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Abstract: This paper presents the results of recently conducted research on Luenberger observers
with non-proportional feedbacks. The observers are applied for the reconstruction of magnetic fluxes
of an induction motor. Structures of the observers known from the control theory are presented.
These are a proportional observer, a proportional-integral observer, a modified integral observer,
and an observer with additional integrators. The practical application of some of these observers
requires modifications to their structures. In the paper, the simulation results for all mentioned types
of observers are presented. The simulations are performed with a Scilab-Xcos model which is attached
to this paper. The problem of gains selection of the observers is discussed. Gains are selected with
the described optimization method based on a genetic algorithm. A Scilab file launching the genetic
algorithm also is attached to this paper.
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1. Introduction

In the control systems of induction motors, the state variables of the motor need to be estimated
based on methods such as vector control, direct torque control and multiscalar control. The values of
state variables, such as magnetic fluxes coupled with the rotor windings, and sometimes also angular
speed, are applied in the control system as feedback signals. The estimation quality has a crucial impact
on the accuracy of the overall control process. The Luenberger observers [1–3] are often applied in the
state variables’ reconstruction.

In the literature on modern control systems of induction machines, the authors pay attention to the
fact that the accuracy of magnetic flux estimation (both the module and the flux vector argument) has a
significant impact on the quality of control in these control systems. For example, the works [4–7] provide
a review of various modern control systems of induction machines used in practice: Field Oriented
Control (FOC), Direct Torque Control with Voltage Space Vector Modulation (DTC-SVM), Direct Torque
Control with Flux Vector Modulation (DTC-FVM), Switching Table Direct Torque Control (ST-DTC) and
Direct Self-Control (DSC). In all these systems, the stator or rotor magnetic flux signal from the observer
is used in the feedback paths and is fed to the input of the continuous (most often proportional-integral
(PI) type) or hysteresis regulators. It is also used to calculate the electromagnetic torque value in
systems with Direct Torque Control (DTC). The authors of the work [4] write that “Implementation of
any high-performance drive system requires a high accuracy estimation of the actual stator or/and
rotor flux vector (magnitude and position) and electromagnetic torque”, thus emphasizing the role of
the flux observer and its impact on the quality of the control system.

In the works already cited [4–6], as well as in [8–10], control systems are presented in which
the information about the stator and/or rotor flux is used to predict the values of the stator current,
rotor flux and electromagnetic torque. These are systems that use prediction based on the induction
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machine model (Model Predictive Control (MPC)): Predictive Torque Control (PTC) and Predictive
Current Control (PCC), belonging to the Finite Set Model Predictive Control class (FS-MPC). In these
systems, the quantities calculated on the basis of prediction are used in the process of minimizing the
cost function [8]. Consequently, the quality of the control system in this case also significantly depends
on the performance of the stator and/or rotor flux observer. Moreover, in systems using prediction,
the low computational complexity of the observer is crucial, because delays in switching the power
inverter keys, resulting from the time needed to implement the control algorithm and to calculate the
observer’s equations, have an extremely negative impact on the control quality [9].

In all the above-mentioned control systems of induction machines, the magnetic flux of the stator
or rotor is one of the controlled quantities. The reference value of this flux is fed to the controller input
or to an algorithm that minimizes the cost function. In classic control systems, this reference flux value
may be constant. It may also depend, for example, on the angular speed, by analogy to the control
systems of DC commutator machines. However, in modern control systems in which the active power
losses in the induction machine are additionally minimized, the flux reference value is calculated in
the process of ongoing (real-time) optimization, which takes into account the current operating point
parameters of the machine, including the electromagnetic torque, which is calculated on the basis of
the flux being estimated by the observer. Such control systems that minimize losses in the machine
have been presented, among others, in the works [11–13]. In these systems, the importance of the flux
observer and its performance increases significantly because low estimation quality adversely affects
the process of flux control and the optimization process of its reference value.

The authors of the work [4] write: “There is a strong trend to avoid mechanical motion
(speed/position) sensors because it reduces cost and improves reliability and functionality of the
drive system.” As a result of this trend, in recent years, the literature commonly considers sensorless
control systems of induction machines, presented among others in [14], in which the rotor speed
signal is obtained in the speed reconstruction system, and various structures of which are presented
in [15–17]. Virtually any of the previously mentioned control systems of an induction machine can be
implemented as sensorless. Rotor speed estimation systems are built, among others, with the use of
flux observers, which are equipped with an adaptive mechanism, creating Model Reference Adaptive
Systems (MRAS) [17–19]. The adaptation mechanism reconstructs the speed based on the estimated
flux signals or the fluxes and the measured stator winding currents. Accordingly, the quality of the flux
estimation has a significant impact on the quality of the speed reconstruction and the performance of
the sensorless control system. Additionally, in sensorless control systems attention should be paid to
the problem of stability of the speed estimation system, which (due to the adaptive mechanism) is a
non-linear system of higher order than the flux observer used for its construction. The issue of the
stability of speed reconstruction systems based on the proportional Luenberger observer is presented,
among others, in [20].

The authors of many publications indicate that Luenberger observers used for magnetic
flux estimation show relatively good properties and can be used in various control systems
of induction machines. These observers are compared with others in terms of various criteria,
including steady-state accuracy, performance in dynamic states, estimation quality at very low speed,
robustness against machine model parameter variations, robustness against noises, computational
complexity and real-time implementation. The conclusions are that the Luenberger observers are
characterized by relatively good robustness to changes in the parameters of the machine model,
easy hardware implementation and low computational complexity. Moreover, it is relatively easy
to shape their dynamic properties (by locating their poles on the complex plane in the desired
position), which is important in ensuring the stability of the control system. The literature on the
subject shows that Luenberger observers display a slightly worse resistance to noises and interference
of input signals than Kalman filters, for example, but due to other disadvantages of Kalman filters
(complicated implementation, high computational complexity) and other estimation systems based
on neural networks or fuzzy logic, the use of Luenberger observers seems to be the right choice.
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Such conclusions were drawn, among others, by the authors of [21], in which a comparison is made
between the proportional Luenberger observer, the Sliding Mode Observer (SMO) and the Extended
Kalman Filter (EKF), operating in the sensorless Direct Field Oriented Control (DFOC) system. Similarly,
in [22,23] the proportional Luenberger observer, the Kalman filter and the observer using neural
networks are compared in the sensorless system. In [24] a nonlinear observer with a structure similar
to the Luenberger observer and the Kalman filter are compared in the control system with speed
measurement. In each of the studies mentioned, similar conclusions are obtained, which indicate the
benefits of using the Luenberger observer (or an observer with a similar structure).

Among all known types of Luenberger observers, only the proportional type is commonly
applied in induction motor control systems [1]. This observer, as well as other solutions obtained from
that, for example the one described in [25], have one great advantage—it is easy to calculate their
gains. In case of the observer described in [1], eigenvalues are proportional to the motor’s values,
and only a value for the proportionality factor should be assumed. The estimation error attenuation is
stronger when this factor is higher, which results in a better estimation quality. However, in sensorless
control system, this dependency is preserved only when the proportionality factor is relatively low
(i.e., less than about 1.75). Once this value is exceeded, the estimation quality deteriorates, as the
observer tends to amplify noises. This results in lowered robustness. A similar observation is made for
a wider class of observers in [26].

In control systems, the observer operates in the presence of noises and parameter variations.
In most cases, the reference voltage (sinusoidal waveform) is calculated by the control system and is
passed to the observer’s input. However, the actual voltages feeding the motor are generated by a
Pulse Width Modulation (PWM) inverter (square waveforms). The difference between the calculated
and generated voltage waveforms results from the presence of higher voltage harmonics, non-ideal
compensation of dead time and voltage drops on the inverter switches. This difference should be
treated as a noise overlaying the observer’s input signal. Another set of observer’s input signals consists
of measured stator winding currents. These currents contain components that result from the physical
phenomena present in the motor but not taken into consideration in the motor’s mathematical model
(i.e., the nonlinearity of the magnetic core and slot harmonics). These components should also be treated
as noises. Moreover, the parameter values of the motor’s mathematical model used for an observer
design are usually different from the real values. This results from identification errors and parameter
variations due to physical phenomena, such as thermal changes of winding resistances. Therefore,
it is advisable to design the observer by considering an increase in its robustness. The robustness of
the observer may be ensured by either the proper observer’s gains selection or by application of the
observer’s feedback different than the proportional one. This paper aims to discuss the observer design
techniques based on both methods.

In this paper, an optimization gain selection method has been developed based on a genetic
algorithm (the optimization described in this paper is not a part of an on-line control strategy as
in [4–6,8–10], but is a tool for an off-line observer design). The novelty of the current work is its
applied fitness function that takes into consideration not only the criteria based on eigenvalues but
also the additional criterion, which enhances the robustness of the observer. Moreover, the proposed
method enables to enforce relations between the observer’s gains to fulfill the practical requirement for
electric drives, that is to provide the same dynamics independently to rotation direction. Finally, on the
contrary to the method described in [1], the proposed method can be applied to observers that have
more state variables than the motor mathematical model. This is essential in cases of observers with
feedbacks that are different from the proportional one.

There are many known observers with non-proportional feedbacks containing dynamical units
on the contrary to the proportional one. Such structures, although described in the system and
control theory, have barely been applied in control systems of an induction motor. So far only a
proportional-integral (PI) observer has been applied, and to a limited extent. This includes mostly for
rotor temperature estimation [27] and fault detection [28], and not as a source of feedback signals for a
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control system. An example of a full-order PI observer for magnetic fluxes reconstruction is presented
in [29]. However, this observer is based on the mathematical model of an induction motor that uses
rotor current oriented d-q transform and treats the angular speed of rotor current phasor as an input
quantity. The need for estimation of the rotor current phasor angular speed decreases the practical
usability of this solution. All the observers proposed in this paper are described in a stationary α-β
coordinate system, therefore they do not require estimation of any phasor’s speed. A reduced-order
PI observer for rotor flux components reconstruction is described in [30]. Reconstructing two of four
state variables of an induction motor, this observer cannot operate with speed adaptation mechanism,
on the contrary to the full-order observers proposed by the authors.

Also, it should be mentioned that other types of non-proportional observers presented in this
paper are applied for the first time in the control systems of an induction motor.

Application of non-proportional observers in their basic forms may be impossible for a certain
class of observed systems, because of resulting observers’ structural instability. It can be proven,
that an induction motor also belongs to this class [31]. To solve this problem, the authors proposed
the modification of original observers’ structures consisting in replacement of observers’ feedback
integrators with first-order inertias. Replacing an integrator with inertia has been previously applied in
simple estimators of induction motor magnetic fluxes [32]. However, it is applied in non-proportional
observers for the first time in the current work. This change affects the dynamical properties of the
observers, therefore it is taken into consideration in the gain selection process, by proper modification
of the observers’ state matrices.

The most important contributions are as follows:

• Application of a reduced order integral unit PI observer, a modified integral observer and
proportional observers with additional integrators in an induction motor control system for the
first time.

• Proposed modification of non-proportional observers’ mathematical models that prevents them
from structural instability.

• Proposed new simple gain selection criterion that enhances observer’s robustness.

2. Methodology

In this paper, the selection of the gains of the proportional observer is described in its general form,
which is also suitable for transformed non-proportional observers. The workflow of a proposed gain
selection process is presented in Figure 1. The process starts with observed system (induction motor)
mathematical model analysis, which is the base for the observer’s structure design. Next, the structure
of the observer is chosen. If a non-proportional observer is chosen, then its structure must be modified,
to prevent instability and transformed to the form of the proportional observer. Once the observer
is transformed, its gains are to be optimized with a genetic algorithm. The transformation causes
that the gain optimization is performed the same way, independently of the type of the observer.
The described method may be applied with a program written in the Scilab environment as attached
to this paper (Supplementary Materials, the START genet.sce file). The program in its original form
is for gain selection of a proportional observer; however, it can also be applied for non-proportional
observers. To do that, the matrices in lines 70–73 in the file START genet.sce are replaced with proper
forms from lines 67–223 of the file START sim.sce. Also, the assumed structure of the gain matrix in
lines 87–94 (START genet.sce) should be properly changed, to have the same sizes as gain matrices in
lines 67–223 (START sim.sce).

The gain selection process is performed once, during observer design. Once calculated, the gains
do not change during observer’s operation. The observers described in this paper may be tested
with the attached simulation model (see the Scilab-Xcos file sim model.zcos). The simulation can be
run with the START sim.sce file. The model is simplified, although it enables testing the observer’s
performance in the presence of noises and parameter variations. It should be noted that such tests
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cannot be performed in the laboratory, since in a real electric drive, the values of noises and parameter
variations are unknown. This is why simulations are so helpful. However, laboratory tests are the last
step of the observer design process. The laboratory test results for the observers described in this paper
can be found in previously published papers by the authors.Energies 2020, 13, x FOR PEER REVIEW 5 of 24 
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The observers’ gains optimized with the algorithm in the file START genet.sce may be tested with
simulation started by the file START sim.sce. To do that, proper observer structure should be chosen
in line 68 of the file START sim.sce, and new gains values should be typed in the appropriate places
between lines 67–223. Both files may be used for induction motors that are different from the one used
by the authors. The motor’s rated parameters and per-unit system base quantities may be changed in
the file START genet.sce in lines 46–55 and in the file START sim.sce in lines 41–53. These values in both
files should be the same.

3. Results

The observer design consists of two stages. In the first stage, the structure of the observer needs to
be chosen based on the observed system mathematical model. In the second stage, the observer’s gains
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will be calculated. Both stages are combined together by a mathematical model of the proportional
observer, based on a mathematical model of the motor.

3.1. Mathematical Model of the Motor

Let us take into consideration a linear dynamic system, described with the set of
matrix equations [1,33,34]: { .

x = Ax + Bu
y = Cx

. (1)

In case of an induction motor the state vector x, the input vector u and the output vector y have
the following forms:

x =


ψsα

ψsβ

ψrα

ψrβ

, u =

[
usα

usβ

]
, y =

[
isα
isβ

]
, (2)

where ψ is the magnetic flux coupled with the motor’s winding, I is the current of the winding,
and u is the winding voltage. Subscripts s and r refer to the stator and rotor windings, respectively.
Subscripts α and β are also the axial components of the phasor in a stationary Cartesian coordinate
system. In system (1), n = 4 state variables, p = 2 inputs and q = 2 outputs:

A =

[
RsLrγ12 −RsLmγ12

−RrLmγ12 RrLsγ12 +ωJ

]
,γ = (Lm

2
− LsLr)

−1
, (3)

B =

[
12

02×2

]
, C =

[
−γLr12 γLm12

]
, J =

[
0 −1
1 0

]
. (4)

where Rs and Rr are the stator and rotor windings resistances respectively [33–35], Ls and Lr are the
stator and rotor windings inductances, Lm is the magnetizing inductance, ω is the angular speed of
the motor and 12 is the 2nd order identity matrix. All quantities in (1)–(4) are dimensionless, given as
per-unit (p.u.) values. The per-unit system for AC machines is described in [36]. Equations (1)–(4)
correspond to the equivalent circuit of an induction motor as presented in Figure 2.
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Because the angular speed ω changes much slower than the electromagnetic variables u, i and ψ,
it is treated as a parameter [1,33,35,37].

The forms of matrices A, B and C show that they are block matrices, built of two-row square
matrices with a general form [25]:

H(a, b) = a12 + bωJ, (5)
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where a and b are both real. Due to this fact, the angular speed ω always has an even power in the
coefficients of the characteristic polynomial of the system (1):∣∣∣∣∣∣∣∣∣∣∣


H(a1,1, b1,1) . . . H

(
a1,g, b1,g

)
...

...
H

(
ag,1, bg,1

)
. . . H

(
ag,g, bg,g

)
− s12g

∣∣∣∣∣∣∣∣∣∣∣ =
2g∑

i=0

hi
(
ω2

)
si, (6)

where hi(ω2) is the i-th coefficient of the characteristic polynomial of the variable s. The order of
the system (1) equals n = 2g. Hence, the sign of the angular speed has no impact on the dynamical
properties of the system. It results from physical properties of the motor which operates in the same
way independently of the rotation direction.

3.2. Proportional Observer and Its Gain Selection

The proportional observer is the most basic of all Luenberger observers. It is also a starting
point for analyses and designs of more advanced observers. The operation principle is based on the
assumption that the mathematical model of the system (1), driven with the same (measured) input
signals u as the real motor, has similar values of the state variables x. Presumptive differences between
real and calculated values, caused by disturbances and parameter variation, may be corrected based on
the comparison of the real output signals y of the motor and the calculated. These differences are the
measure of estimation errors, and signals proportional to these differences are utilized as correctional
feedback. The gain matrix K is the factor of proportionality. Therefore, the proportional observer is
described as follows [1,3,35]:

.
^
x = A

^
x + Bu + K

(
C

^
x− y

)
, (7)

where (ˆ) denotes the quantity estimated by the observer. Matrix K has the dimensions n × q.
Dynamical properties of the observer are evaluated based on its error equation. The error vector is
defined by Equation (8):

ε =
^
x− x. (8)

The error equation of the proportional observer, derived from (1), (8) and (9) is given as [33]:

.
ε = Eε, E = A + KC, ε(t = 0) = ε0. (9)

The state matrix E of the observer has the dimensions n × n. Equation (9) is the basis for the
observer’s gain selection. The gains, being the elements of the matrix K, should be selected so that the
observer was stable and had desired dynamical properties, described by time constants τ and natural
frequencies f. The time constants and the natural frequencies are determined by the eigenvalues of the
observer λ:

λi = −
1
τi
± j2π fi, (10)

being the roots of the characteristic polynomial [3]:

Φ(s) = |E− s1n| =
n∏

i=1

(s− λi) =
n∑

i=0

aisi. (11)

The error Equation (9) has no input because it does not take into consideration any noises
and parameter variations. Therefore, this equation only describes the process of attenuation of the
errors, starting from the initial value ε0. This process occurs when the cause for error generation has
already ceased.
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3.2.1. Error Equation and Disturbances

If the output vector y of the system (1) has the number of elements q greater than 1, then the gain
matrix K has more than one column. It can be proven [35,38] that in such a case the observer can have
the same eigenvalues for the various matrix K element values. Moreover, in the observers having the
same eigenvalues and different gains, identical disturbance can generate different errors. This problem
may be analyzed with the help of the error equation that takes into consideration the disturbances
as well.

Let us assume that the proportional observer (7) has been designed for the system (1), described with
matrices A, B and C. However, because of parameter variations [39], the real system is described with
the equation: { .

x = (A− ∆A)x + (B− ∆B)u
y = (C− ∆C)x

, (12)

where ∆A, ∆B and ∆C are the matrices containing the parameter variations. The error equation derived
for this case has the following form:

.
ε = (A + KC)ε+ (∆A + K∆C)x + ∆Bu. (13)

Therefore, parameter variations introduce two terms acting as the inputs to the error equation
where one of them is dependent on the system (1) inputs u. In the case of the induction motor
mathematical model (2), this term is not present as the elements of matrix B have the values 1 or 0
and no variations can occur. The other term is dependent on the state vector x and the gain matrix
K. Therefore, it should be expected that the error values ε will be higher when the observer gains
are higher.

Error occurrence may also be caused by disturbances overlaying the inputs u passed to the
observer. It is assumed that the observer (7) has been designed for the system (1), but the input of the
observer is supplied with signals containing the disturbances δu:

.
^
x = A

^
x + B(u + δu) + K

(
C

^
x− y

)
. (14)

The resulting error equation has the following form:
.
ε = (A + KC)ε+ Bδu. (15)

The error Equation (15) contains an input dependent on the disturbances and independent of the
observer’s gains.

The last cause for error occurrence is the disturbances overlaying the outputs of the system (1).
If it is assumed that disturbance signals δy are transmitted through the observer via outputs y, then:

.
^
x = A

^
x + Bu + K

(
C

^
x−

(
y + δy

))
. (16)

In this case, the error equation input is dependent on the observer gain matrix K:

.
ε = (A + KC)ε−Kδy. (17)

The three error equations of (13), (15) and (17) are derived by taking into consideration all three
previously listed error sources. In the case of (13) and (17), the observer’s gains have a direct impact on
the generated errors. Therefore, the proper selection of gains may improve the estimation quality.

3.2.2. Amplification Index of the Observer

The most common tool for the analyses of the phenomena described in the previous section is
the sensitivity theory which is used in [40] to evaluate the observers with selected gains. However,
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such analysis is complicated and requires a significant amount of numerical calculations. The results
are also difficult to interpret. That makes it inadequate for the needs of the gain selection process,
where processed gains have to be evaluated many times. Therefore, it is vital to find an alternative
method as proposed by the authors (based on the experimental observations and numerical simulations).
A new factor is proposed as the amplification index of the observer which is defined by the
following equation:

µ =
1
n

n∑
w=1

√√√ q∑
k=1

Kw,k
2, (18)

where Kw,k is the element of the matrix K placed in the row number w and the column number k.
The correlation between the value of the amplification index µ and the values of errors generated

by noises and parameter variations is exemplified by the results of simulations performed for the
proportional observer (7), designed for an exemplary 2nd order linear system (1).

Simulations for 400 sets of observer’s gains were performed with four simulations for each set.
Each matrix K contained one different set of gains, but provided the same eigenvalues of the observer.
The first part of the four simulations was performed for parameter variations ∆A, ∆B and ∆C, with all
other disturbances equal to zero. The second part was performed for the disturbances δu, and the
third and fourth sets were performed for the disturbances δy and the initial values of errors ε0 (,0),
respectively. Each simulation generated two values of mean square errors e1 and e2 for both state
variables of the system:

ei =

√√√√√√
1
T

T∫
0

εi2dt, (19)

where T is the simulation total time. The results are presented in Figure 3. In cases ∆A, ∆B, ∆C , 0 and
δy , 0, the error equation inputs directly depend on the values of the observer’s gains. An increase
in the gain values also causes the values of e1 and e2 errors to be increased. A similar effect is also
visible where δu , 0, corresponding to the error Equation (15). This may be surprising as the input in
Equation (15) does not depend on the matrix K. This effect is explained by the case ε0 , 0, that describes
the process of error attenuation, independent of the reason that caused the errors.
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The general conclusion is that a higher estimation error is caused when the amplification index is
higher. This conclusion is sufficient to propose a new gain selection criterion consisting of minimization
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of the value of µ. The value of µ can be easily calculated based only on the element values of the gain
matrix K; therefore, this criterion does not introduce significant numerical costs.

3.2.3. Optimization Gain Selection

The gains of the observer were optimized using a genetic algorithm. Three different optimization
criteria were applied. The first and the most important criterion is the proper placement of the observer’s
eigenvalues (10) in the complex plane [25]. This criterion provides stability and desired dynamical
properties of the observer. It should be noticed that based on (3), (9) and (11), the eigenvalues of
the observer are parametrically dependent on the angular speed of the motor ω. This criterion is
represented by the applied fitness function.

The second criterion is that the dynamical properties of the observer should be independent of the
rotation direction of the motor. To meet this condition, matrix K must have the general form described
with (5). This enforces reciprocal dependencies between the element values of the matrix K that have
been applied.

The third criterion consists of minimization of the amplification index µ and increases the
observer’s robustness. It was applied with the proper limitations of the search space, as well as with
the additional term of the fitness function.

Applied fitness function F has a nonnegative value, the greater the value, the more distant is the
solution from the ideal one:

F =
∑

i

wiFi, (20)

where Fi is the subsequent components and wi are the nonnegative weight coefficients. Such a function
always has a minimum, which should be found using the optimization process.

The following components of the fitness function were applied. The first category of the components
relates to the real parts of the eigenvalues with the following form:

F1 =
n∑

j=1

1, Re
(
λ j

)
> 0

0, Re
(
λ j

)
≤ 0

. (21)

The F1 function has nonzero values when one or more of the eigenvalues has a positive real part.
This component prevents the observer from instability.

The next component that ensures the stability has the value proportional to the positive real parts
of the eigenvalues:

F2 =
n∑

j=1

 0, Re
(
λ j

)
≤ 0

Re
(
λ j

)
, Re

(
λ j

)
> 0

. (22)

The fitness function also contains a term whose value is proportional to the difference between
the real and the desired (reference) parts of the observer’s eigenvalues:

F3 =
n∑

j=1

∣∣∣∣Re
(
λ j − λref

)∣∣∣∣, (23)

where the reference value λref may depend on the angular speed of the motor:

λref =
∑

m=0,2,4...

cmω
m, (24)

where cm is the constant coefficient. The polynomial (24) contains only even powers of the angular
speed, ensuring that the sign of the angular speed has no impact on the value.
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The next component has a similar form to F3, but is only calculated for the smallest real value:

F4 =
∣∣∣∣min

(
Re

(
λ j

))
− λref

∣∣∣∣. (25)

The reference value λref is of the same form as (24), but is described with another set of parameters
cm, so the polynomial may have a different value and order.

The components F5 and F6 determine the lower and the upper limit for all real parts of
the eigenvalues:

F5 =
n∑

j=1

 0, Re
(
λ j

)
≤ Re(λref)∣∣∣∣Re

(
λ j − λref

)∣∣∣∣, Re
(
λ j

)
> Re(λref)

, (26)

F6 =
n∑

j=1

 0, Re
(
λ j

)
≥ Re(λref)∣∣∣∣Re

(
λ j − λref

)∣∣∣∣, Re
(
λ j

)
< Re(λref)

. (27)

The second category of the fitness function terms refers to the imaginary parts of the eigenvalues.
The component F7 has the following form:

F7 =
n∑

j=1

∣∣∣∣Im(
λ j

)∣∣∣∣. (28)

The next component assumes non zero values when the modules of the imaginary parts exceed
the reference value:

F8 =
n∑

j=1

 0,
∣∣∣∣Im(

λ j
)∣∣∣∣ ≤ ∣∣∣Im(λref)

∣∣∣∣∣∣∣∣∣∣∣Im(
λ j

)∣∣∣∣− ∣∣∣Im(λref)
∣∣∣∣∣∣∣, ∣∣∣∣Im(

λ j
)∣∣∣∣ > ∣∣∣Im(λref)

∣∣∣ . (29)

The last component of the fitness function relates to the disturbance robustness criterion:

F9 = µ. (30)

The weight coefficients in (20) and the reference values λref were experimentally adjusted, based on
the repeatedly performed gain selection process and simulations. An exemplary set of the values that
led to satisfying results is presented in Table 1. Fitness function values corresponding to the coefficients
given in Table 1 are shown in Figure 4. This function was applied to the gain selection of a proportional
observer of an induction motor rated at 7.5 kW; all simulations presented further in this paper were
performed for this motor. The eigenvalues of the observer as the result of the selection process, are
plotted on the surfaces as shown in Figure 4. The same results are presented in Figure 6 in the form of
plots of real and imaginary parts of eigenvalues.

Table 1. Fitness function coefficients applied for gain selection of the proportional observer.

The Number of the Term
Fi

Weight Coefficient
wi

Coefficients cm of the λref Polynomial m (24)

m = 0 m = 2 m = 4

1 20 - - -
2 1 - - -
3 1 −2 - -
4 1 −0.96 −0.96 0.32
5 1 −0.195 −0.065 −0.0325
6 0.1 −2.6 0.65 −0.325
7 0.05 - - -
8 0.1 0.3 0.9 −0.3
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We tried to find the minimum of the fitness function using a genetic algorithm. The genetic
algorithm was chosen because of its high efficiency in finding a global extremum of the fitness
function [41]. It is very important in case of proposed fitness function (20)–(30), because its properties,
e.g., number of local extrema, may depend on assumed weight coefficients wi in (20), as well as the
reference values λref of terms (23), (25)–(27) and (29). In the case of deterministic algorithms, which of
the local extrema is found largely depends on the starting point. In the case of the optimization
problem under consideration, it is difficult to identify a starting point that guarantees a good result.
The genetic algorithm guarantees a high probability of finding the global extremum because its
starting population is evenly (with the same probability) distributed throughout the search space.
The genetic algorithm also requires minimal information about the fitness function. In particular,
unlike some deterministic optimization algorithms, it does not require knowledge of its derivative
value. Computing the derivative of the fitness function would be troublesome in the present case due
to the conditional structure of the components (21), (22), (26), (27) and (29).

The genetic algorithm operates on the basis of random numbers; therefore, each renewed run
proceeds in a different way, and the optimization process is not always successful. Its most important
disadvantage is the lack of result repeatability.



Energies 2020, 13, 5487 13 of 24

The population consisted of 500 chromosomes. The optimization process was stopped on the 25th
generation. The chromosomes were based on floating-point coding. A proportional crossing-over,
roulette-wheel selection and uniform random number one-point mutation were applied.

The results of numerous experiments with the genetic algorithm show that, in most cases,
the convergence was reached before the 20th generation. The fitness function (20) has a complicated
form and it is difficult to find whether it has one or several local minimum points. On the other hand,
the algorithm launched several times for the same parameters of the function (20) but different initial
generations, randomly generated and uniformly distributed in the search space, returned gain sets that
were close to each other. Therefore, it can be assumed that if the function has more than one minimum,
the algorithm finds the global one efficiently. The designed observer has been tested in simulation
model presented in Figure 5. The simulation results obtained for the proportional observer designed
with the presented method are shown in Figure 6. The experimental results are described in [35].
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3.3. Non-Proportional Observers

Non-proportional observers described here contain additional dynamical units in their feedbacks.
They provide stronger estimation error attenuation, increasing the robustness of the observer; however,
they generate some problems. The first problem is that the observers have more state variables than
the observed system (1). Therefore gain selection of such observers is more difficult than that of the
proportional observer. Another problem is the structural instability of the observer that may occur for
a certain class of observed systems.
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3.3.1. Proportional-Integral Observer

In the proportional observer, the correction feedback signal has the value proportional to the
estimation error. Therefore, if the error is constant in time, the feedback signal is also constant.
Stronger correction may be achieved by introducing the dependence of the feedback signal on time.
Proportional-integral (PI) observer has this ability [42–45]. The correction feedback signal in PI observer
increases as long as the error differs from zero.

The PI observer is described with the set of equations:
.
^
x = A

^
x + Bu + KP

(
C

^
x− y

)
+ h

.
h = KI

(
C

^
x− y

)
−Ωh

, (31)

where KP and KI are the gain matrices of the proportional and integral unit respectively. From (31)
follows that two different sets of state variables are integrated in this observer. The first one is the set of
estimated state variables of the system (1). These variables are associated with the state variable values
of system (1), with the error Equation (9). Therefore, as long as the observer is stable, these values
asymptotically approach the state variables values of the system (1). The second set of observer’s
state variables, which are included in the vector h, are related to the feedback of the observer and are
independent of the state variables of system (1). Therefore, they may assume potentially unlimited
values, even if the observer is stable. This problem occurs especially when the input signals of the
observer contain a constant component, introduced, for example, by a zero drift of a measurement
instrument. In such a case the constant component is cumulated and the values of the feedback signals
h gradually rise to infinity. This leads to some numerical problems.

Another problem is caused by those eigenvalues introduced by the feedback integrator, which are
equal to zero. It is proven [31] that this may result in the structural instability of the observer in some
cases, and it is impossible to correct with the observer’s gains.

Such problems occur in the PI observer as well as in other non-proportional observers which
will be described later in this paper. To solve these problems, the mathematical model of the classical
PI observer has been enhanced with the term—Ωh that was added to the second equation of (31).
This change replaces the feedback integrator with the first-order inertia. The diagonal matrix Ω contains
the inverses of the nonnegative inertia time constants. This additional term limits the values of the
integrated state variables h and moves the eigenvalues related to the feedback to the left-hand part of
the complex plane. The results show that the inertia time constants should be approximately ten times
greater than the time constants (10) of the observer. Then, the correction of the observer’s feedback
dynamical properties slightly affects the dynamical properties of the observer as a whole.

The gain selection of the PI observer is performed for its mathematical model derived in the form
of the proportional observer mathematical model (7). The derivation requires the introduction of a
new state vector of the PI observer:

xo =

 ^
x
h

. (32)

Resulting matrices of the derived mathematical model have the following forms:

Ao =

[
A 1n

0n×n −Ω

]
, Bo =

[
B

0n×p

]
, Co =

[
C 0q×n

]
, (33)

K =

[
KP

KI

]
. (34)

In the next step, matrices (33) and (34) are applied for the gain selection, which is performed in
the same way as for the proportional observer.
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The results of the gain selection process and the simulations obtained for the PI observer are
presented in Figure 7. Experimental results acquired for the PI observer are described in [35].Energies 2020, 13, x FOR PEER REVIEW 15 of 24 
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3.3.2. Reduced Order Integral Unit PI Observer

A classical PI observer described with (31) has twice the number of state variables than the
observed system (1). In the case of the induction motor observer, this number is equal to eight. The gain
selection process for the observer of that high order is difficult from a numerical point of view. Therefore,
it is advisable to find a structure of lower order which can be easier applied, but still offers a stronger
error attenuation than the proportional observer. An intermediate structure between the proportional
and the PI observers is a reduced order integral unit PI observer (PIr) [46,47], described with the
following equations: 

.
^
x = A

^
x + Bu + KP

(
C

^
x− y

)
+ Gh

.
h = KI

(
C

^
x− y

)
−Ωh

, (35)

where G is the integral unit order reduction matrix. The matrix G has a lower number of columns than
rows. Therefore, the number of elements of h vector is smaller than the number of elements in x vector.

The form of the matrix G may be defined in many ways. For the sake of the induction motor
observer, the assumed form is consistent with the general rule (5):

G =

[
0q×q

1q

]
. (36)

The resulting PIr observer has six state variables, versus four state variables for the proportional
observer and eight for the classical PI observer. The same way as for PI observer, the PIr observer has
to be derived to the form of the proportional observer. An assumed new state vector and a new gain
matrix are of the same forms as the PI observer (32) and (34). The resulting matrices of the mathematical
model derived to the proportional observer form may be expressed as follows:

Ao =

[
A G

0q×n −Ω

]
, Bo =

[
B

0q×p

]
, Co =

[
C 0q×q

]
. (37)

The gain selection and simulation results are shown in Figure 8.
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3.3.3. Modified Integral Observer

The outcome of the error equation of the proportional observer (17) is that the observer tends to
amplify the disturbances overlaying system (1) outputs. The modified integral observer [42] is free of
this weakness. It is described with the following set of equations:

.
^
xo = Ao

^
xo + Bou + Ko

(
Co

^
xo − h

)
.
h = y−Ωh

. (38)

In this type of observer, the outputs of the observed system (1) are integrated, in contrast to
the previous observers, where the difference between the real and estimated outputs are integrated.
The first of Equations (38) has the same form as Equation (7) describing the proportional observer.
Therefore, it is directly applied for gain selection purposes. To derive the forms of Ao, Bo and Co

matrices, the following steps need to be performed. First, the second part of Equations (38) should be
moved to the mathematical model of the observed system (1), and both equations should be merged,
defining the new state vector of the observed system xo. This vector and the corresponding state vector
of the observer (38) have the following forms:

xo =

[
x
h

]
,

^
xo =

 ^
x

ho

. (39)

Thereafter, for the new observed system mathematical model, a proportional observer should be
designed. This leads to the following matrices:

Ao =

[
A 0n×q

C −Ω

]
, Bo =

[
B

0q×p

]
, Co =

[
0q×n 1q

]
. (40)

The last step consists of moving the second part of Equations (38) back to the mathematical model
of the observer.

The advantages due to the structure of the modified integral observer become visible on the
derivation of its error equation, taking into consideration the disturbances δy overlaying the outputs of
the system (1):

.
ε = (Ao + KCo)ε− δyo, δyo =

[
0n×1

δy

]
. (41)
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Comparing Equations (17) and (41) shows that in the case of the modified integral observer,
the disturbances are not multiplied by the observer’s gains.

The gain selection and simulation results are shown in Figure 9. The experimental results are
described in [35].Energies 2020, 13, x FOR PEER REVIEW 17 of 24 
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3.3.4. A Proportional Observer with Additional Integrators

All the observers described in this paper are based on the same mathematical model of the
observed system as described with (1). The mathematical model of the observed system may also be
defined in different ways, e.g., taking into consideration the disturbances, treated as unknown inputs.

The observers of the state variables of the induction motor very often operate provided with a
speed adaptation mechanism, that estimates the angular speedω of the motor [1,35]. The mechanism
includes calculating the speed value on the base of the magnetic fluxes values, which is estimated by
the observer. In such a case, the assumption made for the mathematical model (1), that the angular
speed changes much slower than the other state variables and may be treated as a parameter, is no
longer valid. However, this assumption is necessary to treat the induction motor as a linear system,
therefore, it applicable [1,35]. A solution to this problem has not been found so far.

A partial solution for this problem may be the decomposition of the estimated speed signal into
two components, a slowly varying actual speedω and a quickly varying speed estimation error δω,
that will be treated as an unknown input [35,48]. Let us assume that the estimated angular speed is
input to the observer:

ω̂ = ω+ δω. (42)

Then let us introduce Equation (42) into the mathematical model of the observed system (1)–(3)
and define the unknown input vector d, that has z = 2 elements:{ .

x = Ax + Bu + Gd
y = Cx

, (43)

d =

[
−δωψrα

δωψrβ

]
, G =

[
02×2

12

]
. (44)

The state variables of the observed system described with (43) may be estimated with an observer
with additional integrators [31,35,48]. It is a proportional observer (2) with feedback enhanced with
the set of v additional integrators. The integrators generate an additional correction signal that is input
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to the copy of the observed system, being the part of the observer, as a replacement of the unknown
inputs. The observer with the additional integrator is described with the following set of equations.
The number of these equations depends on the number of additional integrators:

.
^
x = A

^
x + Bu + KP

(
C

^
x− y

)
+ Ghv

.
h1 = K1

(
C

^
x− y

)
−Ω1h1

.
h2 = K2

(
C

^
x− y

)
−Ω2h2 + h1

· · ·Xx
x

.
hv = Kv

(
C

^
x− y

)
−Ωvhv + hv−1

, (45)

where the gain matrices of the additional integrators are shown as K1 to Kv.
The set of equations presented above in (45) may be derived to the form (7) on the definition of a

new observer’s state vector:

xo =


^
x

h1

· · ·

hv

. (46)

Further derivations lead to the forms of the matrices:

Ao =


A 0n×z(v−1) G

0z×n 0z×z(v−1) 0z×z

0z(v−1)×n 1z(v−1) 0z(v−1)×z

+
[

0n×n 0n×zv

0zv×n −Ω

]
, (47)

Ω =


Ω1 · · · 0z×z

...
. . .

...
0z×z · · · Ωv

, (48)

Bo =

[
B

0zv×p

]
, Co =

[
C 0q×zv

]
, K =


KP

K1

· · ·

Kv

. (49)

The error equation of the observer with the additional integrators derived from (43) and (45)
assumes the form:

.
ε = (A + KPC)ε+ G


Kv

t∫
0

Cεdτ+ . . .+ K1

t∫
0

· · ·

t∫
0︸     ︷︷     ︸

v

Cεdτv
− d


. (50)

The equation contains an input that equals the difference of the unknown input vector d and the
correction signal generated by the set of the additional integrators.

In the case of the induction motor, the mathematical model (43) is used only in the observer’s
design process. Once designed, the observer reconstructs the state variables of the system (1), the same
as for all other observers presented in this paper.

The number of the additional integrators v is arbitrary and the greater it is, the stronger the
compensation of the unknown inputs d. However, it should be noticed that each additional integrator
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introduced increases the number of the observer’s state variables by z = 2, making the gain selection
process more difficult.

The simulation results achieved for v = 1 (one additional integrator) are presented in Figure 10,
and results for v = 2 (two additional integrators) in Figure 11. The laboratory tests described in [35]
were performed for v equal to both 1 and 2.Energies 2020, 13, x FOR PEER REVIEW 19 of 24 
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4. Discussion

Practical application of the non-proportional observers encounters problems that need to be
solved to provide proper operation. First of all, when the number of the state variables of the observer
is greater than the number of the state variables of the observed system, it may be necessary to modify
the observer’s structure to provide stability. Despite this problem, the application of the observer with
extended non-proportional feedback may provide better estimation quality than the application of the
classical proportional observer.
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Another problem is the proper gain selection. Two observers of the same structure and eigenvalues
may have different gains and result in different robustness. Simulation results were presented in
this paper for comparison purposes. These results were obtained under identical conditions for all
presented observer structures. Presented observers were also successfully tested in the laboratory and
results have been presented in the cited bibliography. Therefore, all of them are applicable in control
systems of an induction motor.

All discussed observers were tested using the simulation model presented in Figure 5, in the
same conditions, i.e., the introduced noises and motor’s parameter variations. The observers operated
provided with a speed-adaptation mechanism [1,35,40]. The motor was fed with the voltage generated
according to V/Hz = constant rule by a PWM power inverter. The observer’s inputs are passed reference
voltages usαref and usβref, generated by the control system (sine waves), whereas the motor was fed
with phase voltages based on those parameters but generated with PWM method (square waves).
In the model of the motor, parameter variations were introduced. All the results were obtained with
the same simulation model attached to this paper (Supplementary Materials, the START sim.sce file).
For consecutive observers only the matrices of the observer’s simulation model were replaced. This also
concerned the non-proportional observers described in Section 3.3. Therefore, the inner structure of the
observer’s block was always the same. The waveforms illustrated three consecutive transient states,
the start-up (0–0.5 s), the step switching on of the load torque (0.75 s) and the reversal (1–1.8 s). The load
torque was active; therefore, the motor operated as a generator for negative speed values. The values
of the state variables of the motor were given as dimensionless p.u. values [36].

Simulation results of the proportional observer are presented in Figure 6. It shows that the observer
has relatively small real parts of the eigenvalues λ, which are smaller than the non-proportional
observers described in Section 3.3. It means that the time constants of the proportional observer are
shortest; nevertheless, this observer does not provide the best estimation quality. The reconstruction
quality of magnetic fluxes has an impact on the operation of the speed adaptation mechanism;
therefore the transient of the estimated angular speed ω (Figure 6) is a good measure of the observer’s
performance. In this case, a significant difference between the real and estimated speed values is visible
during the start-up of the motor (t = 0.3 s). Some small differences are also visible during the reversal
of the motor (t from 1.3 to 1.6 s). It should be noted that the reversal (the change of rotation direction)
of the motor is the most difficult state of operation from the observer’s point of view. In this state,
the variations of the equivalent circuit parameters have the greatest impact on the estimation quality
(especially variations of the stator and rotor windings resistances Rs and Rr). Moreover, during the
reversal, the angular speedω crosses 0. From the equivalent circuit (Figure 2) and the state matrix A (3)
of the system (1), it can be seen that at the moment whenω = 0, the mathematical model divides into
two subsystems that are not coupled with each other. The lack of coupling between the state variables
deteriorates the operation of the observer’s feedback. This is why the reversal is a good test for the
observer’s performance and robustness.

The PI observer (Section 3.3.1, Figure 7) has much longer time constants than the proportional
observer described in Section 3.2. Nevertheless, its performance is slightly better. The weaker error
attenuation, resulting from longer time constants, is compensated by structurally stronger feedback.
The PI observer operates much better during the startup—angular speed estimation errors are smaller,
although the performance during the reversal is slightly weaker. On the other hand, the selection of
the gains is much more difficult in the case of the PI observer compared to the proportional observer.
The problem results from the fact that the PI observer’s matrix Ao (33) is twice the size of matrix A (3)
of the proportional observer. Also, the gain matrix K has twice the amount of elements.

The PIr observer (Section 3.3.2, Figure 8) has similar time constants as the PI observer described in
Section 3.3.1, although it provides slightly better performance, especially during the reversal. The PIr
observer is also better than the observers described in Sections 3.3.3 and 3.3.4. The reduction of the
integral unit has been proven to be a good compromise between the classical PI observer and the
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proportional observer. It combines the advantages of both of them, i.e., relatively simple structure and
strong, proportional-integral feedback.

The modified integral observer (Section 3.3.3, Figure 9) is worse in comparison to the others
described in this paper. The transient of the estimated angular speed in Figure 9 shows significant
errors at all times, even in steady-state condition (t from 0.8 to 1 s). Potential gaining offered with
less noise attenuation is dampened by disadvantageous results of replacing the integrator with the
inertia. The replacement is necessary to provide observer stability, although it distorts the observed
system’s outputs y passed to the observer. It is noticed that the outputs of the induction motor are
sine-like waveforms; therefore, the impact of the inertia on them is significant. Therefore, this structure
is not a good choice in cases of an induction motor, though its assets may be beneficial in other
observed systems.

In the case of the observers with additional integrators (Section 3.3.4, Figure 10; Figure 11), the best
results are achieved for v = 1 (Figure 10). Its operation during the reversal is as good as the PIr observer
(Section 3.3.2), but its performance during the start-up is slightly weaker. The performance of both
observers is similar, although the observer with an additional integrator has shorter time constants,
resulting in stronger error attenuation. It means that the introduced additional integrator does not
offer such possibilities as the proportional-integral feedback in the PIr observer. On the other hand,
let us notice that the additional integrator is intended for attenuation of only one type of noise, the one
overlying the angular speed.

Increasing the number of integrators up to v = 2 does not significantly improve the observer’s
performance (Figure 11). The result for v = 2 is similar to that obtained for v = 1, but the observer with
two additional integrators has a more complicated structure and as many state variables as the classical
PI observer (Section 3.3.1). Based on that, it can be concluded that the application of more than one
additional integrator is ungrounded. As the results obtained for v = 3 were even worse than for the
previous two cases, the laboratory tests described in [35] were only performed for v equal to 1 and 2.

The PI and PIr observers, as well as the proportional observer with additional integrators,
applied in the control system of an induction machine, provide better estimation quality at longer time
constants than the proportional observer. Acceptable longer time constants mean that the displacement
of the observer’s poles in the complex plane may be lesser in reference to the position of the motor’s
poles. Lesser poles’ displacement results with lower gain values, making the observer more robust
against noises and parameter variations.

Future research will be focused on improving the repeatability of the applied optimization method.
Possible solutions are the application of other evolutionary strategies as firefly algorithms or simulated
annealing as well as the application of a hybrid two-stage algorithm, where the first stage is an
evolutionary one to find a global extrema and the second is a deterministic one to precisely locate the
optimal solution [41]. Another goal for future research is finding criteria that will help to locate optimal
settings of observers’ modified integrators contained in the matrix Ω.

5. Conclusions

Simulation and experimental tests demonstrated that the best estimation quality was provided
by the classic PI and the PIr observers. However, the PI had a greater number of state variables and
gains to select. Therefore, the gain selection process for this observer was the most difficult, i.e., it was
difficult to find fitness function (20) parameters that ensured successful optimization. The proportional
observer was the easiest to parametrize, so it was much easier to achieve satisfying estimation quality.
However, it was not as good as in the case of the PI observer. The PIr observer with reduced order of
integral unit and an observer with one additional integrator appeared to be a reasonable compromise
between advanced structure and easy gain selection. They provided better estimation quality than the
proportional observer and were easier to parametrize than the classical PI observer. The estimation
quality of the modified integral observer was not satisfying. In particular, the changes introduced to its
structure to provide its stability, deteriorated the estimation quality, especially for low supply voltage
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frequency and low angular speed of the motor. Therefore, we assert that this structure is not suitable
for induction motor control systems and it is not recommended.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/20/5487/s1,
zip archive: sim_and_genet.zip. The archive contains the workable Scilab-Xcos simulation model that produced
results shown in Figures 6–11. The archive also contains the workable genetic algorithm for proportional observer
gains selection that can be easily adjusted to gain selection of non-proportional observers presented in Section 3.3.
See the read me.txt file for more details.
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31. Białoń, T.; Lewicki, A.; Niestrój, R.; Pasko, M. Stability of a proportional observer with additional integrators
on the example of the flux observer of induction motor. Electron. Rev. 2011, 87, 142–145.

32. Hu, J.; Wu, B. New Integration Algorithms for Estimating Motor Flux over a Wide Speed Range. IEEE Trans.
Power Electron. 1998, 5, 969–977.

33. Toumi, D.; Segueir Boucherit, M.; Tadjine, M. Observer-based fault diagnosis and field oriented fault tolerant
control of induction motor with stator inter-turn fault. Arch. Electron. Eng. 2012, 61, 165–188. [CrossRef]
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35. Białoń, T.; Lewicki, A.; Pasko, M.; Niestrój, R. Non-proportional full-order Luenberger observers of induction
motors. Arch. Electron. Eng. 2018, 67, 925–937.

36. IEEE Standard Definitions of Basic Per Unit Quantities for Alternating-Current Rotating Machines; IEEE Std
86-1975; The Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 1975; pp. 1–10.

http://dx.doi.org/10.1109/TIE.2016.2529558
http://dx.doi.org/10.1016/j.isatra.2019.08.061
http://www.ncbi.nlm.nih.gov/pubmed/31495590
http://dx.doi.org/10.1016/j.isatra.2017.12.014
http://dx.doi.org/10.1016/j.jfranklin.2020.06.013
http://dx.doi.org/10.2478/v10171-012-0015-1


Energies 2020, 13, 5487 24 of 24

37. Amrane, A.; Larabi, A.; Aitouche, A. Unknown input observer design for fault sensor estimation applied to
induction machine. Math. Comput. Simul. 2020, 167, 415–428. [CrossRef]

38. Ellis, G. Observers in Control Systems; Academic Press: Cambridge, MA, USA, 2002.
39. Korbicz, J. Robust fault detection using analytical and soft computing methods. Bull. Pol. Acad. Sci. Tech. Sci.

2006, 54, 75–88.
40. Niestrój, R. Analysis of selected dynamic properties of adaptive proportional observer of induction motor

state variables. Q. Elektr. 2015, 61, 7–28. (In Polish)
41. Francisco, M.; Revollar, S.; Vega, P.; Lamanna, R. A comparative study of deterministic and stochastic

optimization methods for integrated design of processes. IFAC Proc. 2005, 38, 335–340. [CrossRef]
42. Busawon, K.K.; Kabore, P. Disturbance attenuation using proportional integral observers. Int. J. Control 2001,

74, 618–627.
43. Nazari, S.; Shafai, B. Distributed Proportional-Integral Observers for Fault Detection and Isolation.

In Proceedings of the IEEE Conference on Decision and Control (CDC), Miami Beach, FL, USA, 17–19
December 2018; pp. 6328–6333.
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