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Abstract: Lighting provides an indispensable energy service, illumination. The field of societal exergy
analysis considers light (and many other energy products) to be enablers of economic growth, and lighting
contributes a non-negligible proportion of total useful exergy supplied to modern economies. In societal
exergy analysis, the exergetic efficiency of electric lamps is central to determining the exergy contribution
of lighting to an economy. Conventionally, societal exergy practitioners estimate the exergetic efficiency
of lamps by an energy efficiency, causing confusion and, sometimes, overestimation of exergetic
efficiency by a factor as large as 3. In response, we use recent results from the fields of radiation
thermodynamics and photometry to develop an exact method for calculating the exergy of light and
the exergetic efficiency of lamps. The exact method (a) is free of any assumptions for the value of
the maximum luminous efficacy, (b) uses a non-unity spectral exergy-to-energy ratio, and (c) allows
choices for the spectral luminous weighting function, which converts broad-spectrum electromagnetic
radiation to light. The exact method exposes shortcomings inherent to the conventional method
and leads to a reasonable approximation of lamp exergetic efficiency, when needed. To conclude,
we provide three recommendations for societal exergy practitioners: use (a) the exact method when
a lamp’s spectral power distribution is available, (b) the universal luminous weighting function,
and (c) the reasonable approximation to the exact method when a lamp’s luminous efficacy is known
but its spectral power distribution is not.

Keywords: exergy; efficiency; light; radiation; thermodynamics; illumination; lumen; luminous
efficacy; spectrum

1. Introduction

1.1. The Importance of Light and the Issue of Lighting Efficiency

Lighting provides an indispensable energy service (illumination), enabling activities at times
when natural light levels are insufficient. Illumination is so valuable that around 20% of global grid-
connected electricity is consumed for the purpose of making artificial light [1]. With the breakthrough
technology of light emitting diode (LED) lamps, which now comprise over 40% of lamp sales [2],
applications of artificial lighting have spread beyond illumination to many other fields including human
physiology and photosynthesis for horticulture [3]. Given the expanding role that artificial lighting plays
globally, understanding precisely its potential contribution—via increasing efficiency—to reducing
energy use to meet carbon dioxide emission targets is crucially important. Thus, the analysis of the
energy and exergetic efficiency of lighting is important in many fields, including energy history [4],
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energy economics [5], ecological economics [6], forecasting energy efficiency improvements [2], and
societal exergy analysis [7], the focus of this article.

1.2. Lighting Fundamentals: Light Energy and the Energy Conversion Chain

Ahead of a detailed treatment of the thermodynamics of light in Section 2.1, we set out here two
fundamental aspects of lighting. The first aspect is clear definitions of electromagnetic (EM) energy
and light. EM energy (E, in J) is broad-spectrum EM radiation quantified by the energy of photons via
Einstein’s equation:

E = hν =
hc
λ

, (1)

where h is Planck’s constant (6.626× 10−34 J-s), ν is frequency (in 1/s), c is the speed of light (in m/s),
and λ is wavelength (in m). The human retina responds to a narrow wavelength range of EM radiation
(380 nm < λ < 780 nm). Thus, light is EM radiation within that narrow wavelength band [8], weighted by
the eye’s spectral (i.e., wavelength-specific) sensitivity (See Figure 1). We note that wavelengths of
light are not inherently colored, but we have adopted the color representation of the Commission
Internationale de l'Eclairage (CIE) 10 degree color matching function (CMF) [9], supplied by the R
package ggspectra [10], for demonstration purposes in Figure 1 and others. The figures show 555 nm,
the wavelength of the peak of the combined sensitivities of two of the human eyes’ five light receptors,
the long-wavelength (L) and medium-wavelength (M) cones.
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Figure 1. Normalized sensitivity and color perception of the human eye to EM radiation [11], according to
the photopic luminous weighting function (Vλ).

The second aspect is to note that modern lighting is provided via an energy conversion chain:
primary energy carriers (e.g., coal) are converted to final energy (electricity, measured in watts, W)
and lastly to useful energy (visible light, measured in lumens, lm). The field of exergy analysis
has long analyzed individual machines and power plants in the energy conversion chain for their
exergetic efficiency and performance, e.g., co-generation power plants [12], nuclear power plants [13],
refrigerators [14], heat pumps [15], and energy storage systems [16]. In contrast, the field of societal
exergy analysis evaluates entire energy conversion chains at regional, national, or world levels in
exergy terms and considers light (and many other useful energy products) to be enablers of economic
growth. (Energy quantifies the potential to change temperature, whereas exergy quantifies the
potential to do work). See Nakićenović et al. [17] for an early example and Guevara et al. [18],
Heun and Brockway [19], and Ver Beek et al. [20] for later examples of societal exergy analysis. Thus,
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societal exergy analysis relies upon results from the energy and exergy analysis of lamps and lighting
to assess the ways in which useful energy products enable economic growth.

Lighting contributes a non-negligible proportion of total useful exergy supplied to modern
economies, so an essential metric in societal exergy analysis is the efficiency with which electricity
(final stage) is converted to light (useful stage) by lamps. Therefore, the efficiency of energy and exergy
conversion of electricity into light by electric lamps (ηE and ηX , respectively) is the focus of this article.
Note that both energy services (e.g., illumination, the stage of the energy conversion chain termed
“application efficacy” in photometry [21]) and satisfaction of human needs (e.g., comfort, safety, etc.)
are downstream of the useful stage and thus beyond the scope of this paper.

1.3. The Conventional Method and the Thorny Issue of Luminous Efficacy

The valuable energy or exergy conversion efficiency (ηv) is defined in simple terms as

ηv =
valuable output

input
. (2)

When the numerator and denominator are quantified in energy terms, an energy efficiency is
obtained (ηE,v). When the numerator and denominator are quantified in exergy terms, an exergetic
efficiency is obtained (ηX,v).

But light (the valuable output) is rarely quantified in energy terms and almost never in exergy
terms. Instead, light is quantified in lumens (lm). Indeed, a common interpretation of Equation (2)
uses light (in lm) as the valuable output in the numerator and electricity (in W) as the input in the
denominator to obtain luminous efficacy (K, in lm/W). In fact, most lamps are rated and advertised
by their lumen output and their luminous efficacy (K). Figure 2 shows the evolution over time of
luminous efficacy for four lamp technologies. (Data for Figure 2 were obtained from three sources:
the Museum of Electric Lamp Technology (LampTech) [22], the ENERGYSTAR database of certified
lamps [23], and the Lighting Market Characterization Reports commissioned by the US Department of
Energy (DOE) [24–26]. See Supplementary Materials for additional information [27].)

Practitioners who use luminous efficacy as a lamp efficiency metric include Nordhaus [5] and
Tsao and Waide, who state “[l]uminous efficacy represents the efficiency with which energy is used to
produce visible light” [28] (p. 265).
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Figure 2. The luminous efficacy of selected lamp technologies from 1880 to 2020. Triangles indicate
lamps used as examples in this paper.
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Sousa et al. note that societal exergy analysis is hampered when “the useful output cannot or is
not typically measured in energy units” [29] (p. 17), as is the case with lighting. Indeed, societal exergy
practitioners need the valuable energy and exergetic efficiencies of lamps (ηE,L,v and ηX,L,v), but lighting
efficiencies are given in terms of luminous efficacy (K). Thus, the widespread use of luminous
efficacy (K) as a measure of lamp efficiency provides a burden to societal exergy analysis.

Conventionally, societal exergy practitioners solve this problem by estimating the valuable (v)
exergetic (X) efficiency (η) of lighting (L) by the ratio of the minimum energy required to produce
a given output and the actual energy required to produce the same given output, as recommended
by Sousa et al. [29] for sound, information, and lighting. (See Section 4.1.1 for additional detail).
The conventional method is typically implemented for lighting via luminous efficacy with

ηX,L,v ≈
K

Kmax
, (3)

where K is the actual lamp luminous efficacy and Kmax is the theoretical maximum luminous efficacy.
However, Equation (3) exposes a source of confusion, namely what value should be used for

Kmax? Within the societal exergy analysis literature and beyond, three common values are adopted:
220 lm/W [30–32], 400 lm/W [7,18,30,33], and 683 lm/W [34,35]. To our knowledge, the earliest
reference for 220 lm/W and 400 lm/W is Summers [30] (p. 151), who stated “[t]he efficiencies . . .
assume that the maximum attainable efficiency for an acceptable white light is about 400 lumens per
watt rather than the theoretical value of 220 lumens per watt for a perfectly ‘flat’ white light”. The value
of 683 lm/W is derived from the definition of the lumen. It represents the luminous efficacy of a
lamp emitting light at 555 nm, the peak of the photopic luminous weighting function, with electricity
converted EM radiation at 100% efficiency.

Paoli and Cullen estimated the practical upper limit for the luminous efficacy of an LED lamp to
be 284–350 lm/W, when considering all sources of energy loss (driver efficiency, wall plug efficiency,
optical efficiency, and spectral efficiency) [36]. The development of LED technology is following Haitz’s
law, which predicts that “[e]very decade, for a given wavelength of light, the cost per lumen falls by a
factor of 10 and the amount of light generated per LED package increases by a factor of 20” [37,38].
Figure 2 shows that LED technology is nearing the lower efficacies from Summers (220 lm/W) and
Paoli and Cullen (284 lm/W).

Clearly, there are many options for Kmax, and its value has a large effect on the valuable exergetic
efficiency of lighting in the conventional method (Equation (3)). So getting it right is important.

1.4. Need, Aim, Contributions, and Structure

Although the confusion around maximum luminous efficacy (Kmax) is sufficient motivation to
dig deeper to fully understand and define the exergy of light and the exergetic efficiency of lamps,
further issues and confusions await. (See Section 4). Thus, there is ample need for clarity and rigor
about the thermodynamics of artificial lighting.

The need leads to the aim of this article: to bring clarity to (a) the energy and exergy of light and
(b) the valuable energy and exergetic efficiency of lamps for societal exergy analysis.

The novel contributions of this article include: (a) clear and rigorous definitions of the energy and exergy
of light, applicable to the field of societal exergy analysis (Section 2.1.4), (b) presentation of a framework
for understanding the exergetic efficiency of lamps (the exact method, Section 2.1.5), (c) application of
the exact method to re-interpret the conventional method, exposing its shortcomings (Section 4.1.1),
(d) recommendations for societal exergy analysis going forward (Section 4.2), and (e) development of
an approximate method for cases when an approximation to the exact method is needed (Section 4.2.3).

The structure of this article is as follows: In Section 2, we (a) set out the energy and exergy fundamentals
of light and lighting efficiency and (b) define luminous weighting functions and spectral power
distributions for example lamps. In Section 3, we show results for luminous weighting functions
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and example lamps before presenting a discussion in Section 4. Section 5 summarizes and suggest
future work.

2. Methods

2.1. Exergy Theory

Energy and exergy are two ways to quantify the physical property that, when transferred to an
object, changes its temperature or performs work on it. (In this section, we can’t call the “physical
property” energy, exergy, work, or heat, because these concepts must remain apart, so we use the generic
term “physical property”). We discuss energy and exergy quantifications of the physical property in the
sections below, beginning with heat and work, the concepts for which energy and exergy originated.
Thereafter, we develop a framework for the energy and exergy of light that parallels the energy and
exergy of heat and work.

2.1.1. Energy and Exergy (Ė and Ẋ) of Heat and Work

Energy quantifies the physical property by its heat content. Thus, heat (the ability to influence
temperature) is pure energy. Thanks to Thompson’s cannon experiment [39], we know that work can
be converted into heat without loss.

Figure 3 shows a heat engine that converts heat at 1 to work at 3 with a waste heat byproduct
at 2 . All streams can be counted as energy (Ė), such that

Ė1 = Q̇1, (4)

Ė2 = Q̇2, and (5)

Ė3 = Ẇ3 . (6)

Note that the overdot notation, as in Ė, Q̇, and Ẇ, indicates a steady state rate of energy or exergy flow.

Heat engine1

2

3

Q̇1, T1

Q̇2, T2

Ẇ3

Figure 3. A heat engine that uses heat at 1 to produce heat at 2 and work at 3 .

Energy efficiency is defined as ηE ≡ energy out
energy in . For the example of Figure 3,

ηE =
Ė2 + Ė3

Ė1
=

Q̇2 + Ẇ3

Q̇1
= 1 , (7)

because the first law of thermodynamics requires that energy is conserved (Q̇1 = Q̇2 + Ẇ3).
That said, typically only one of the products in Figure 3 is deemed valuable: the work produced

by the heat engine (Ẇ3). Thus, the valuable energy efficiency (ηE,v) is

ηE,v =
Ė3

Ė1
=

Ẇ3

Q̇1
< 1 . (8)

Heat (the ability to influence temperature) is only one possible outcome of transferring the
physical property from one object to another. Heat is certainly valuable to humans, but so is another
property: work, the ability to exert a force on another object. Exergy quantifies the physical property
by its work potential and provides the answer to the question “what is the maximum work we could
obtain from a stream of the physical property”? Thus, work is pure exergy.
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The Kelvin-Planck statement of the second law of thermodynamics states that heat cannot be
converted to work without loss. To find the maximum possible work that can be created from heat
(and, therefore, the exergy of heat), we require the Carnot heat engine, which operates at the maximum
possible valuable energy efficiency (ηC).

ηC = 1− T0

Tsys
(9)

T0 is the ambient temperature, and Tsys is a heat temperature (T1 or T2 in Figure 3). The exergy of each
stream in Figure 3 is then

Ẋ1 = φ1Q̇1 =

(
1− T0

T1

)
Q̇1, (10)

Ẋ2 = φ2Q̇2 =

(
1− T0

T2

)
Q̇2, and (11)

Ẋ3 =���
1

φ3 Ẇ3 = Ẇ3 . (12)

In this context, the Carnot efficiency (ηC) becomes the exergy-to-energy ratio for heat streams
(φQ = ηC). The exergy-to-energy ratio for work is φ3 = φW = 1, because work is pure exergy. (The exergy-
to-energy ratio, φ, is exergy divided by energy at a statepoint. E.g., φ1 = Ẋ1/Ė1).

The exergetic efficiency of an energy conversion device is defined as ηX ≡ exergy out
exergy in . For the heat

engine in Figure 3,

ηX =
Ẋ2 + Ẋ3

Ẋ1
=

Q̇2

(
1− T0

T2

)
+ Ẇ3

Q̇1

(
1− T0

T1

) < 1 , (13)

because all real processes are internally irreversible, such that Ẋ1 > Ẋ2 + Ẋ3 or ẊD = Ẋ1 − (Ẋ2 + Ẋ3).
Assuming, again, that work is the valuable output gives

ηX,v =
Ẇ3

Q̇1

(
1− T0

T1

) < ηX < 1 . (14)

Note that both ηE,v and ηX,v are independent of human presence. The work created by the heat
engine (Ẇ3) could be a spinning driveshaft on an automobile carrying four passengers down the
freeway or the same spinning driveshaft on a dynamometer in an unoccupied laboratory. Both (a) the
energy and exergy of the work and heat at 2 and 3 and (b) the energy and exergy efficiencies of the
heat engine (ηE,v and ηX,v) would be the same, regardless. In other words, both (a) the energy and
exergy of work and heat and (b) the efficiencies of the heat engine are independent of human presence
and the energy service provided by the heat engine.

We now turn from the production of work by a heat engine to the production of light by a lamp.

2.1.2. Energy and Exergy of EM Radiation (ĖEM and ẊEM)

Figure 4 replaces the heat engine with a lamp that produces broad-spectrum EM radiation (ĖEM,3)
instead of work (Ẇ3). Electricity powers the lamp at 1 , and, like Figure 3, waste heat (conduction and
convection only) is produced at 2 .

Both electricity and EM radiation can be converted to heat without loss, so they are pure energy. Thus,

Ė1 = Ẇelect,1, (15)

Ė2 = Q̇2, and (16)

Ė3 = ĖEM,3 , (17)
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where ĖEM,3 is the radiant power of broad-spectrum EM radiation emitted by the lamp in units
of energy per unit time (W). (Confusingly, radiant power is sometimes called “radiant flux” in the
literature, despite the fact that radiant power is in units of W, whereas flux would be in units of W/m2.
When exergy is not involved, the photometry literature often denotes radiant power by Φ, not Ė.
Here, we need to differentiate between the energy rate of broad spectrum EM radiation (ĖEM) and
the exergy rate of broad spectrum EM radiation (ẊEM), so we reserve Φ for lumen output of a lamp.
See Section 2.2.1).

Lamp1

2

3 Weighting
function ( fλ)

4

5

Ẇelect,1

Q̇2, T2

ĖEM,3

ĖN,4

ĖL,5

Figure 4. A lamp that uses electricity at 1 to produce heat at 2 , broad-spectrum EM radiation at 3 ,
non-light EM radiation at 4 , and light at 5 .

The lamp’s energy efficiency (ηE,EM) is

ηE,EM =
Ė2 + Ė3

Ė1
=

Q̇2 + ĖEM,3

Ẇelect,1
= 1 . (18)

The valuable energy efficiency of the lamp in Figure 4 (ηE,EM,v, also called the wall plug efficiency) is

ηE,EM,v =
Ė3

Ė1
=

ĖEM,3

Ẇelect,1
< 1 , (19)

assuming that broad-spectrum EM radiation at 3 is the valuable output from the lamp.
Because electricity can be converted to work without loss in a frictionless motor, electricity is

considered pure exergy, i.e., φelect = 1. Thus, the exergy of the first three streams in Figure 4 is given by

Ẋ1 =��
�*1

φelect Ẇelect,1 = Ẇelect,1, (20)

Ẋ2 =

(
1− T0

T2

)
Q̇2, and (21)

Ẋ3 = φEMĖEM,3 , (22)

where φEM is the exergy-to-energy ratio for broad-spectrum EM radiation. (See Section 2.1.4 for details).
In general, the radiant power of a lamp is a spectral quantity, meaning that it varies with wavelength.

Spectral radiant power (ĖEM,λ) is the EM emissive power available between any two wavelengths and
is related to radiant power (ĖEM) by

ĖEM =
∫

ĖEM,λdλ . (23)

(See Benenson et al. [40].) Visually, ĖEM is the area under the ĖEM,λ vs. λ curve.
The exergetic efficiency of EM radiation emitted by the lamp in Figure 4 is given by

ηX,EM =
Ẋ2 + Ẋ3

Ẋ1
=

(
1− T0

T2

)
Q̇2 + φEMĖEM,3

Ẇelect,1
< 1 , (24)
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In general, φEM is also a spectral quantity. (See Section 2.1.4). The valuable exergetic efficiency of
the EM radiation emitted by the lamp in Figure 4 is given by

ηX,EM,v =
Ẋ3

Ẋ1
=

φEMĖEM,3

Ẇelect,1
< ηX,EM < 1 . (25)

Note that the efficiencies are independent of human presence; ηX,EM and ηX,EM,v would be the same,
whether the lamp is illuminating an unoccupied room or a crowded bar, or whether the illumination
stimulates the rods and cones of a human eye or excites band gap electrons in an amorphous silicon
solar cell.

2.1.3. Energy and Exergy of Light (ĖL and ẊL)

We noted above that both (a) energy and exergy of broad-spectrum EM radiation and (b) EM energy
and exergetic efficiency of lamps are independent of human presence. But what about human perception?

Human beings perceive conductive and convective heat by temperature and EM radiation by
wavelength. Human skin can perceive the thermal radiation portion of the broader electromagnetic
spectrum, approximately 100 nm < λ < 10,000 nm, and human skin is differentially responsive to EM
wavelength [41]. Indeed, thermoreceptors in the dermis of skin are important sensors for regulation of
body temperature [42] (p. 258). Similarly, human eyes perceive only a (narrower) portion of the EM
radiation spectrum (approximately 380 nm < λ < 780 nm). To quantify the energy (and exergy) of light,
we must move from the energy and exergy of broad-spectrum EM radiation (ĖEM and ẊEM) to the
energy and exergy of light (ĖL and ẊL). But how?

Knowing that visual perception of light is a function of wavelength leads to modifying
Equation (23) to include a spectral luminous weighting function ( fλ) such that

ĖL =
∫

ĖL,λdλ =
∫

fλĖEM,λdλ , (26)

with 0 ≤ fλ ≤ 1 and ĖL,λ = fλĖEM,λ.
In Equation (26), the spectral luminous weighting function ( fλ) converts broad-spectrum EM

radiation (ĖEM and ẊEM) to light (ĖL and ẊL), the valuable part of EM radiation for illumination.
In the context of Figure 4,

ĖL,5 =
∫

fλĖEM,λ,3 dλ . (27)

In Figure 4, any EM radiation at statepoint 3 not converted to light is quantified as non-light EM
radiation at statepoint 4 (ĖN,4). Specifically,

ĖN,4 =
∫
(1− fλ)ĖEM,λ,3 dλ . (28)

2.1.4. The Exergy-To-Energy Ratio of EM Radiation (φEM)

Recent advances in the thermodynamics of radiation community enable converting the energy
of EM radiation (ĖEM) into the exergy of EM radiation (ẊEM) [43]. The exergy-to-energy ratio of EM
radiation (φEM, called the “radiative exergy-energy coefficient” in that community) is most commonly
given by Petela’s Equation [43–45]:

φEM = 1− 4
3

T0

T1
+

1
3

(
T0

T1

)4
, (29)

where T1 is the temperature of a blackbody emitter and T0 is the temperature of a blackbody absorber.
Petela’s equation has recently been verified via an infinite-staged Carnot heat engine model [46]
that is powered by radiative energy transfer. In the radiative Carnot model, a photon possessing
a characteristic frequency and photon effective temperature enters a medium that acts as an ideal
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absorber. The photon transfers an infinitesimal quantity of energy to the absorber via thermal radiation.
The energy enters an infinitesimally small Carnot heat engine and performs work. The absorber then
emits another photon at lower energy and frequency, and therefore lower photon effective temperature.
This process repeats until the frequency of the photon is zero and the photon effective temperature (Tλ)
equals the reference temperature (T0) [43].

However, Petela’s equation assumes a blackbody emitter (at T1) and a blackbody absorber (at T0).
To determine φEM for an emitter that is a non-blackbody lamp, the spectral exergy-to-energy ratio (φEM,λ),
must be calculated. Recently, Delgado-Bonal was the first to quantify the spectral entropy of radiation,
which reduces to Petela’s equation when the full spectrum is considered [45]. Here, we use an effective
temperature of light photons [47] (Tλ) to obtain the link between Petela’s equation (Equation (29)) and
the spectral exergy-to-energy ratio (φEM,λ). The product of wavelength and photon effective temperature
is a constant (c3 in Chen et al. [47]) such that

λTλ = c3 = 5.33016× 10−3 m-K , (30)

or

Tλ =
c3

λ
=

5.33016× 10−3 m-K
λ

. (31)

We note that the photon effective temperature approach has been criticized by Liu, who argued
that it is inappropriate “to endue a single photon with macro-scale thermodynamic parameters such
as exergy and entropy” [48] (p. 1810). We acknowledge this critique, but we also note that here Tλ

is ascribed to a stream of photons traveling from a lamp to an eye. Thus, for our purposes, Tλ can
be considered the statistical average effective temperature of that stream of photons, in accordance
with Shan and Zhou [43].

We assume that the mechanism by which light is converted into electrical nerve signals in the
human eye is radiative EM energy transfer from a light source (1) to an eye (0). We assume no losses
in radiative transmission between the lamp and the iris, i.e., no radiation scattering occurs through
air, an assumption that holds for short distances typically observed in lighting applications (< 10 m).
(See Shan and Zhou [43] for a method to estimate transmission losses over longer distances). We further
assume that the human iris is a blackbody absorber (absorbing all wavelengths of radiation perfectly [40]),
being a small aperture on a larger cavity. (In this assumption, we follow Rossing and Chiaverina [49]
(p. 172) who state “another good example of [a blackbody absorber] is the human eye; the pupil looks
black because most light entering it is trapped and absorbed”). Thus, we use Shan and Zhou’s [43]
spectral formulation of Petela’s equation, which replaces the temperature of the emitter (T1) by photon
effective temperature (Tλ):

φEM,λ = 1− 4
3

(
T0

Tλ

)
+

1
3

(
T0

Tλ

)4
. (32)

Further, Equation (31) (in the form Tλ = c3/λ) can be substituted into Equation (32), and T0 can
be taken as 310 K, the temperature of the human body. The result is an equation for φL,λ, the spectral
exergy-to-energy ratio of light:

φL,λ = 1− 4
3

(
310 K

c3

)
λ +

1
3

(
310 K

c3

)4
λ4 . (33)

The exergy of light emitted by a non-blackbody lamp (ẊL) is found by integrating the product
of the spectral radiant power (ĖEM,λ), a spectral luminous weighting function ( fλ), and the spectral
exergy-to-energy ratio (φL,λ) with respect to wavelength.

ẊL =
∫

φL,λ fλ ĖEM,λdλ (34)
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The quotient of ẊL and ĖL gives the exergy-energy ratio of light (φL), which is specific to each
combination of weighting function and lamp ( fλĖEM,λ).

φL =
ẊL

ĖL
=

∫
φL,λ fλĖEM,λdλ∫

fλĖEM,λdλ
(35)

Table 1 summarizes the key equations in Sections 2.1.1–2.1.4.

Table 1. Summary of equations for energy and exergy of work, electricity, heat, EM radiation, and light.
T0 is the environment temperature, T1 is the temperature of heat, and Tλ is the photon effective
temperature (Equation (31)). Note that Ẋ = φĖ on a spectral basis, if needed.

Quantity Energy Rate (Ė) Exergy-To-Energy Ratio (φ) Exergy Rate (Ẋ)

Work ĖW = Ẇ φW = 1 ẊW = Ẇ
Electricity Ėelect = Ẇelect φelect = 1 Ẋelect = Ẇelect

Heat ĖQ = Q̇ φQ = 1− T0
T1

ẊQ =
(

1− T0
T1

)
Q̇

EM rad. ĖEM =
∫

ĖEM,λdλ φEM,λ = 1− 4
3

T0
Tλ

+ 1
3

(
T0
Tλ

)4
ẊEM =

∫
φEM,λ Ėλdλ

Light ĖL =
∫

fλ ĖEM,λdλ φL,λ = 1− 4
3

(
310 K

c3

)
λ + 1

3

(
310 K

c3

)4
λ4 ẊL =

∫
φL,λ fλ ĖEM,λdλ

2.1.5. Lighting Efficiency of a Lamp

If the valuable product of a lamp is considered to be its light (ĖL or ẊL) as opposed to its broad-
spectrum EM radiation (ĖEM or ẊEM), Equations (19) and (25) require modification. In the context of
Figure 4, the valuable energy efficiency of a lamp becomes

ηE,L,v =
Ė5

Ėelect,1
=

∫
fλĖEM,λ,3 dλ

Ẇelect,1
, (36)

and the valuable exergetic efficiency of a lamp becomes

ηX,L,v =
Ẋ5

Ẋelect,1
=

∫
φL,λ fλĖEM,λ,3 dλ

Ẇelect,1
. (37)

2.2. Examples and Data

2.2.1. Luminous Weighting Functions

Spectral luminous weighting functions ( fλ) convert radiant power (ĖEM and ẊEM) to light (ĖL and
ẊL). (See Section 2.1.3). We use four spectral luminous weighting functions relevant to illumination to
enable example calculations. (See Section 3).

The first luminous weighting function option is degenerate: the practitioner could decide to
ignore the nuances of human visual perception altogether, implicitly assuming that all EM radiation
emitted from a lamp counts as light, whether or not it is within the visible portion of the EM spectrum.
For the first option, the degenerate (unweighted, uw) luminous weighting function ( fλ,uw) is

fλ,uw = 1 . (38)

Second, the practitioner could deem a lamp’s EM radiation to be useful if and only if it could
stimulate photoreceptive cells in the human eye, regardless of the spectral sensitivity of those cells.
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In the second option, the practitioner excludes wavelengths outside the range of perception by the
human eye when determining the energy or exergy of light. For the second option (visible, vis),

fλ,vis =


0 , for λ < 380 nm

1 , for 380 nm ≤ λ ≤ 780 nm

0 , for 780 nm < λ .

(39)

But the human eye is spectrally sensitive to EM radiation, with peak sensitivity at 555 nm and lesser
sensitivities at both longer (redder, λ > ∼ 620 nm) and shorter (bluer, λ < ∼ 450 nm) wavelengths.
A third option weights a lamp’s emitted EM radiation by the photopic sensitivity of the human eye.
The photopic luminous (pl) weighting function (Vλ) describes this sensitivity, as shown in Figure 1.
The photopic luminous weighting function was defined by the Commission Internationale de l'Eclairage
(CIE) in 1931 and represents the sensitivity of M and L cones at daytime light levels [50]. So for option 3,

fλ,pl = Vλ . (40)

Substituting Equation (40) into Equation (26) yields

ĖL,pl =
∫

VλĖEM,λdλ , (41)

which provides the basis for calculating a lamp’s output of visible light (Φpl) in the unit of lumens (lm):

Φpl ≡ (683 lm/W) ĖL,pl = (683 lm/W)
∫

VλĖEM,λdλ , (42)

where 683 lm/W is the luminous efficacy of a perfect light source emitting light at λ = 555 nm. (Note that
because lumens are a re-scaling of watts, lumens are also a unit of radiant power, thus Φpl is sometimes
called luminous power. Unfortunately, similar to how radiant power is sometimes called “radiant
flux,” luminous power is sometimes erroneously called “luminous flux”).

When the photopic luminous weighting function (Vλ) is used to calculate radiant power, the valuable
energy efficiency of a lamp can be written in terms of luminous efficacy (K) by modifying Equation (36)
to be (in the context of Figure 4)

K ≡
(683 lm/W)

∫
VλĖEM,λ,3 dλ

Ẇelect,1
, (43)

where K is in lm/watt.
The photopic luminous weighting function (Vλ) is the industry standard for determining lumen

output of lamps, but it has been criticized for under-representing the power of wavelengths different
from 555 nm. In fact, the photopic luminous weighting function neglects the sensitivity of the human
eye’s other light receptors, namely the short-wave cones, rods, and intrinsically photosensitive retinal
ganglion cells (ipRGCs), which are responsible for vision in low-light settings and physiological functions
such as the regulation of circadian rhythms. Thus, the photopic luminous weighting function (Vλ),
and therefore also luminous efficacy (K), are said to have a long-wave bias.

A fourth option (universal, univ) weights a lamp’s spectral radiant power (ĖEM,λ and ẊEM,λ) by
the spectral sensitivity of all five light receptors in the human eye (not just the M and L cones as does
Vλ). The universal luminous weighting function (Uλ) [51] captures the actual, broader sensitivity of
the human eye. So for option 4,

fλ,univ = Uλ . (44)

Table 2 summarizes the luminous weighting functions discussed above.
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Table 2. Weighting functions.

Weighting Function Effect

Unweighted ( fλ,uw = 1) None
Visible ( fλ,vis = 1 in visible wavelengths only) Restricts to 380 nm < λ < 780 nm

Photopic luminsosity ( fλ,pl = Vλ) [50] Accounts for the sensitivity of medium and long cones
Universal luminosity ( fλ,univ = Uλ) [51] Accounts for the sensitivity of all light receptors

To demonstrate how the spectral luminous weighting function ( fλ) affects the energy and exergetic
efficiency of lamps, we need both luminous weighting functions and example lamps, the topic of the
next section.

2.2.2. Lamps

We obtained spectral power distributions (SPDs) of the lamps in Table 3 from the Light Spectral
Power Distribution Database (LSPDD) [52–54]. In the LSPDD, lamp spectral power distributions
(SPDs) are available in the range of 250 nm < λ < 900 nm, and data are provided in terms of relative
intensity (ĖEM,λ,rel) as opposed to absolute intensity (ĖEM,λ). Because lamps in the LSPDD are not
measured using an integrating sphere, the integral of the SPD may not match the radiant power of
the lamp reported by the manufacturer. To ensure that the integral of each lamp’s SPD matches its
reported radiant power, we applied the standard procedure of scaling the SPD by the ratio (µ) of the
radiant power given by the manufacturer (K Ẇelect,1) to the integral of the spectral radiant power taken
from the relative intensity data (ĖEM,λ,rel).

µ ≡
K Ẇelect,1

ĖEM,rel
. (45)

We then applied the scaling factor (µ) to the SPD for each lamp, yielding a corrected SPD (ĖEM,λ)
that matches the manufacturer’s reported radiant power.

ĖEM,λ = µĖEM,λ,rel (46)

Although corrected SPDs were used for all analyses, we later display normalized SPDs for each
lamp, such that the peak of each SPD is 1 (See Section 3). This normalizing process enables visual
comparison of lamps with varying electricity consumption rates and SPD profiles.

We selected one representative lamp in the range of 700–950 lm for each of four common lamp
technologies (incandescent, INC; halogen, HAL; compact fluorescent, CFL; and light emitting diode,
LED). See Table 3 for details about lamps discussed throughout this article.

Table 3. Metadata for example lamps, including year the SPD data were obtained, luminous efficacy,
electricity consumption rate, lumen output, and luminous efficiency [54].

INC HAL CFL LED

Description Sylvania A19 Sylvania PAR38 EnergyStar Twister EnergySmart BR30
Year 2013 2012 2014 2013

Luminous efficacy [lm/W] 14.1 11.0 63.3 70.0
Electricity consumption [W] 60 65 15 10

Lumen output [lm] 846.0 715.0 949.5 700.0
Luminous efficiency [%] 2.06 1.61 9.27 10.25

3. Results

Results are provided in Figure 5 for the spectral exergy-to-energy ratio for light (φL,λ), spectral luminous
weighting functions ( fλ), the normalized spectral emissive power of lamps (ĖEM,λ and ẊEM,λ), and spectral
light emitted by lamps (ĖL,λ and ẊL,λ). Tables 4–6 give efficiencies (ηE,L,v and ηX,L,v) and exergy- to-energy
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ratios (φL,λ). All graphs were constructed and calculations were performed using R [55]. See Supplementary
information for data and R code [27].

3.1. Spectral Exergy-To-Energy Ratio (φL,λ)

The upper-left graph in Figure 5 shows Equation (33). Note that exergy-to-energy ratio for light (φL,λ)
is nearly 1 for all wavelengths of interest for illumination.
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Figure 5. Upper left: The spectral exergy-to-energy ratio of light (φL,λ) from Equation (33). Top: Gray
regions indicate spectral radiant power (ĖEM,λ) for lamps in Table 3. Dark green lines show spectral exergy
(ẊEM,λ). Left: Spectral weighting functions ( fλ), as shown in Table 2. Lower right: Rainbow-colored
regions indicate the human perception of color and the portion of light deemed valuable for human
perception. The tops of the rainbow regions give spectral light as energy (ĖL,λ). The dark green lines
show spectral light as exergy (ẊL,λ). The spectral luminous power (Φλ,pl) is shown in the “Photopic”
row. Peak spectral radiant power (ĖEM,λ) values are normalized to 1 for each lamp.
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Table 4. Valuable energy efficiencies (ηE,L,v, in %) for each lamp and each weighting function ( fλ),
given by Equation (36). Note that for the incandescent (INC) and halogen (HAL) lamps, the unweighted
energy efficiency (ηE,uw) is underestimated, because the SPD data do not go beyond 899 nm, despite INC
and HAL emission beyond 900 nm.

INC HAL CFL LED

Unweighted (ηE,uw) 15.48 9.57 21.72 20.62
Vis. spectrum (ηE,vis) 8.84 6.13 18.27 20.40
Photopic lum. (ηE,pl) 2.06 1.61 9.27 10.25

Universal lum. (ηE,univ) 2.69 2.14 13.37 13.65

Table 5. Exergy-to-energy ratios (φL) for each lamp and each weighting function ( fλ), given by Equation (35).

INC HAL CFL LED

Unweighted (φL,uw) 0.943 0.944 0.953 0.954
Vis. spectrum (φL,vis) 0.949 0.949 0.955 0.954
Photopic lum. (φL,pl) 0.955 0.955 0.956 0.956

Universal lum. (φL,univ) 0.956 0.957 0.958 0.957

Table 6. Valuable exergetic efficiencies (ηX,L,v, in %) for each lamp and weighting function ( fλ), given by
Equation (37). Similar to Table 4, the unweighted exergetic efficiency (ηX,uw) is underestimated for
the incandescent (INC) and halogen (HAL) lamps, because the SPD data do not go beyond 899 nm,
despite INC and HAL emission beyond 900 nm.

INC HAL CFL LED

Unweighted (ηX,uw) 14.59 9.04 20.69 19.67
Vis. spectrum (ηX,vis) 8.38 5.82 17.45 19.47
Photopic lum. (ηX,pl) 1.97 1.54 8.86 9.79

Universal lum. (ηX,univ) 2.58 2.05 12.81 13.06

3.2. Luminous Weighting Functions ( fλ)

The four luminous weighting functions discussed in Section 2.2.1 and Table 2 are shown on the
left side of Figure 5.

3.3. Radiant Power (ĖEM,λ and ẊEM,λ)

The four graphs at the top of Figure 5 show normalized spectral radiant power (ĖEM,λ) at the top
of the gray region for each lamp. Applying Equation (33) to the four lamps identified in Section 2.2.2
gives spectral radiant power in exergy terms (ẊEM,λ), shown by the dark green line. The areas of the
gray regions (ĖEM) are given by Equation (23). The areas beneath the dark green lines in all graphs are
the exergy of light (ẊL), given by Equation (34).

Note that exergy (dark green line) is very close to energy (top of the gray regions) for all lamps,
because the exergy-to-energy ratio (φL,λ) is always close to 1 for EM wavelengths relevant to light.
The difference between energy and exergy is greatest in the upper right of the graphs where both (a)
emission is greater and (b) wavelength is longer.

3.4. Luminous Power (ĖL,λ and ẊL,λ)

Figure 5 provides visual representation of the spectral energy and exergy of light for the four lamps
and four weighting functions of Sections 2.2.1 and 2.2.2 and Tables 2 and 3, respectively. Each rainbow
colored region shows the energy content of light (spectral luminous power) and is the spectral product
of its row’s weighting function and its column’s lamp SPD. The areas of the rainbow colored regions
(ĖL) are given by Equation (27). The areas beneath the dark green lines (ẊL) are given by Equation (34).
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3.5. Energy Efficiencies (ηE,L,v)

Valuable energy efficiencies (ηE,L,v) of the various combinations of weighting functions and lamps
are shown in Table 4. Note that when a luminous weighting function is specified, the lighting (L) and
valuable (v) subscripts are implied and replaced by the weighting function specifier. (e.g., the valuable (v)
energy (E) efficiency (η) of light (L) using the visible luminous weighting function (vis), ηE,L,v,vis, is written
unambiguously as ηE,vis for simplicity.)

3.6. Exergy-To-Energy Ratio (φL)

Exergy-to-energy ratios (φL) of the various combinations of weighting functions and lamps are
shown in Table 5.

3.7. Exergetic Efficiencies (ηX,L,v)

Valuable exergetic efficiencies (ηX,L,v) of the various combinations of weighting functions and
lamps are shown in Table 6.

4. Discussion

4.1. Comparison between Conventional and Exact Methods to Calculating Exergetic Efficiency (ηX,L,v)

The exact method for calculating the exergetic efficiency of lamps presented in Section 2.1.5
differs from the conventional method used in the societal exergy analysis community (Section 1.3).
This section (a) adds detail to the conventional method and (b) evaluates the conventional method
relative to the exact method, leading to three implications for societal exergy analysis (Section 4.1.2).

4.1.1. Conventional and Exact Methods

The conventional method (Section 1.3) estimates the valuable exergetic efficiency of lighting by
the quotient of the theoretical minimum rate of energy required to emit one lumen and the actual rate
of energy used to emit one lumen for a given lamp. The minimum and actual energy rates are obtained
by inverting luminous efficacies. For a lamp, the quotient is between the lamp’s luminous efficacy (K)
and the maximum luminous efficacy (Kmax). Thus,

ηX,L,v ≈
1

Kmax
1
K

=
K

Kmax
, (47)

a restating of Equation (3).
Equation (43) shows that the luminous efficacy of a lamp (K) is equal to the quotient of the luminous

power (Φpl, Equation (42)), expressed in lm, and the electricity consumption rate of the device (Ẇelect,1
in Figure 4), expressed in W. Substituting Equation (43) into Equation (47) restates (with reference to
Figure 4) valuable exergetic efficiency for the conventional method:

ηX,L,v ≈
(683 lm/W)

∫
Vλ ĖEM,λ,3 dλ

Ẇelect,1

Kmax
. (48)

With recent advances in the fields of radiation thermodynamics and photometry (Section 2.1.4),
it is now possible to determine the energy and exergy of light exactly, thereby relieving societal exergy
practitioners of the need to estimate exergetic efficiency by the quotient of the minimum energy
required to produce a lumen and the actual energy required to produce a lumen. Thus, we can evaluate
the conventional method in light of recent advances, using exergetic efficiency (ηX,L,v) as the point
of comparison.
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Comparing Equation (48) (the conventional method) to Equation (37) (the exact method) reveals
that the conventional method for calculating the exergetic efficiency of lighting is correct under the
following conditions only:

(1) the maximum luminous efficacy (Kmax) is taken to be 683 lm/W,
(2) φL,λ = 1 for all wavelengths, and
(3) the spectral luminous weighting function ( fλ) is taken to be the photopic luminous weighting

function (Vλ).

Condition (a) shows that the correct assumption for maximum luminous efficacy in the conventional
method is Kmax = 683 lm/W. Any other assumption is a mistake. The assumption in condition (b) is
incorrect; the exergy-to-energy ratio for light (φL,λ) is not 1 (as shown in Equation (33)), but the conventional
method assumes it is. Condition (c) highlights an unfortunate requirement of the conventional method,
one that is lifted by the exact method.

When Kmax is equal to 683 lm/W and the weighting function is taken to be the photopic luminous
weighting function (Vλ), as they should for the conventional method, Equation (48) simplifies to

ηX,L,v ≈
∫

VλĖEM,λ,3dλ

Ẇelect,1
. (49)

So the conventional method’s estimate of a lamp’s valuable exergetic efficiency (Equation (47))
reduces to Equation (49), which is the same as Equation (36), the valuable energy efficiency of a lamp,
if fλ = Vλ. That is to say, one interpretation of the conventional method is that it incorrectly assumes
the exergetic efficiency of a lamp to be its energy efficiency.

4.1.2. Implications for Societal Exergy Analysis

The above comparison between the conventional method (Section 4.1.1) and the exact method
(Section 2.1) raises three implications for societal exergy analysis. First, with the conventional method,
the practitioner is required to select a value for maximum luminous efficacy (Kmax), the denominator
of Equation (47). The choice of Kmax can make a significant difference to the results. The correct value
for Kmax is 683 lm/W, as discussed in Section 4.1.1. We showed in Section 1.3 that some practitioners
have mistakenly, we now know, taken Kmax to be 220 lm/W or 400 lm/W, thereby overestimating
exergetic efficiency of lighting (ηX,L,v) with the conventional method by a factor of 683 lm/W

220 lm/W = 3.1 or
683 lm/W
400 lm/W = 1.7, respectively.

Second, to obtain the correct exergetic efficiency of lighting, practitioners must reject the
conventional method assumption that φL,λ = 1. Recent progress in the exergy of radiation enables this
rejection, following the methods of Section 2.1.4. Specifically, the spectral exergy-to-energy ratio of
light (φL,λ) of Equation (33) and Figure 5 should be used. We note, however, that φL,λ is close to 1 for
all wavelengths of interest to illumination. Happily, the conventional method was not far wrong.

Third, in the conventional method, the practitioner is required to use the photopic luminous
weighting function (Vλ) for the spectral luminous weighting function ( fλ). However, it is not certain
that the photopic luminous weighting function is the best choice. In fact, we later recommend replacing
the photopic luminous weighting function (Vλ) by the universal luminous weighting function (Uλ).
(See Section 4.2.2).

4.2. Recommendations

We provide three recommendations for societal exergy practitioners: (a) use the exact method of
Section 2 when possible, i.e., when SPD data are available for a lamp or lamp technology (Section 4.2.1),
(b) use the universal luminous weighting function (Uλ) always (Section 4.2.2), and (c) use an approximate
method when luminous efficacy (K) data are available, but SPD data are not (Section 4.2.3).
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4.2.1. Recommendation for the Exact Method

Our first recommendation is for use of the exact method (Section 2.1.5) for determining the
valuable exergetic efficiency of lamps (ηX,L,v) when SPD data are available. The exact method provides
the following benefits over the conventional method:

(a) it is free of any assumptions for the maximum luminous efficacy (Kmax),
(b) it uses a non-unity spectral exergy-to-energy ratio, no longer assuming φL,λ = 1, and
(c) it allows choices for the spectral luminous weighting function ( fλ), no longer requiring fλ = Vλ,

thereby enabling our second recommendation, namely use of the universal luminous weighting
function (Uλ).

4.2.2. Recommendation for the Universal Luminous Weighting Function (Uλ)

We recognize that the choice of spectral weighting function ( fλ) remains contentious [45,51,56,57].
That said, we suggest that the choice of weighting function in societal exergy analysis should be
appropriate for each lamp’s application. Our second recommendation is for use of the universal luminous
weighting function (Uλ) in societal exergy analysis when the purpose of lamps is illumination.

For the application of illumination, we note that human perception of light and color diminishes
rapidly above 700 nm, as shown by Figure 5. This decline in human eye sensitivity toward the infra-red
region is captured well by the photopic luminous weighting function (Vλ).

However, it is also known that short wavelength EM radiation (bluer light) provides physiological
benefits, such as the suppression of melanopsin and the regulation of circadian rhythms [56]. The photopic
luminous weighting function (Vλ) does not capture the importance of short wavelength EM radiation,
attenuating human perception nearly equally in the blue and red regions of the visible spectrum.

Societal exergy analysis implicitly adopts the photopic luminous weighting function (Vλ) when it
applies the conventional method for calculating the exergetic efficiency of lighting (See Section 4.1.1).
For lamps whose purpose is illumination, we believe that, instead, the universal luminous weighting
function (Uλ) is most appropriate. (See also Rea and Bierman [51]). We provide three arguments in
support of this recommendation.

First, the universal luminous weighting function (Uλ) accounts for the sensitivity of all five types
of light receptors in the human eye, whereas the photopic luminous weighting function (Vλ) does not.

Second, to obtain the benefits of blue light, many lamps are designed with a blue spike in the region
of 480 nm, the peak of the melanopsin suppression action spectrum [58]. (For example, see the blue
spike in the SPD (ĖEM,λ) for the LED lamp in Figure 5). The universal luminous weighting function (Uλ)
correctly includes the energy or exergy of blue spikes in the numerator of efficiency calculations, thereby
correctly elevating the efficiency of lamps that contain a blue spike compared to the photopic luminous
weighting function.

Third, manufacturers who design lamps with blue spikes do not get credit for their efforts, because
the industry-standard measure of lighting efficiency, luminous efficacy (K), uses the photopic luminous
weighting function (Vλ). This state of affairs could encourage lamp manufacturers to reduce short wavelength
output of lamps, even when short wavelength EM radiation would provide physiological benefits. Adopting
the universal luminous weighting function will alleviate the incentive for manufacturers to minimize the
size of blue spikes, providing a greater range of options for the design of SPDs for lamps that produce
white light.

The conventional method for estimating lamp efficiency is bound by the use of the photopic luminous
weighting function. However, a switch away from the photopic luminous weighting function (Vλ) toward
the universal luminous weighting function (Uλ) is made possible by the exact method described in
Section 2.1, so long as SPD data are available. In the absence of SPD data, we recommend an approximate
method, as set out in the next section.
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4.2.3. Recommendation for an Approximate Method

Section 4.1.1 shows that the conventional method does not require SPD information, but it
produces energy efficiency (instead of exergetic efficiency) while requiring the use of photopic luminous
weighting function (ηE,pl). In contrast, we recommend that, in the absence of SPD data, societal exergy
practitioners calculate exergetic efficiency with the universal luminous weighting function (ηX,univ).
Thus, our third recommendation is for an approximate method to determine the valuable exergetic
efficiency of lamps (ηX,L,v) when SPD data are not available but luminous efficacy data (K) are. Results
from the exact method provide guidance for development of an approximate method.

We suggest the following two-step process: using the conventional method as a starting point,

1. move from valuable energy efficiency (ηE,pl) to valuable exergetic efficiency (ηX,pl) using an
average exergy-to-energy ratio (φ̄L,pl) and

2. move from valuable exergetic efficiency determined with the photopic luminous weighting
function (ηX,pl) to valuable exergetic efficiency determined with the universal luminous weighting
function (ηX,univ) using an average ratio between those efficiencies, the average photopic-to-
universal conversion factor (γ̄pl→univ).

Estimating the average exergy-to-energy ratio (φ̄L,pl)

We calculated the exergy-to-energy ratio for a sample of lamps from the LSPDD [54] using
Equation (35) with fλ = Vλ. (The sample consists of 45 lamp SPDs representing six technologies: INC,
HAL, CFL, LED, MH (metal halide), and HPS (high pressure sodium). The average value for the
exergy-to-energy ratio is φ̄L,pl = 0.956 with a remarkably small standard deviation of σφL,pl = 0.00037.
Table 7 shows statistics for the exergy-to-energy ratio (φ̄L,pl) by lighting technology.

Table 7. The mean (φ̄L,pl), standard deviation (σφL,pl ), and sample size (n) of the exergy-to-energy ratio
when using the photopic luminous weighting function, by lighting technology.

INC HAL CFL LED MH HPS

φ̄L,pl 0.955 0.956 0.956 0.956 0.956 0.955
σφL,pl 0.000148 0.000097 0.000419 0.000361 0.000196

n 11 10 10 10 3 1

Estimating the average photopic-to-universal conversion factor (γ̄pl→univ)

Similarly, we obtained γpl→univ for each lamp (i) by taking the quotient of efficiencies:

γpl→univ ,i =
ηX,univ,i

ηX,pl,i
. (50)

Because a greater proportion of each SPD is considered to be light by the universal luminous
weighting function (Uλ) compared to the photopic luminous weighting function (Vλ), γpl→univ is
expected to be greater than 1. The average value of the photopic-to-universal factor across our population
of lamps was γ̄pl→univ = 1.36, with a small standard deviation of σγpl→univ = 0.095. Table 8 shows
statistics for the photopic-to-universal factor (γ̄pl→univ) by lighting technology.

Table 8. The mean (γ̄pl→univ), standard deviation (σγpl→univ ), and sample size (n) of the photopic-to-
universal factor, by lighting technology.

INC HAL CFL LED MH HPS

γ̄pl→univ 1.32 1.36 1.38 1.34 1.51 1.19
σγpl→univ 0.029 0.031 0.138 0.097 0.048

n 11 10 10 10 3 1
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Implementing the approximate method

The approximate method for determining the valuable exergetic efficiency of a lamp is implemented
by the following equation

ηX,univ ≈ φ̄L,pl γ̄pl→univ
K

683 lm/W
, (51)

which is a modification of Equation (47) that approximates the move from energy to exergy assuming
the photopic luminous weighting function (via φ̄L,pl) and the move from the photopic luminous
weighting function to the universal luminous weighting function in the exergy space (via γ̄pl→univ).

When the lamp technology is unknown, overall average values can be used for φ̄L,pl and γ̄pl→univ:

ηX,univ ≈ (0.956)(1.36)
K

683 lm/W
= 1.30

K
683 lm/W

. (52)

If the lamp technology is known, φ̄L,pl and γ̄pl→univ values from Tables 7 and 8 could be used
instead of the averages across all technologies shown in Equation (52).

Table 9 summarizes the valuable exergetic efficiency for the four representative lamps (INC, HAL,
CFL, LED) and the three methods (conventional, exact, and approximate).

Table 9. Valuable exergetic efficiencies (in %) for each of the three methods (conventional, exact, and approximate)
and each of the four example lamps (INC, HAL, CFL, LED). Note that the conventional method row is
the same as row 3 of Table 4. The exact method row is the same as row 4 of Table 6. The approximate
method row uses the values for φ̄L,pl and γ̄pl→univ shown in Equation (52).

INC HAL CFL LED

Conventional method (ηE,pl) 2.06 1.61 9.27 10.25
Exact method (ηX,univ) 2.58 2.05 12.81 13.06

Approximate method (Equation (52)) 2.68 2.09 12.03 13.30

4.3. Aggregate Lighting Efficiencies

Societal exergy analyses are normally conducted at the sectoral or economy-wide scale, so practitioners
must weight per-lamp-technology efficiencies by each technology’s usage fraction. Two types of data are
needed for a given period of interest, typically a year: (a) valuable exergetic efficiency data for each lamp
technology (ηX,univ,i) and (b) proportion of lighting electricity consumption by lamp technology (θi),
where i denotes individual lighting technologies.

Item (a) is the result of applying the exact method to each lamp technology but depends on the
availability of representative SPDs for each technology, which are not often known. Instead, the most
common measure of lighting efficiency reported for a lamp technology is the luminous efficacy (K).
Therefore, to develop an aggregate measure of lighting efficiency, luminous efficacies must be converted
into valuable exergetic efficiencies by the approximate method. (See Section 4.2.3).

Data for item (b) are in the form of the fraction of lighting electricity consumed by each lamp
technology. Such data (and luminous efficacy values, Ki) can be obtained from the US DOE’s Lighting
Market Characterization reports [24–26] for the USA for the following lamp technologies: incandescent,
halogen, compact fluorescent, linear fluorescent, high intensity discharge, LED, and other.

When SPDs are available, the exact method can be used to determine the valuable exergetic
efficiency of each lighting technology (i), and the aggregate valuable exergetic lighting efficiency for a
particular year can be found by

ηX,univ,agg = ∑
i

θi ηX,univ,i . (53)
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When SPDs are not available, the approximate method can be used as follows:

ηX,univ,agg ≈∑
i

θi φ̄L,pl γ̄pl→univ
Ki

683 lm/W
. (54)

5. Summary and Future Work

Several recent developments in the fields of radiation thermodynamics and photometry (the spectral
exergy-to-energy ratio, φL,λ, and the photon effective temperature, Tλ) have enabled a re-evaluation of
the exergy of light and the exergetic efficiency of electric lamps applicable to societal exergy analysis. We
built upon those advances to provide clear and rigorous definitions of the energy and exergy of light. We
developed a novel exact method for determining the exergetic efficiency of lamps involving the spectral
exergy-to-energy ratio (φL,λ), a luminous weighting function ( fλ), and broad-spectrum lamp luminous
power (ĖEM). We showed that the exact method (a) is free of any assumptions for the maximum luminous
efficacy (Kmax), (b) uses a non-unity spectral exergy-to-energy ratio (φL,λ), and (c) allows choices for the
spectral luminous weighting function ( fλ). Items (a)–(c) are improvements over the conventional method.
The exact method requires the availability of a lamp’s spectral power distribution. For cases when
a spectral power distribution is not available, we developed a novel approximate method, involving
surprisingly stable values of the exergy-to-energy ratio (φL) and the photopic-to-universal conversion
factor (γpl→univ) across lighting technologies. Finally, we provided recommendations for societal exergy
practitioners, namely to use (a) the exact method when a lamp’s spectral power distribution is available,
(b) the universal luminous weighting weighting function (Uλ), and (c) the approximate method when
luminous efficacy is known but spectral power distribution is not.

Future work could include (a) investigating additional lighting technologies to assess the
stability of the average exergy-to-energy ratio (φ̄L,pl) and the average photopic-to-universal conversion
factor (γ̄pl→univ) across lighting technologies, (b) applying the exact method to understand the
evolution of lighting technology relative to the maximum possible reductions in lighting energy
consumption [59] (via gains in lamp luminous efficacy (K) and valuable exergetic efficiency, ηX,L,v),
(c) understanding the effect of lamp “waste” heat on lamp efficiency (lamp heat is beneficial when
it displaces energy for winter space heating but detrimental when it adds to summer cooling loads),
and (d) pushing toward the services stage of the energy conversion chain to assess the effects of waste
light (caused by excessive intensity, lighting that falls on surfaces that do not require illumination,
or under-utilization of light due to under-occupancy of spaces).

Supplementary Materials: The following are available online at https://doi.org/10.5518/865 [27]: sources for
the luminous efficacy values in Figure 2, sources for the weighting functions and SPDs displayed in Figure 5,
instructions and R code for reproducing the metrics and figures in this paper, and a blank excel workbook template
in the required format for the insertion of spectral power distribution data by the user.
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Nomenclature

The following symbols, greek letters, subscripts, and abbreviations are used in this manuscript:

Symbol Meaning [example units]
c speed of light, 3× 108 m/s
c3 constant for photon effective temperature, 5.33016× 10−3 m-K
E energy [J]
Ė energy rate [W]
fλ spectral weighting function [–]
h Planck’s constant, 6.626× 10−34 J-s
K luminous efficacy [lm/W]
Kmax luminous efficacy of a perfect light source at 555 nm [lm/W]
Q̇ heat rate [W]
T temperature [K]
Tλ effective temperature of light photons [K]
Uλ universal luminous weighting function [–]
Vλ photopic luminous weighting function [–]
Ẇ work rate [W]
Ẋ exergy rate [W]

Greek
η efficiency [–]
γpl→univ photopic-to-universal scale factor for ηX,L,v [–]
γ̄pl→univ average photopic-to-universal scale factor for ηX,L,v [–]
λ wavelength of EM radiation [nm]
µ scale factor between relative and absolute intensity [–]
ν frequency of EM radiation [1/s]
Φpl luminous power [lm]
φ exergy-to-energy ratio [–]
φ̄ average exergy-to-energy ratio [–]
σ standard deviation

Subscripts
0 ambient temperature or absorber temperature
1 emitter temperature
agg aggregate
C Carnot efficiency
D exergy destroyed
elect electricity
EM electro-magnetic
E energy
i index for lamp type or lamp technology
λ spectral (a function of wavelength)
L light
max maximum luminous efficacy
N non-light EM radiation
pl denotes the application of the photopic luminosity function (Vλ)
Q heat
rel relative intensity
sys system operating temperature
univ denotes the application of the universal weighting function (Uλ)
uw unweighted
v valuable
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vis visible spectrum or visible weighting function
W work
X exergy

Abbreviations
CFL compact fluorescent light
CIE Commission Internationale de l'Eclairage
CMF color matching function
DOE Department of Energy
EM electromagnetic
HAL halogen
HPS high-pressure sodium
INC incandescent
ipRGCs intrinsically photosensitive retinal ganglion cells
LED light-emitting diode
LSPDD Light Spectral Power Distribution Database
MH metal halide
SPD spectral power distribution
UK United Kingdom
US, USA United States of America
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