiencies over degree of power-capacity utilization.

Bat2AC

Theoretically, similar results are expected for the conversion efficiency in the discharge mode of
AC- and DC-coupled systems, as both types perform comparable conversion steps. As with previous
conversion efficiencies, Figure 9 shows a nearly identical curve for Systems A and C with a good
efficiency in the range of 90% and above. All other DuT have a significantly higher share of losses at
low power levels. The peak efficiency of System B is only 92%, while System E only shows an efficient
operation in the higher power ranges. In summary, Systems A, C, and D show better Bat2AC efficiency
than Systems B and E.

Figure 9. Bat2AC efficiencies over degree of power capacity utilization

3.1.2. Battery Efficiency

System D achieves the highest battery efficiency of 96.0% in the Efficiency Guideline tests.
The results of Systems C and E are about 3 pp and 2 pp lower. Both the systems supply internal
consumers, e.g., the display via the battery, which results in a decreased efficiency during the long test
periods at low power levels.

3.1.3. Standby Consumption

While Systems A and C, supply on the DC side during standby, System D exhibits opposite
behaviour as it consumes standby power only on its AC side. With only 3 W, its standby consumption
is minimal. System E’s absolute standby consumption of 37 W is more than ten times higher than that
of System D and almost five times higher than those of Systems A and C. System B consumes a similar
standby power as System E.

3.1.4. Control Deviations

The Efficiency Guideline distinguishes between stationary and dynamic control deviations.
It defines a separate test procedure for identification of dynamic properties, while stationary deviations
are determined from existing investigations. In the first version of the Efficiency Guideline the step



Energies 2020, 13, 5529 15 of 34

profiles of the conversion efficiencies were used for this purpose, while it is performed on the basis
of the dynamic test profile in the second version. The investigations described here were based on
the first version. In both cases, determination of stationary deviations is based on the average control
deviations before transition to a new operating point.

Theoretically, small stationary deviations are desirable to achieve high effectiveness.
However, a stationary deviation close to 0 W may quickly lead to a battery discharge into the grid
(e.g., in the case of rapid load changes) and thus reduce effectiveness. While System E charges most
of the residual power into the battery, Systems D and B show significantly different behaviour with
resulting deviations of 79 W and 56 W. In principle, a high stationary deviation in charging mode reduces
the achievable self-sufficiency by feeding excess power to the mains instead of charging the battery for
later use. However, given the system design of System D with a battery capacity of only 2 kWh and a
nominal Bat2AC power of 1.8 kW, a negative influence on the achievable self-sufficiency is questionable.
Since System B has a much higher ratio of battery capacity to nominal Bat2AC power, these deviations
can be more critical here. Taking into account the deviations during discharge operation, Systems A, B,
and C show an overfeeding of the local consumption. In contrast, the negative stationary deviations
of Systems D and E result in power consumption from the mains. Although this behaviour results in
slightly lower instantaneous load coverage it does not necessarily reduce the system effectiveness as
the energy is available to supply consumption later. Figure 10 shows the step responses of the DuT to a
load step from 10% to 90% of nominal Bat2AC power. System D responds very quickly and reaches its
new operating point in less than 4 s. Systems A and C respond to the load step with a tdown of approx.
1 s and a response time of approx. 7 s. System B shows a similar behaviour but reduces its output power
shortly after entering the tolerance band for the first time. More than 12 s elapse until it finally enters
again. In the depicted step response, System E has the longest tdown and shows a different behaviour
since it overshoots the new set point. Similar to System D, it shows a pulsed control.

Figure 10. Step responses to load steps from 0.1 to 0.9 of rated discharge power

In the guideline’s dynamic test profile, except for System B, all systems achieve an average down
time of less than 1.5 s and an average response time in the range of 4–7 s while System B reaches slower
control parameters. In Section 2.4, the sensitivity of System D’s step response to the step direction has
already been shown (see Figure 6). This behaviour also occurs during the dynamic test profile and
causes difficulties in the evaluation, as it does not reach a proper system response within the step’s
holding time often. If these steps are ignored in the evaluation, a down time of 1.1 s and a response
time of 4.1 s are achieved. However, if these steps are evaluated with the holding time of System D’s
dynamic test profile (10 s), the down time becomes 4.1 s and the response time 6.1 s.

3.2. Results of Application Tests

This section introduces power flows, energy quantities, and component efficiencies resulting from
application tests with the DuT. Here, a combination of the three- and four-day test profiles determined
in Appendix A to a seven-day profile is used.

Table 5 lists the energy sums at the points of measurement during the application test and
the resulting component efficiencies. Since it is not possible to calculate the individual conversion
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efficiencies of DC-coupled systems, some of these fields remain empty. The irradiance profile at the
input of the PV emulator is identical in all tests, but the simulated IV-characteristic curve is adapted
to the nominal PV power of the systems. A comparison of EMPP and EPV shows differences in the
MPP tracking quality. Particularly noteworthy here is the low MPP tracking efficiency of System E
(96.0%). System D shows better characteristics still, ηMPP is about 1 pp below that of the AC-coupled
systems here. Due to the DuT specifications, different charging energies (ECharge

BESS ) appear at the AC
side of Systems A, B, and C. System B reaches a considerably lower battery inverter efficiency than
Systems A and C, especially regarding discharge operation. Here, ηBat2AC of Systems A and C are
6.5 pp and 8.7 pp better than that of System B. Concerning battery efficiency (ηBat), a large difference of
6.8 pp is visible between System D (96.7%) and System C (89.9%). The load profile in the application
test thus leads to a significantly lower battery efficiency for System C compared to the determination
according to the Efficiency Guideline. The battery efficiencies of the other DuT are relatively close
to each other in the range of 93.9%–95.1%. By dividing the discharge energy (EDischarge

Bat ) by the mean
value of the DuTs’ battery capacity, the cycles of each system in the application test can be determined.
Here, Systems C and E pass through a little less than four full cycles while System D almost completes
six. The load coverage (ELoadCvr), and the energy exchanges with the grid (EGridIm and EGridEx) are
crucial results of the application test as they are essential inputs for KPI determinations. Theoretically,
a system with a larger battery achieves a higher load coverage and thus a lower energy exchange with
the grid, which becomes apparent when comparing ELoadCvr with the battery capacities in Table 4.
However, System D reaches a very high level of EGridEx (13.4 kWh more than System E), but despite its
much smaller battery, ELoadCvr only decreases by 9.5 kWh compared to System E. These results also
indicate much better performance in the operation of System D.

Table 5. Results of 7-day application test with Systems A–E.

Parameter
System

A B C D E

ELoad [kWh] 72.5 72.6 72.5 71.8 71.8

EMPP [kWh] 99.1 99.1 99.1 99.1 107.7

EPV [kWh] 98.0 98.1 97.9 97.0 103.5

EPVS [kWh] 94.1 93.7 93.6

ECharge
BESS [kWh] 28.7 26.1 35.4

EDischarge
BESS [kWh] 22.3 17.8 26.7

ECharge
Bat [kWh] 26.3 22.9 32.4 13.5 30.1

EDischarge
Bat [kWh] 25.0 21.5 29.1 13.0 28.4

EAC [kWh] 87.8 85.5 84.9 91.0 86.8

EGridIm [kWh] 33.6 39.5 30.8 41.3 34.4

EGridEx [kWh] 49.0 52.0 43.1 60.1 46.7

ELoadCvr [kWh] 39.6 34.5 41.6 30.6 40.1

ηMPP [%] 98.9 98.9 98.8 97.9 96.0

ηPV2AC [%] 95.0 94.6 94.4

ηAC2Bat [%] 91.6 88.0 91.6

ηBat [%] 95.1 93.9 89.9 96.7 94.2

ηBat2AC [%] 89.3 82.8 91.5

The laboratory investigations demonstrated the efficient operation of System A, and especially
of System D. The other DuT showed weaknesses in several areas. In System B, this was in regard
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to losses of the battery inverter and system control; in System C, battery efficiency; and in System
E, conversion efficiency at partial load and MPP tracking. For the final evaluation, the next section
presents the resulting KPIs according to Section 2.2.

3.3. Determination of Key Performance Indicators (KPIs)

Table 6 indicates input parameters and results of the KPI calculation using measurements of the
application test. The upper part shows εEE and εSC, the centre part contains obtained economical
impacts of system operation as input for εSPI calculation, while the lower part shows conversion and
storage efficiencies according to εEuro−η .

Table 6. KPI calculation of application test with Systems A–E.

Parameter
7-Day Test

A B C D E

EMPP [kWh] 99.1 99.1 99.1 99.1 107.7
ELab

AC [kWh] 87.8 85.5 84.9 91.0 86.8

εEE [%] 88.6 86.2 85.6 91.9 80.6

ELab
LoadCvr [kWh] 39.6 34.5 41.6 30.6 40.1

EIdeal
LoadCvr [kWh] 44.0 43.0 50.1 31.9 48.8

εSC [%] 89.9 80.2 83.0 96.2 82.2

ELab
GridIm [kWh] 33.6 39.5 30.8 41.3 34.4

EIdeal
GridIm [kWh] 28.5 29.6 22.4 39.9 23.0

ELab
GridEx [kWh] 49.0 52.0 43.1 60.1 46.7

EIdeal
GridEx [kWh] 54.1 56.0 48.0 65.8 49.3

ERe f
GridIm [kWh] 72.5 72.6 72.5 71.8 71.8

CLab [e ] 3.53 4.83 3.46 4.36 4.04
CIdeal [e ] 1.48 1.58 0.50 3.29 0.15
CRe f [e ] 20.31 20.34 20.29 20.10 20.10

εSPI [%] 89.1 82.7 85.1 93.6 82.0

ηEuro
PV2AC [%] 95.8 95.8 95.8 95.7 91.9

ηEuro
AC2Bat [%] 93.2 89.0 92.8

ηEuro
PV2Bat [%] 94.5 91.3

ηEuro
Bat2AC [%] 92.7 89.7 93.1 92.9 90.7

ηEuro
Bat [%] 95.1 95.1 92.1 95.8 93.0

εEuro−η [%] 78.7 72.7 76.2 84.0 77.0

In terms of system efficiency, System D was the best, achieving an εEE of 91.9%. It was followed
by System A at 88.6%, System B at 86.2%, and System C at 85.6%. System E received a weaker εEE with
a result of 80.6%. System D also reached the highest εSC within the test. In addition to high efficiency,
it also shows a very effective operation, as it achieves almost the same load coverage as its lossless
model. Due to good energy management, the losses occurring during operation almost exclusively
result in a lower grid export with this DuT. System A achieves the second-best result in terms of
effectiveness. Systems B and C, which achieve a comparable εEE, differ more significantly in εSC due to
better dynamic behaviour and lower stationary control deviations of System C. Therefore, despite its
moderately lower efficiency, System C may be preferred to System B in most cases. With an effectiveness
value of 82.2%, System E achieves only a 2 pp higher εSC than System B and thus shows the weakest
performance in the application test concerning the Hybrid Benchmark KPIs. This ranking is also
reflected in the εSPI . System D clearly leads with 93.6%, followed by System A with 89.1%. Systems C
(85.1%), B (82.7%), and E (82.0%) achieve weaker results. It is also remarkable that εSPI is always in
between the Hybrid Benchmark KPIs. The εEuro−η shows a different picture as the multiplication of
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component efficiencies leads to significantly lower results. For all systems except System E εEuro−η is
approximately 10 pp lower than εEE. In particular, System B achieves a low result here, as the share of
PV energy which is consumed or fed to the mains without being stored in the battery is not taken into
account. It can be concluded that the Hybrid Benchmark KPIs and the SPI are well applicable and allow
an assessment of PV battery system performance. In the analysis presented here, both approaches
provide similar results and provide the same performance ranking of the DuT.

In a final analysis GPMs developed by researchers of the University of Applied Sciences Berlin
are applied and parameterized with the results of modular tests ([20,21]). For the analyses presented,
models are simulated with the power flows at the PV- and load emulation during the application test.
Figure 11 shows the deviations of resulting KPIs to those of the laboratory tests. While εEE is very well
satisfied with Systems A and C, System B shows a higher efficiency with a relative increase of 1.4%.
This likely resulted from the charging behavior shown in Figure 5. This behaviour is not reflected in the
model because it is not detected by the tests of the Efficiency Guideline (they are performed only at a
medium SoC). System efficiency εEE was about 2% higher with both DC-coupled systems, which could
be due to the modelling issues of this topology. The deviations of εSC are largest at Systems B, C, and E.
Again, the battery simulation of System B leads to a too positive result here. Similarly, εSC from System
E is higher than in the laboratory application. The operation strategy of System D, which proved to
be good in terms of effectiveness, is not sufficiently reflected here, so that the system reached a result
that was approx. 4% too low comparing to Systems B and E. Here, critical factors are missing in the
calculation of KPIs due to the lack of modelling operation strategy. The SPI deviations are consistent
with these findings and are approximately equal to those of the efficiency parameter.

Figure 11. Deviation of KPIs between simulation and laboratory measurement

3.4. Evaluation of Performance-Assessment Methodologies

Reconsidering the requirements from Section 1.2, the Hybrid Benchmark method yields two
KPIs that are easy to explain and simple (R2). They directly reflect a typical operation by choosing
an application test as the core of performance evaluation (R1). As it requires a discharged battery at
the end of the experiment, fundamental limitations exist for the storage capacity. However, in the
range of reasonable system sizing, this limitation is avoided by the test profiles, so that the method
proves applicability (R3). As both KPIs assess the performance of an entire system, the component
efficiencies in the application test may serve to evaluate its components (R4). However, a thorough
evaluation of different system combinations requires an individual application test with different
setups. Considering transferability, application testing requires profiles for all household- and PV
system terminals. E.g., to assess a sector coupling via heat pumps and thermal storage, an additional
test profile representing heat demand would be essential. Investigations regarding this have shown
the possibility to evaluate complex PV–CHP systems through application testing [33], and the focus
on efficiency and effectiveness is very well-suited to assess different system setups (R5). The method
does not relate to any country-specific tariffs. However, selecting test profiles requires a broader
international perspective (R6). Compared to extensive testing effort associated with the Efficiency
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Guideline procedures, application tests require a fraction of time for testing and evaluation and a high
potential for full automation (R7).

εSPI and εEuro−η prove to be advantageous in terms of the amount of KPIs and possibilities to
assess different system combinations. Nevertheless, concerning international validity, the consideration
of feed-in compensations and consumption tariffs within εSPI is disadvantageous. The very good
conformance to R2 comes with the price of noncompliance to R6. Another disadvantage of the SPI is
the effort needed for testing and evaluation. Although the use of GPMs leads to full conformance with
Requirement R4, this is at the expense of a high workload in KPI determination. Here, the measurement
effort associated with the Efficiency Guideline, and the subsequent parameterization and simulation of
GPMs are particularly significant. Considering εEuro−η , its results do not reflect all aspects of system
performance as it neglects important influences and bases on many simplifications. These also result
in a changed order in which system E performs better than systems B and C. From the findings of
the other two evaluation methods, however, this order does not correspond to the actual system
performance. With both the SPI and the εEuro−η , the full conformance to individual requirements
leads to noncompliance elsewhere, while the Hybrid Benchmark approach takes all requirements into
account. These findings are summarized in Table 7, where a rating is given in terms of four result
classes: (++) full compliance, (+) good compliance, (0) moderate compliance, and (−) noncompliance.

Table 7. Compliance with requirements of applied assessment methods.

Method
Requirement

R1 R2 R3 R4 R5 R6 R7

Hybrid Benchmark + + ++ + + + +

SPI + ++ + ++ 0 - -

εEuro−η - ++ ++ + 0 + 0

4. Discussion and Conclusions

To increase the satisfaction of PV battery system end users, a uniform methodology for comparing
system performance irrespective of system topology is necessary. Core conflicts in performance
evaluation exist primarily concerning the required test procedures and the method applied to determine
KPIs. Here, application tests that intend to shorten the evaluation period to a few days are always
associated with a specific loss of representativeness of annual characteristics. They are opposed by
the use of GPMs, as these allow a systematic evaluation of various use cases by modifying simulation
profiles. However, such a method requires parameters and models that accurately describe all essential
operational characteristics. A targeted application of GPMs, therefore, requires a sufficient simulation
of the operating behaviour and thus needs measurement procedures that go beyond the current status
of the Efficiency Guideline. Although, a purely simulative determination of application-oriented KPIs is
promising concerning an evaluation of different system combinations. Application-independent KPIs
like the εEuro−η are not capable of adequately representing all essential aspects of system performance
as they do not include crucial parameters like standby operation and system control. Evaluation based
on KPIs for efficiency and effectiveness in application tests is advantageous here.

Concerning the performance of the DuT in this work, the DC-coupled topology shows a broad
spectrum of system quality. It became clear that different characteristics of both full systems and
components are fundamental for system performance. Particularly relevant are high conversion
efficiency in the partial load range, an effective operating strategy with consistent avoidance of power
flows between the battery and the grid as well as a storage system that is compact in terms of capacity
and conversion power. Nevertheless, an efficient MPP tracking and conversion of PV power prove
essential for a well-performing system. Especially regarding the operating behaviour of DC and
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generator-coupled battery systems, appropriate consideration of these aspects in the comparative
system evaluation is crucial.

In recent years, PV battery systems also gained importance outside of Germany. As a consequence,
KPIs need to be usable and valid on an international level. Thus, a review of the test profiles of the
Hybrid Benchmark method under international aspects will become necessary, and an extension of
test duration is likely to be inevitable. Other developments concern the increasing system complexity
resulting from links of residential electricity supply to heating and climatization as well as from the
aggregated operation of distributed storage systems to provide grid services. They shift the use cases
from the maximization of local self-sufficiency to applications with mixed objectives. As a consequence,
the evaluation of effectiveness in multiple use cases may probably gain importance in the future.
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Abbreviations

The following abbreviations, variables, and indices are used in this manuscript:

AC Alternating current or AC-coupled
AC2Bat Charge operation (AC-coupled)
Aut Self-sufficiency
Bat Battery or DC point of BESS
Bat2AC Discharge operation (AC-coupled, DC-coupled)
Bat2PV Discharge operation (generator-coupled)
BESS AC point of battery-energy storage system
c Energy costs per [Wh]
C Capacity in [kWh] or costs in [e]
CBat Battery capacity [kWh]
Charge Charging of battery
CHP Combined heat power
Con Self-consumption
Consume Household consumption
D Normalized deviation
Day All values of the day
DC Direct current or DC-coupled
Discharge Discharging of battery
DuT Device under test
EE Energy efficiency
Efficiency Guideline Efficiency Guideline for PV storage systems
Euro Value of Euro− η

ε Performance indicator
f Scaling factor
Feed− in Energy costs for PV feed-in
Gen Generator-coupled
GPM Generic performance model
Grid Point of grid connection
GridEx Export to grid
GridIm Import from grid
Ideal Simulation of ideal system
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Irr Solar irradiance
KPI Key Performance Indicator
Lab Laboratory test
Li-Ion Lithium-ion
Load Household consumption
LoadCvr Load covered by PV battery system
Loss Energy losses
MPP Maximum Power Point
nom Nominal (rated) value
OP Operation Parameter
PP Profile Parameter
pp percentage points
PV Photovoltaic
PVS AC-side of PV system
PV2AC Direct PV use operation
PV2Bat Charge operation (DC-coupled, Generator-coupled)
R Requirement
Ref Household without PV battery system
SC System Control
SoC State of Charge
SPI System Performance Index
tdown Downtime [s]
tset Response time [s]
Tx Energy per hour [ Wh

m2 ]
X Power fluctuation
Xmax Maximum value of X
Xmean Mean value of X
Xmin Minimum value of X

Appendix A. Derivation of Test Profiles for Application Tests

The objective of the work presented in this appendix is to define and apply a methodology to
derive test profiles for application tests of PV battery systems.

Appendix A.1. Background

Concerning test profiles for residential energy systems, in Germany, VDI 4655 guideline is often
applied [34]. It proposes reference load profiles based on typical days for testing purposes of Combined
Heat Power (CHP) plants. These include electricity in 60 s resolution as well as space heating and
hot water demand in 15 min resolution. The data-sets have been obtained from various long-term
measurement series in single-family and multi-family houses. However, VDI 4655 does not contain
any irradiance or PV generation profiles. Existing meteorological reference profiles (e.g., [35] and [36]),
which could be used instead, generally process annual data in a resolution of minutes or longer periods.
Considering the requirements of the application test, the low temporal resolution of these profiles
is not suitable for the problem at hand. Different methods may be used to interpolate between the
samples, or stochastic signals could be added to the original signal to obtain high-resolution profiles.
Such approaches are discussed in various publications (e.g., [37]). Another possibility is the synthetic
generation of test profiles using profile generators. Concerning electricity consumption, these often use
measurements of individual electrical consumers. Through a combination with simulated usage habits
of different electrical appliances in individual household types, a differentiation between various user
groups is enabled [38–40]. For the investigations presented in this paper, a method focussing on a
systematic choice and combination of daily profiles from high-resolution long-term measurements is
pursued. With means of these test profiles, important statistical characteristics of the input data must
be maintained [41]. A couple of publications on this topic, especially concerning grid stability issues



Energies 2020, 13, 5529 22 of 34

and for models focusing on optimum electrical capacity investment, are available [42,43]. A work of
particular interest for the present task is documented in [44]. This publication indicates the minimum
combinatorial order to preserve annual characteristics. Although the focus is on investment planning
of energy capacities, nevertheless it gives important clues for the problem at hand. A central finding is
that a single annual load profile in 1 h resolution (i.e., 8760 values) can be aggregated in the order of
10 representative hours (scenario robust). However, when an additional source of variability needs
to be considered (e.g., solar irradiance), the required hours of a robust aggregation increase up to an
order of 1000. As a remedy, the second step of the methodology introduced here is performed on the
basis of residual profiles.

Appendix A.2. Database

A central specification for the test profiles is to represent the conditions of typical applications
of PV battery systems. Many systems are applied in Germany, long-term local measurements of PV
power generation (resp. solar irradiance), and consumption of a typical German household served
as database here. Due to its central location and availability of high-resolution measurement data,
long-term measurements of the Kassel region were used. However, the methodologies described in
this chapter may also be applied to other datasets. The irradiance data used here were obtained by
long-term measurements in 1 s resolution on the rooftop of the Fraunhofer IEE building in Kassel,
Germany. Irradiance was detected by a south-facing sensor inclined by 30 ◦. Additionally, module
temperature was recorded. The data used here refer to the period from September 2012 to August 2013.
The measured irradiance during the indicated period amounted to 1109.2 kWh

m2a , which approximately
met the long-term average in Germany (i.e., 1180 kWh

m2a [45], which corresponds to 1050 kWh
m2a on a

horizontal surface, and an annual yield increase of 12% due to the inclination and orientation of the
module [46]). The electricity-consumption profiles were provided by a three-phase measurement
dataset in 1 s resolution of a four-person household in the Kassel region. It was recorded from
June 2010 to April 2011 and lacks data for May to complete a full year. Annual electricity
consumption extrapolated from the measurement period amounted to 3540 kWh, which is between the
typical consumption indicated for 4-person households (4750 kWh), but above the annual electricity
consumption of an average household (3100 kWh) in Germany [47]. The long-term simulation used for
the presented investigations is mapping the annual datasets to a reduced period, which is necessary as
the consumption dataset does not cover a full year.

Appendix A.3. First Step—Profile Analysis

First, datasets were fragmented into daily subsets. These were analyzed to identify single subsets
and combinations of these subsets that were capable of representing all data in terms of seven profile
parameters (PP) (see Figure A1). Here, t1 and t2 correspond to the temporal boundaries of each
daily subset.

• Daily solar energy EDay
Irr and daily load demand EDay

Load (see Figure A1a)).
• Maximum and minimum power: EDay

Irr,max, PDay
Load,max and PDay

Load,min (see Figure A1a))

• The average fluctuations XDay
PV,mean, XDay

Load,mean and maximum fluctuations, XDay
PV,max, and XDay

Load,max
by using a low-pass filtering with a ten-minute moving average PMA (see Figure A1b)).

• Energy per hour: ET0...T23
Irr and ET0...T23

Load
• Energy per power level: EP0...T9

Load and EP0...P9
Load

Additionally, the annual averages of these parameters (e. g. EDay
Irr and EDay

Load) are calculated.
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Figure A1. Simplified general presentation of the profile parameters with daily energy, maximum and
minimum power (a), upper left), average and maximum fluctuations (b), upper right), share of energy
per hour (c), lower left) and share of energy per power level (d), lower right).

To assess how well each subset represents annual averages, the normalized deviation DPP is
defined. It is calculated separately for irradiance and load. As the applied formula is identical for both,
only the irradiance variables are shown here.

DPP =
|EDay

Irr − EDay
Irr |

EDay
Irr

× fE +
|PDay

Irr,max − PDay
Irr,max|

PDay
Irr,max

× fPmax +
|PDay

Irr,min − PDay
Irr,min|

PDay
Irr,min

× fPmin + ... (A1)

The factors ( fE, fPmax, ...) in Equation (A1) are scaling factors. They are derived by an analytical
hierarchy process, where the importance of all individual PP was compared and assessed. The resulting
factors are shown in Table A1. Equation (A1) may be explored to identify the best fitting daily subsets.
Next, the period under investigation is expanded from daily subsets to combinations of daily subsets,
which are systematically selected from the entire datasets. While advancing from daily subsets
(combinatorial order of one) to subsets containing tuples of daily curves (combinatorial order of two)
and higher combinatorial orders, the profile length increases. Consequently, the time instants and
integral boundaries are adjusted according to the (in general) non-continuous time intervals of the
subsets under investigation. These adjusted PP functions are then used to calculate the deviations for
each combinatorial order.

Table A1. Scaling factors for the first step of profile selection.

Type
Factor

fE fPmax fPmin fXmean fXmax feT feP ∑

Irradiance 0.40 0.12 0 0.21 0.03 0.14 0.09 1.0
Load 0.35 0.08 0.05 0.2 0.02 0.15 0.15 1.0

Figure A2 shows the derived results, limited to the top-100 subsets. It can be seen that the
deviations fall into discrete intervals for each combinatorial order: Obviously, the attempt to reflect
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annual characteristics using single day curves leads to a wide-spread deviation interval with the
median being located at approx. 0.43 units for irradiance and 0.23 units for the load. Increasing
the combinatorial order from one to two reduces the median value to 0.12 units for irradiance and
0.11 units for the load while the box sizes become considerably smaller. With a further increase of
the combinatorial order up to four and five, median values below 0.05 units are achieved for both
irradiance and load. It can be seen that the convergence proceeds monotonously. For any combinatorial
order of 2-5, the three subsets with the lowest deviations are used for further investigation in the second
step. Since different combinations of the irradiance and load candidates with the same combinatorial
order are possible, the final result of the first step is a total of 36 combined profiles. These sets are
called candidate profiles.

(a) (b)

Figure A2. Deviations from annual averages of the best 100 irradiance (a) and load (b) curves with
different combinatorial order. The upper right parts show a zoom of the results for the duration of 3, 4,
and 5 days.

Appendix A.4. Second Step—PV Battery-System Operation Analysis

In the second step, the operation of PV battery systems with the candidate profiles is investigated
utilizing simulations. For this purpose, a generic performance model (GPM) that is based on
comprehensive modes of operation is applied and parameterized with different system configurations.
The model is based on an idealized operational strategy and phenomenological equations to represent
intrinsic losses. The resulting power flows are used to calculate the Operation Parameters (OP):
self-sufficiency εAut, self-consumption εCon, and conversion losses εLoss.

The OP resulting from simulations with the candidate profiles are compared with those derived
from annual simulations (εAnnual

Aut and εAnnual
Con , εAnnual

Loss ). Their difference provides another set of
convergence criteria expressed by the deviation function of the second step:

DOP =
|εAut − εAnnual

Aut |
εAnnual

Aut
+
|εCon − εAnnual

Con |
εAnnual

Con
+
|εLoss − εAnnual

Loss |
εAnnual

Loss
(A2)

The second step ensures that the test profiles do not only correspond to the PPs from Appendix A.3
but also to the typical annual operation of PV battery systems. Each of the 36 candidate profiles
resulting from the first step results in a set of OPs and deviations according to Equation A2. The ranges
thereof are shown in Figure A3 for the five system specifications examined in Table A2. Here, OP ranges
are depicted by coloured dots for the candidate profiles, while related results based on an annual
simulation are indicated by black dots. Thus, a deviation of OP can be identified by comparing the
position of coloured and black dots.
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(a)

(b)

(c)

Figure A3. Results of simulations with candidate profiles: self-sufficiency (a), self-consumption (b),
conversion losses (c).

Table A2. Specifications of PV battery systems used for profile evaluations with the reference model.

Parameter
Reference System

I II III IV V

CBat [kWh] 2 2 5 5 8
PPVS [kW] 2 5 5 8 8
PPV2Bat [kW] 2 2 5 5 8
PBat2AC [kW] 2 2 5 5 8

It can be seen that the OP of the annual simulation tends to be in the centre of areas in which
the simulation results with the candidate profiles accumulate. This applies in particular to the
medium-sized systems III and IV. In general, the relative losses show the least deviations of the
parameters investigated. The two best profile combinations in a combinatorial order of three and four
are selected for laboratory tests and further investigations. These profiles are shown in Figure A4.
Both irradiance profiles use an identical first day, which indicates particularly high representativeness
of this specific curve for the entire dataset.

An essential step for future investigations is to apply the presented methodology to a broader set
of annual measurement data to increase the validity of the obtained profiles. Furthermore, it may be
used to derive load profiles for significantly different use-cases like households with heat pumps or
electric cars.
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(a)

(b)

(c)

(d)

Figure A4. Selected test profiles, three-day irradiance (a), three-day load (b), four-day irradiance (c)
and four-day load (d).
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Appendix B. Datasheets of Devices under Test

System A 

System features 

 PV2AC PV2BAT AC2BAT BAT BAT2AC BAT2PV 

Conversion steps ✓1 -- ✓ ✓ ✓ -- 

All information based on the "Efficiency Guidelines for PV Storage Systems 1.0". 

AC connection 

Nominal charging power  3310 W 

Nominal discharging power2 3280 W 

Battery connection 

Battery input voltage3 41 / 48 / 63 V 

Nominal charging power4 2990 W 

Nominal discharging power 3650 W 

Battery 

Battery voltage3 55,5 V 

Battery capacity5 5,3  kWh 

Battery efficiency5 96,0  % 

Standby losses of power conversion system 

Power consumption in standby (AC / DC) 0 / 10 W 

Control features of power conversion system 

Mean stationary deviation of charging power  16 W (Feed-in) 

Mean stationary deviation of discharging power  17 W (Feed-in) 

Average down time 1,1 s 

Average response time  6,7 s 

Efficiencies of conversion steps 

                                                 
1 Is not part of the product, but required in a full system setup 

2 Rated output power Bat2AC 

3 Nominal voltage or minimum / nominal / maximum voltage 

4 Rated output power AC2Bat 

5 At 100% and if necessary additional5ly 50% and 25% of nominal charge/discharge power 

 

Figure A5. Datasheet of System A.
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System B 

System features 

 PV2AC PV2BAT AC2BAT BAT BAT2AC BAT2PV 

Conversion steps ✓1 -- ✓ ✓ ✓ -- 

All information based on the "Efficiency Guidelines for PV Storage Systems 1.0". 

AC connection 

Nominal charging power  1130 W 

Nominal discharging power2 1880 W 

Battery connection 

Battery input voltage3 48 V 

Nominal charging power4 1060 W 

Nominal discharging power 2070 W 

Battery 

Battery voltage3 48 V 

Battery capacity5 4,7  kWh 

Battery efficiency5 96,0  % 

Standby losses of power conversion system 

Power consumption in standby (AC / DC) 23 / 15 W 

Control features of power conversion system 

Mean stationary deviation of charging power  56 W (Feed-in) 

Mean stationary deviation of discharging power  25 W (Feed-in) 

Average down time 2,5 s 

Average response time  18,5 s 

Efficiencies of conversion steps 

                                                 
1 Is not part of the product, but required in a full system setup 

2 Rated output power Bat2AC 

3 Nominal voltage or minimum / nominal / maximum voltage 

4 Rated output power AC2Bat 

5 At 100% and if necessary additional5ly 50% and 25% of nominal charge/discharge power 

 

Figure A6. Datasheet of System B.
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System C 

System features 

 PV2AC PV2BAT AC2BAT BAT BAT2AC BAT2PV 

Conversion steps ✓1 -- ✓ ✓ ✓ -- 

All information based on the "Efficiency Guidelines for PV Storage Systems 1.0". 

AC connection 

Nominal charging power  3300 W 

Nominal discharging power2 3280 W 

Battery connection 

Battery input voltage3 41 / 48 / 63 V 

Nominal charging power4 2970 W 

Nominal discharging power 3640 W 

Battery 

Battery voltage3 47 / 53 / 57 V 

Battery capacity5 6,8  kWh 

Battery efficiency5 93,0  % 

Standby losses of power conversion system 

Power consumption in standby (AC / DC) 0 / 10 W 

Control features of power conversion system 

Mean stationary deviation of charging power  17 W (Feed-in) 

Mean stationary deviation of discharging power  19 W (Feed-in) 

Average down time 1,1 s 

Average response time  6,1 s 

Efficiencies of conversion steps 

                                                 
1 Is not part of the product, but required in a full system setup 

2 Rated output power Bat2AC 

3 Nominal voltage or minimum / nominal / maximum voltage 

4 Rated output power AC2Bat 

5 At 100% and if necessary additional5ly 50% and 25% of nominal charge/discharge power 

 

Figure A7. Datasheet of System C.
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System D 

System features 

 PV2AC PV2BAT AC2BAT BAT BAT2AC BAT2PV 

Conversion steps ✓ ✓ -- ✓ ✓ -- 

All information based on the "Efficiency Guidelines for PV Storage Systems 1.0". 

PV connection 

Nominal PV input power  4790 W 

PV input voltage1 175 / 350 / 500 V 

AC connection 

Nominal output power2 4570 W 

Battery connection 

Battery input voltage1 41 / 48 / 63 V 

Nominal charging power3 2970 W 

Nominal discharging power 3640 W 

Battery 

Battery voltage1 150 V 

Battery capacity4 2,1 kWh 

Battery efficiency4 96,6 % 

Standby losses of power conversion system 

Power consumption in standby (AC / DC) 3 / 0 W 

Control features of power conversion system 

Mean stationary deviation of charging power  79 W (Feed-in) 

Mean stationary deviation of discharging power  -3 W (Consumption) 

Average down time 1,1 s 

Average response time  4,1 s 

Efficiencies of conversion steps 

  

                                                 
1 Nominal voltage or minimum / nominal / maximum voltage 

2 Rated output power PV2AC and Bat2AC 

3 Rated output power PV2Bat 

4 At 100% and if necessary additional4ly 50% and 25% of nominal charge/discharge power 

Figure A8. Datasheet of System D.
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System E 

System features 

 PV2AC PV2BAT AC2BAT BAT BAT2AC BAT2PV 

Conversion steps ✓ ✓ -- ✓ ✓ -- 

All information based on the "Efficiency Guidelines for PV Storage Systems 1.0". 

PV connection 

Nominal PV input power  5200 W 

PV input voltage1 275 / 510 / 750 V 

AC connection 

Nominal output power2 4980 W 

Battery connection 

Battery input voltage1 41 / 48 / 63 V 

Nominal charging power3 2970 W 

Nominal discharging power 3640 W 

Battery 

Battery voltage1 192 V 

Battery capacity4 6,8  kWh 

Battery efficiency4 93,9  % 

Standby losses of power conversion system 

Power consumption in standby (AC / DC) 34 / 3 W 

Control features of power conversion system 

Mean stationary deviation of charging power  9 W (Feed-in) 

Mean stationary deviation of discharging power  -8 W (Consumption) 

Average down time 1,5 s 

Average response time  5,1 s 

Efficiencies of conversion steps 

                                                 
1 Nominal voltage or minimum / nominal / maximum voltage 

2 Rated output power PV2AC and Bat2AC 

3 Rated output power PV2Bat 

4 At 100% and if necessary additional4ly 50% and 25% of nominal charge/discharge power 

Figure A9. Datasheet of System E.
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