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Abstract: Artificial intelligence-based solutions and applications have great potential in various fields
of electrical power engineering. The problem of the electrical reliability of power equipment directly
refers to the immunity of high-voltage (HV) insulation systems to operating stresses, overvoltages
and other stresses—in particular, those involving strong electric fields. Therefore, tracing material
degradation processes in insulation systems requires dedicated diagnostics; one of the most reliable
quality indicators of high-voltage insulation systems is partial discharge (PD) measurement. In this
paper, an example of the application of a neural network to partial discharge images is presented, which
is based on the convolutional neural network (CNN) architecture, and used to recognize the stages of
the aging of high-voltage electrical insulation based on PD images. Partial discharge images refer to
phase-resolved patterns revealing various discharge stages and forms. The test specimens were aged
under high electric stress, and the measurement results were saved continuously within a predefined
time period. The four distinguishable classes of the electrical insulation degradation process were
defined, mimicking the changes that occurred within the electrical insulation in the specimens (i.e., start,
middle, end and noise/disturbance), with the goal of properly recognizing these stages in the untrained
image samples. The results reflect the exemplary performance of the CNN and its resilience to
manipulations of the network architecture and values of the hyperparameters. Convolutional neural
networks seem to be a promising component of future autonomous PD expert systems.

Keywords: partialdischarges; phase-resolvedpatterns; highvoltage insulation; diagnostics; machine learning;
deep learning; convolutional neural network

1. Introduction

Artificial intelligence (AI) is one of the most active topics of this decade. It has experienced explosive
growth and is expected to penetrate almost all domains (engineering, metering and control, biomedicine
and autonomous vehicles, to mention a few). This will pave the way for more accurate, faster and more
cost-effective solutions. As a subset of AI, machine learning is experiencing unprecedented development,
especially in the area of artificial neural networks, with many current variants and deployed applications.
Scientists are excited about the potential of deep learning and the performance of convolutional neural
networks. Thus, AI-based solutions and applications have great potential in various fields of electrical
power engineering. The problem of the electrical reliability of power equipment is directly related
to the immunity of high-voltage insulation systems to operating stresses, overvoltages and other
stresses—in particular, those involving strong electric fields. Therefore, tracing material degradation
processes in insulation systems requires dedicated diagnostics. The electric field exposure in insulation
systems is a factor that is responsible for initiating and developing various forms of electrical discharges.
These refer to discharges in the internal gaseous cavities, called voids, and on the surface of the insulation
systems. The so-called partial discharge (PD) refers to cases in which no full insulation breakdown
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occurs; i.e., there is no direct bridging of the electrodes. Long-lasting PD stress has an influence on
the reliability and lifetime of electrical power equipment.

Neural networks are applied in a broad spectrum of application areas; they share the common objective
of being able to automatically learn features from massive databases and generalize their responses to
circumstances that are not encountered during the learning phase [1,2]. Currently, convolutional neural
networks (CNN), a successor of multi-level perceptron (MLP)-based networks, are predominantly being
used in signal and image processing. Over the last three decades, it has been reported that neural networks
have been successfully applied for PD pattern recognition, diagnostics and monitoring applications [3–38].
In order to reduce the complexity of the recognition process, the statistical operators are often derived
from PD distributions and applied to the classification procedures [5–8,11–15]. In early applications, due
to computational complexity, a strong reduction of the PD phase resolution was applied [8,9]. PD pattern
recognition has been performed in various domains; i.e., it has been applied either to phase or pulse
magnitude distributions [13], to a pulse time waveform [16,25,34] or to PD images [14,21,36]. The real
challenge for this approach concerns patterns containing a superposition of multiple defects that occur
in high-voltage electrical insulation [18,21,25]. In this paper, an example of the application of a neural
network to partial discharge images is presented, which is based on the convolutional neural network
architecture, and used to recognize the stages of the aging of high-voltage electrical insulation based on
PD images.

2. Partial Discharge Phase-Resolved Acquisition

The progressive deterioration of high-voltage insulation caused by partial discharges is one of
the key factors limiting the lifetime of electrical power equipment. Thus, one of the most commonly
accepted and reliable quality indicators of high-voltage (HV) insulation systems is PD measurement.
Partial discharges occur in the HV technical insulation systems of power equipment. A PD is usually
defined as an electrical discharge that takes place locally, in only one part of an insulation system, that does
not directly result in losing the insulating properties of the power device. However, long-lasting partial
discharges result in micro and macroscopic deteriorations, leading to insulation breakdowns. Partial
discharges may appear in solid, liquid and gaseous insulation systems; those bringing about destructive
consequences take a variety of forms of interactions and multi-stage characters of the accompanying
processes. The phase-resolved partial discharge analysis method is currently the most popular tool in
PD-based diagnostics for high-voltage electrical insulation. This technique allows for the registration of
individual PD pulses with respect to the phase angle of the applied voltage. The methodology relies
on coupled two-dimensional multi-channel analyzers and is graphically shown in Figure 1. Since PD
physical processes demonstrate a statistical behavior, a method based on phase-resolved PD acquisition is
especially useful. The phase position of a particular discharge with respect to the high-voltage AC cycle
brings additional information, which allows for PD form separation and the recognition of non-coherent
forms on a phase-resolved plane. The PD patterns acquired in this way, revealing various stages of
discharge development, are treated in this paper as images.

In the monitoring test, the specimens were aged under a high voltage, up to 20 kV, and the measurement
results were saved continuously within a predefined time period. The PD measurements, at AC voltage, were
performed using a wideband acquisition system, ICM+ (Power Diagnostix, Aachen, Gemany), connected
to a host computer via a GPIB (General Purpose Interface Bus) interface [39–41]. The phase-resolved
measurements in AC mode were recorded within 60 s, resulting in a D(ϕ, q, n) pattern (8 × 8 × 16 bit).
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Figure 1. Partial discharge phase-resolved methodology.

3. Machine Learning and Partial Discharge Image Recognition

Machine learning (ML) is a very popular topic in various disciplines; great progress in this field
has recently been observed. ML refers to the ability of algorithms with tunable parameters that are
adjusted automatically and adapted accordingly to previously seen data. In general terms, machine
learning can be considered to be a subdomain of artificial intelligence. The applied algorithms can be
considered as the building blocks of computer learning, leading systems to behave more intelligently
by generalizing rather than only operating on data elements, in contrast to a conventional dataset
system. Thus, machine learning is learning based on experience and can be classified into unsupervised
learning and supervised learning. The first approach aims to group and interpret data based only on
input data, whereas the latter method relies on predictive models based on both input and output
data. Unsupervised learning implies that the algorithm itself will find patterns and relationships
among different data clusters. The dataset in machine learning usually consists of a multi-dimensional
entry associated with several attributes or features. Unsupervised learning can be further divided
into clustering and association. Clustering refers to the automatic grouping of similar objects into
sets. In turn, supervised learning implies an algorithm’s ability to recognize elements based on
provided samples with the goal of recognizing new data based on training data. Supervised learning
algorithms include, for example, decision trees, support vector machines (SVM), naive Bayes classifiers,
k-nearest neighbors and linear regressions [7–20,34–37]. Supervised learning can be further divided
into classification and regression: classification means that samples belong to two or more classes, with
the goal of predicting the class of unlabeled data from the already-labeled data and thus identifying to
which category an object belongs; regression is understood as predicting an attribute associated with
an object.

Probably the most popular examples of machine learning are artificial neural networks.
The machine-learning workflow consists of several steps. The first step is preprocessing; i.e., data
preparation in a form on which the network can train. This involves collecting images and properly
resizing and labeling them up to the normalization stage (for example). The second step refers to
the definition of the neural network topology in terms of the number of layers to be used in a model,
the size of the input and output layers, the type of the implemented activation functions, whether or
not dropout will be used, the number of epochs, the sizes of the training sets and many other factors. In
fact, setting up all of the hyperparameters of a neural network framework is an art and relies greatly on
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experience. In the following stage, an instance of the model is fit with training data. Usually, the higher
the number of epochs, the greater the performance of the neural network; however, too many training
epochs may lead to overfitting and performance degradation. After training comes model evaluation
by comparing the model’s performance against a validation dataset (a dataset on which the model has
not been trained). The performance of a neural network is determined by the application of various
metrics. The most common is “accuracy,” which reflects the number of correctly classified images
divided by the total number of images in the dataset.

Partial discharge image recognition refers to the ability to distinguish and recognize between
different PD types and sources within the insulating system of electrical power equipment, which
often consists of complex insulation (a combination of gaseous, solid and liquid phases). Moreover,
discriminating between the internal discharges that occur in insulating systems and the external
interference and disturbances is a critical element of pattern recognition for on-site measurements
that are performed in a hazardous environment. The classification stage represents the recognition
of the source from the data. Usually, this stage is twofold and consists of extracting a feature vector
from the data followed by recognizing a corresponding source. The identification and classification of
partial discharge features is a fundamental requirement for an effective insulation diagnosis. Partial
discharges can affect an insulation system’s reliability in different ways. Some electrical insulation
systems (for example, mica-based system) are designed to withstand a certain level of partial discharges
occurring in the distributed micro-voids, while others (e.g., polymer-based systems) are degraded very
quickly by partial discharge activity.

As PD recognition is very complicated, only experts with extensive personal experience are able
to discriminate between various discharge phenomena and assess the risk of potential insulation
breakdown. Initially, experts mainly relied on the apparent charge magnitude; later, they also took
the pulse density, phase and amplitude distributions into account after the introduction of acquisition
systems. In the early 1990s, the introduction of PD phase-resolved acquisition and 3D-representation
as well as ultra-wide-band detection and pulse registration created new possibilities and tools for
automatic pattern recognition and expert systems. A phase-resolved PD pattern is treated as an image;
therefore, image-processing algorithms are used for extracting and distinguishing the features of
an image.

Today’s PD expert systems are often based on statistical parameters and the stochastic nature
of PD processes. The most important attributes of partial discharges include their amplitude, rise
time, phase position (with respect to alternating voltage), occurrence rate and time interval to
the preceding and successive PD pulses. It is known that a strong correlation exists between PD
patterns and the sources causing the discharges [25,42–44]. For pattern recognition, various techniques
have been employed (e.g., statistical tools, neural networks, fuzzy logic, time-series analysis, principal
component analysis, wavelets, etc.), which are supported in the preprocessing phase by advanced
signal and image processing techniques. A PD pattern analysis can be performed on PD pulse shape,
PD distributions (pulse-height, pulse-phase, pulse-energy, etc.) or PD-derived images. Expert systems
based on statistical operators are very sensitive to the harmonics in high voltages; thus, special attention
should be paid to the interpretation and classification stage [45].

The discussed PD pattern-recognition techniques are applied to almost all HV objects, such
as transformers, generators, motors, bushings, components, GIS (Gas Insulated Switchgear), cables
and joints. Many of the algorithms described above rely on a solid reference library containing either
generic defect patterns or a set of attributes. As the amount of data is huge (especially in the monitoring
applications), there is a need for data compression and a reduction of identification time (mainly in
real-time analyzers). The time needed for identification can be significantly reduced by the proper
selection of distinguishing parameters for the features. The most challenging aspects of today’s partial
discharge pattern recognition applications are related to multi-source PD classification, the separation
between real internal PDs and both noise and disturbances. The purpose of applying neural networks
for the diagnostics of high-voltage insulating systems is to recognize PD images and their qualifications
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to the appropriate group of images that are characteristic of the typical discharge forms or to trace
the dynamic changes in PD images in the case of monitoring. For image recognition, back-propagation
networks and self-organizing Kohonen’s maps have often been applied in recent years; currently,
convolutional neural networks are particularly promising [12–14,21–24].

Partial discharge images have also introduced a new category in PD evaluation, referring to
qualitative analysis and defect discrimination. A kind of system that requires no calibration in absolute
units (pC, mV, mA, etc.) and in which qualitative discrimination could be performed by the analysis
of the shapes of statistically accumulated images would be very desirable, especially in on-site or
monitoring measurements. This direction has been a visible trend in PD expert systems over the last
few decades.

4. Architecture of Deep Convolutional Neural Networks

Artificial neural networks (ANN) have been a constant focus of research since the beginning of
the 1990s, evolving from simple multi-layer perceptrons (MLP) to advanced deep topologies today.
One of the key accelerators for this was certainly the development of computational power, both
based on the CPU (central processing unit) and GPU (graphics processing unit), as well as the rapid
development of algorithms, architectures and programming environments such as Tensor Flow by
Google [46]. This approach has disrupted several industries and businesses due to their unprecedented
capabilities, versatility and speed of implementation. One of the most advanced directions in AI
currently is the deep learning architecture based on convolutional neural networks (CNN). The CNN
topology consists of convolutional layers in which the output of each neuron is a function of usually
only a smaller subset of the previous layer’s neurons, in contrast to the MLP structure, where each
layer’s neurons connect to all of the neurons in the next layer (fully connected layers); i.e., each neuron’s
output is a transformation of the previous layer that is introduced with an activation function. In their
basic structure, neural networks consist of neurons with learnable weights and biases. The convolution
operation transforms an input image (matrix I) and a typically much smaller weight matrix (called
a kernel or filter M) to an output matrix O according to the following formula:

O(i, j, k) =
L∑

l=1

N∑
n=1

M∑
m=1

Mk(m, n, l)I(i−m, j− n, l) (1)

where L is the number of filters in the previous layer, l is the filter index and M and N refer to the size
of the filter.

In this way, a convolutional layer is spatially focused and lighter than a fully connected one,
allowing the convolutional representations to learn much more quickly. Typically, various kernels are
applied in order to preserve the complexity of an image, give depictions of different parts of the image
and generate a collection of feature maps (FM). A graphical illustration of feature map layer creation
is shown in Figure 2. The size and number of filters of each convolution layer should be predefined
during the network architecture phase. The filter Mk coefficients are unknown elements of a CNN,
which will be specified by a backpropagation method during the training process. Backpropagation
is a technique used for the evaluation of connections between neurons. When it receives an input,
each neuron can completely and independently calculate the output value and the local gradient of
the input (taking into account the output value). This phase is called a forward pass. When this
phase is over, the backpropagation training phase starts. During the backpropagation, each neuron
learns the gradient of its output value considering the complexity of the entire network. The neuron
takes the gradient of the whole network topology and multiples it with each gradient with which it
is connected.
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Figure 2. Graphical illustration of feature map layer creation (M—filter). PD—partial discharge.

The common filter sizes used in CNNs are 3 or 5, creating a 3 × 3 or 5 × 5 mask of pixels,
respectively. In the case of a full-color image (e.g., RGB), the dimensions of this filter are 3 × 3 × 3
(Figure 3). The filter is shifted across the image according to a parameter called “stride”; this defines
the number of pixels by which the filter will be moved after each iteration. A conventional stride value
for a convolutional neural network is 2.

Figure 3. Creation of feature map for full-color image (FM—feature maps).

The basic assumption in CNN networks (especially in image processing) is that each neuron is
strongly affected by its neighbors and that distant neurons have only a small impact. This reflects
the property of an image where the spatial correlation between pixels usually decreases as the pixels
become more distant from each other. The convolutional neural network topology consists of main
four elements:

� Convolution;
� Activation;
� Pooling;
� Classification by fully connected layers.

In the first step, the feature kernel and an image are lined up, and the multiplication of each
image pixel by the corresponding feature pixel is performed. Then, the total sum of these values
is divided by the total number of pixels providing output strength. This signal is passed through
an activation function in the following step. In most cases, the rectified linear unit (ReLU) transform
function is applied [1,29,32]:

ReLU(x) = max(0, x) (2)

This activates a node in a network if the input is above a specified threshold. In case the input is
below zero, the output is zero; however, when the input rises above a certain threshold, it has a linear
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relationship with the input variable. In this way, all of the negative values from the convolution are
removed and changed to zero, while all the positive values remain unchanged.

The next step is called pooling, in which the downsampling (compression) and smoothing of
the feature map (FM) are performed. This process is usually undertaken by taking the averages or
the maximum of a sample of the signal and helps to prevent overfitting, which is where the network
learns facets of the training cases too well and fails to generalize new data. MaxPooling is the most
commonly applied approach, which obtains the maximum value of the pixels within an individual filter.
Thus, in the case of a 2× 2 pooling filter, a quarter of the information is preserved, and three-quarters are
dropped. A similar function is executed by the dropout operation, which is performed by multiplying
the weight matrix of neurons W with a mask vector D. A visualization of the dropout operation is
shown in Figure 4. Depending of the position of 1 and 0 in a mask vector D, certain neurons are
discarded in matrix W (i and j refer to the position of a neuron in a layer; k is the layer number),
providing a reduced topology WD (Figure 4b), which results in a shorter training time for each epoch.

WD = Wk
i, j·D (3)

Figure 4. Visualization of dropout operation: (a) full network; (b) network after dropout.

Another tuning operation is batch normalization. When the input data to the network are
normalized, the hidden layers in the CNN can also be normalized to speed up the learning. Thus, batch
normalization normalizes the output of a previous activation layer by subtracting the mean of a batch
and dividing it by the standard deviation of a batch. The final classification step is based on fully
connected layers (FCs), meaning that the neurons of the preceding layers are connected to every neuron
in the subsequent layers (similar to an MLP neural network). As a preparation, a prior flattening
operation is required to present the data in the form of a vector. The primary purpose of the ANN
is to analyze the cluster of input features and fuse them into different attributes that will be used
in the classification. Thus, the layers form collections of neurons that represent different features
of an image. When enough of these neurons are activated in response to an unknown input image,
the image will be classified properly. The general architecture of a convolutional neural network is
shown in Figure 5.

Figure 5. General architecture of a convolutional neural network. FC: fully connected layers.
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5. Experimental Results

The application of convolutional neural networks to a sequence of partial discharge images
is presented here. As one of the key indicators of high-voltage insulation deterioration, partial
discharges are often used in monitoring systems. The test specimen was aged under high electric
stress, and the measurement results were saved continuously within a predefined time period.
The sequence of the phase-resolved PD images taken from the long-term aging experiment was
analyzed. The four distinguishable classes of the electrical insulation degradation process were defined,
mimicking the changes that occurred within the electrical insulation in the specimens (i.e., start,
middle, end and noise/disturbance), with the goal of properly recognizing these stages in the untrained
image samples. Representative PD images of the distinctive classes in the long-term monitoring
of the electrical insulation aging are shown in Figure 6. The presented results were developed in
the Python environment with the TensorFlow, Keras, and Scikit-learn deep-learning frameworks [46,47].
The machine-learning algorithms implemented in these environments expect the data to be represented
and stored in a two-dimensional array in a particular format ([n_samples, n_features]), where a sample
can be a PD image and a feature is a distinct label of the class. The PD image has three spatial
dimensions; i.e., width, height and a third dimension (the depth corresponding to the number of
channels of the image). The input set consisted of 250 training images of each class and 25 test images
per class.

Figure 6. Representative PD images of distinctive classes in the long-term monitoring of the aging of
electrical insulation.

An exemplary set of both the training and test images is shown in Figure 7. In both cases,
the four distinguishable classes (start, middle, end and noise/disturbance) of the electrical insulation
degradation stages are presented.

Figure 7. Exemplary set of training (a) and test (b) partial discharge images exhibiting distinguishable
classes (start, middle, end and noise/disturbance) of electrical insulation degradation stages.
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The exemplary convolutional neural network architecture used in the experiments is presented in
Figure ??. As mentioned above, designing, configuring and testing neural networks is a complex task
with a huge number of hyperparameters and many degrees of freedom. In the presented example,
the structure as well as the hyperparameters were chosen by trial and error.

The CNN consists of up to six convolutional Conv2D and MaxPooling layers, followed by up to
five fully connected (FC) hidden layers, each having from 128 to 1024 sigmoidal nodes. The output
layer has a number of outputs that is equal to the number of recognized classes of PD images.

6. Discussion

The exemplary parameters of the test CNN network architecture applied to PD images are
illustrated in Figure 8. The individual blocks represent consecutive layers in the network structure,
indicating the input and output dimensions. The first part refers to the Conv2D convolutional feature
maps (FM, including the MaxPooling and DropOut stages), while the fully connected (FC) dense
network after the flattening operation is depicted in the second part.

In the preprocessing phase, PD images were resized to a format of 128 × 128 × 3 and individually
labeled. The feature mask kernel was set to 5 × 5 pixels (also to a dimension of 3 × 3 in some test
cases), and up to six convolutional layers were implemented. The number of convolution kernels M
was changed between 32 and 128. The dense fully connected layers were defined with 512 or 1024
neurons and the activation function ReLu, followed by an output layer with the Softmax activation
function and a number of neurons corresponding to the number of classes to be recognized. The model
was trained with various batch sizes (e.g., 32–256) and numbers of epochs (10–200), and the data were
split into training and validation sets (20–30%). A dropout operation of 0.2 to 0.5 after the convolution
and future map layers was tested.

According to the general rules, adding more feature map layers is recommended if the existing
network is not able to recall the image attributes properly, whereas extra dense layers are needed in
the case of network abstraction expansion. On the other hand, network expansion in terms of a feature
map and hidden layers might lead to overfitting, in contrast to an overly small model that would
be underfit. There are also various strategies regarding the selection of the size of the convolution
layers; i.e., either they should be kept at the same size or the size should be increased as they go deeper
in subsequent stages. The whole data package of PD images can be divided into three categories:
a training set, a validation set and a test set. The first set is used to fit the parameters, such as by
adjusting the weights. The role of the validation set is to tune the parameters, including the matching of
the architecture. The test set is used to assess the performance in terms of generalization and the power
of prediction.

The recognition score presented below is composed of the form of an array, in which the rows
correspond to the distinguishable classes and the columns to the number of the test set. The contents of
the score array show the numeric recognition probability along with a color palette. The exemplary trial
of PD monitoring stage recognition is shown in Figure 9. The performance was assessed by the accuracy
and loss metric parameters. A training accuracy of 97% and a validation accuracy of 92% were achieved
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in this case. The accuracy adjustment after 30 epochs is shown in Figure 9a and that after 200 epochs
is shown in Figure 9b, where the saturation effect is visible. Comparisons of the partial discharge
recognition score after 10 epochs and after 50 epochs are shown in Figures 9c and 9d, respectively.

Figure 8. Exemplary parameters of the test convolutional neural network (CNN) architecture applied
to PD images.

The visualization of the output filter banks provides an illustration of the automatic feature
extraction (as shown in Figure 10). A comparison of the filters in the first layer (Figure 10a) and third
layer (Figure 10b) shows that when going deeper in the network structure in terms of the convolution
number, the feature map changes from fine (focused on details) to coarser (revealing the general aspects
and the providing compression).

Another assessment criterion of the CNN is a confusion matrix (also called an error matrix),
which is a technique used to summarize the performance of a classification algorithm. Each column of
the matrix refers to the instances in a predicted class, while each row expresses the instances in an actual
(true) class. Thus, this is a way of tabulating the number of misclassifications; i.e., the number of
predicted classes that ended up in an incorrect classification slot based on the true classes. By definition,
a confusion matrix size is equal to the number of observations or classes. An exemplary confusion
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matrix for a set of 400 validation PD images subdivided into four classes (start, middle, end and noise)
representing the insulation stages of electrical insulating aging monitoring is shown in Figure 11.

Figure 9. Exemplary recognition trial of PD monitoring stages using a convolutional neural network:
(a) accuracy adjustment after 30 epochs; (b) after 200 epochs; (c) partial discharge recognition score
after 10 epochs; (d) after 50 epochs. Rows in the score matrix correspond to distinguishable classes,
and columns refer to the number of test sets.

Another interpretation of the network performance may be seen in terms of
the following terminology:

• TP—true positives;
• TN—true negatives;
• FP—false positives;
• FN—false negatives.

TruePositive (TP) and TrueNegative (TN) are defined as the number of images that are classified
correctly; FalsePositive (FP) and FalseNegative (FN) are defined as the number of images misclassified
into another class.

One general metric for evaluating classification models is called accuracy A; i.e., the fraction of
predictions that the model got correct.

A =
TP + TN

TP + TN + FP + FN
(4)
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Figure 10. Visualization of output filter banks in convolutional layers, providing an illustration of
automatic feature extraction: (a) first Conv2D layer; (b) third Conv2D layer.

Further, the following two matrices are used:
� Precision P—correct proportion of positive identifications:

P =
TP

TP + FP
(5)

� Recall R—correct proportion of actual positives:

R =
TP

TP + FN
(6)
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Figure 11. Exemplary confusion matrix for a set of 400 validation PD images subdivided into four
classes (start, middle, end and noise) representing the insulation stages of electrical insulating aging
monitoring. Each column of the confusion matrix refers to instances of the predicted class, while each
row exhibits instances of the actual class.

These define the overall measure (called F1 in statistical analysis) of a model’s accuracy and combine
precision and recall:

F1 = 2·
P·R

P + R
(7)

The measure F1 for a multiclass case with a number P of classes will be equal to the following [48]:

F1 = 2·

∑P
k=1 TPk∑P

k=1(TPk + 2·FPk + FNk)
(8)

A comparison of the multilabel classification performance of the CNN is shown in Table 1.
The results are presented for an exemplary PD image belonging to the “end” class from the test data
set in the form of the accuracy A of the proper assignment to the actual class “end”. The result for
the training and validation accuracy precision shows that a tradeoff should be made between the model
complexity, the tuning of the hyperparameters and time constraints.

Different 2D convolution topologies were tested (usually with 64–128 filter channels); each stage
was followed by the MaxPooling layer. Applying a lower number of filters (16–32) resulted in the rapid
downgrading of the accuracy by 30%. Two types of kernel sizes were compared: 3 × 3 and 5 × 5 (input
image size of 128 × 128 pixels; stride was equal to 2). It was noticed that mixing kernel sizes within
consecutive convolution stages (e.g., 5 × 5, followed by 3 × 3) decreased the recognition performance.
Up to four fully connected FC layers were tested (1024-1024-512-4). It was observed also that increasing
the number of layers has certain limitations with respect to the accuracy and is done at the cost of
network complexity and computational time. At a certain point, the network will reach an overfit, but
this is a very complex topic since there is also an interplay between the number of neurons in each layer
and the number of layers and other hyperparameters. This effect is highlighted in Table 1, rows 1 and 5,
where the results show that topology 1024-1024-512-4 has an accuracy of 99.14%, while the reduced
one, 1024-512-4, shows an oaccuracy of 99.21% for the same kernels. A tradeoff was observed between
the numbers of convolutional layers and fully connected layers. The applied DropOut operation did
not result in an improvement in accuracy (rather in an increased speed of calculation). The results
presented above reflect the exemplary CNN’s performance and its resilience to manipulations of
the network architecture and values of the hyperparameters.
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Table 1. Exemplary comparison of PD image multilabel classification performance of CNN.

Topology Conv2D Conv Kernel FC NN A [%] F1 [%]

CNN 64-Mp-128-Mp 5 × 5-5 × 5 1024-1024-512-4 99.14 97.41

CNN 64-Mp-128-Mp 3 × 3-3 × 3 1024-512-4 96.17 97.22

CNN 16-Mp-32-Mp 5 × 5-5 × 5 1024-512-4 68.54 65.33

CNN 64-Mp-128-Mp 5 × 5-5 × 5 1024-4 95.23 96.11

CNN 64-Mp-128-Mp 5 × 5-5 × 5 1024-512-4 99.21 98.16

CNN 64-Mp-Dout(0.25)-128-Mp-Dout(0.25) 5 × 5-5 × 5 1024-4 97.87 95.66

CNN 64-Mp-128-Mp-256-Mp 5 × 5-5 × 5-3 × 3 1024-4 96.33 94.43

CNN 64-Mp-128-Mp-256-Mp 3 × 3-3 × 3-3 × 3 1024-512-5 94.15 95.18

CNN 64-Mp-128-Mp-256-Mp 5 × 5-5 × 5-5 × 5 1024-5 98.28 97.30

CNN 64-Mp-128-Mp-256-Mp 5 × 5-5 × 5-5 × 5 1024-512-5 99.65 97.91

CNN 64-Mp-128-Mp-256-Mp 5 × 5-5 × 5-3 × 3 1024-512-5 94.37 95.67

CNN 64-Mp-128-Mp-256-Mp-512-Mp 5 × 5-5 × 5-5 × 5-5 × 5 1024-5 99.67 99.45

CNN 32-Mp-32-Mp 5 × 5-5 × 5 1024-5 71.55 67.48

A—accuracy; Mp—MaxPooling layer; Dout—dropout layer; FC—fully connected neural network layers.

7. Conclusions

This paper reports the application of a convolutional neural network to partial discharge images
with the aim of recognizing the stages of aging of high-voltage electrical insulation. The presented
example refers to the monitoring of electrical insulation deterioration. The PD images represented
the phase-resolved patterns. The performance of the applied architecture was tested by manipulating
the number of feature maps, the size of convolutional layers and kernels as well as the values of
hyperparameters. The assessment was based on the recognition score, confusion matrix and accuracy
metric. A tradeoff between these parameters was demonstrated.

PD images represent a new category of diagnostic evaluation, referring to qualitative analysis
and defect discrimination. A system that requires no calibration in absolute units and in which
qualitative discrimination could be performed by the analysis of the shapes of statistically accumulated
images would be very desirable, especially in on-site diagnostics or monitoring measurements.
This research direction is a currently visible trend in future autonomous PD expert systems. The most
challenging aspects of today’s partial discharge image recognition are related to multi-source PD
classification, the separation between real internal PDs and both noise and disturbances. Thus, future
work will focus on adjusting the CNN architecture and hyperparameters for multi-source PD recognition
for diagnostic applications.
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