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Abstract: The paper presents an application of the homotopy analysis method for solving the
one-phase fractional inverse Stefan design problem. The problem was to determine the temperature
distribution in the domain and functions describing the temperature and the heat flux on one of
the considered area boundaries. It was demonstrated that if the series constructed for the method
is convergent then its sum is a solution of the considered equation. The sufficient condition of this
convergence was also presented as well as the error of the approximate solution estimation. The paper
also includes the example presenting the application of the described method. The obtained results
show the usefulness of the proposed method. The method is stable for the input data disturbances and
converges quickly. The big advantage of this method is the fact that it does not require discretization
of the area and the solution is a continuous function.
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1. Introduction

The mathematical models with derivatives of the fractional order have recently found
an application for modeling various kind of phenomena in physics, mechanics and economy (see for
example [1–6]). In the literature, various definitions of the fractional derivatives can be found,
the most commonly used are the definitions of Riemann-Liouville, Grünwald-Letnikov, Caputo or
Riesz (for definitions see [6,7]). The Caputo derivative has found more applications in recent years.
Its advantage is the fact that its Laplace transform contains only the initial values of the integer order
derivatives. On the contrary, in case of the fractional derivative of Riemann-Liouville type, its Laplace
transform usually contains the initial values of the fractional derivatives for which it is difficult to
find a satisfactory physical interpretation. The mathematical theory for the mentioned derivatives is
presented, for example, in the monographies [6,7].

In case of the heat conduction in the porous and composite materials it is justified to use the
mathematical models with the derivatives of the fractional order [8–10]. Voller in the paper [11]
demonstrates the usability of such models for modeling the thermal processes in the porous materials
and presents two examples: the stationary problem of heat conduction and material melting illustrating
the so-called anomalous heat conduction. This anomalous behavior may occur in case there are any
impurities in the considered area which are the subareas with greater or less thermal conductivity
than the rest of the area. We may expect this when the distribution of these impurities is chaotic
(fractal). An example of such situation was also presented by Sierociuk et al. [12]. Brociek et al. [13]
compare selected mathematical models for the inverse heat conduction problem on the basis of the
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measurements taken for the porous aluminum. In particular, the models with the fractional derivatives
were compared with the models that use the classic derivative. The fractional derivatives used in
the models were of Caputo and Riemann-Liouville type. By solving the proper inverse problems the
considered models were compared, or rather their ability to fit into the measurement data. The obtained
results show that the models with the fractional derivatives are a better match for the measurement
data than the models with the classic derivatives. For the presented case, the best turned out to be the
model with the fractional derivative of a Riemann-Liouville type.

The Stefan problem denotes the wide class of mathematical models describing the thermal
processes characterized by the phase transitions. Group of such processes includes, for example,
solidification of metals, creation of crystals, formation of igneous rock, freezing of food, freezing of
water, melting of ice, molecular diffusion, solute transport and others. Solving the Stefan problem
consists in determining the distribution of the temperature in considered region and, simultaneously,
in determining the location of freezing front dividing the given region into subregions. In recent
years, the generalization of this issue has been investigated in terms of application of the fractional
derivatives. This type of model has found an application for describing the movement of the shoreline
in a sedimentary ocean basin [14,15], the controlled release of a drug from slab matrices [16,17] and
the heat conduction in the porous materials [11,18].

The analytical solution of the Stefan problem with the fractional derivative is known only for the
simple one-dimensional case and moreover it is defined in semi-infinite region [16,19–21]. The papers
describing the numerical methods of solving this type of problem are so far limited and apply to
one-dimensional and one-phase cases [22,23]. The method for solving the two-phase direct problem is
presented by Błasik in the paper [24].

The method using homotopy was previously used by Rejev et al. [15,25] to solve the direct classic
Stefan problem and by Hetmaniok et al. [26,27] to solve the inverse problem. There are no papers,
however, which would consider the inverse Stefan problem with the fractional derivative. In this paper
we will present an application of the homotopy analysis method for solving the one-phase fractional
inverse Stefan design problem. The problem consists in determining the temperature distribution in
the domain and functions describing the temperature and the heat flux on one of the area’s boundaries.

In the homotopy analysis method, the solution is sought as a series. After applying the method,
it turns out that the elements of this series must satisfy some differential equation. The form of this
equation is a consequence of the problem being solved. It turns out that if the series converges then its
sum is a solution of the discussed equation. The sufficient condition of the convergence is also given
as well as the error of the approximate solution estimation. An example illustrating the use of this
method is also presented.

2. Formulation of the Problem

We are going to consider the problem defined in the area Ω = {(x, t); x ∈ [0, ξ(t)], t ∈ [0, t∗)}
(see Figure 1). We split the domain’s Ω boundary into three parts:

Γ0 = {(x, 0); x ∈ [0, ξ(0)]} , (1)

Γ1 = {(0, t); t ∈ (0, t∗)} , (2)

Γ2 = {(ξ(t), t); t ∈ (0, t∗)} , (3)

where function ξ describes the position of the moving interface.
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Figure 1. The domain of the considered problem.

In the domain Ω, we consider the following equation:

Dαu(x, t) = a
∂2u(x, t)

∂x2 , (4)

where α ∈ (0, 1) is the order of the derivative of Caputo type, a = w a is the scaled (fractional) thermal
diffusivity [m2/sα], that is the thermal diffusivity a [m2/s] multiplied by the scaling constant w with
the numerical value of one and unit [sα−1], and u, t and x refer to the temperature, time and spatial
location respectively. On the boundaries Γ0 and Γ2 we set the following conditions:

u(x, 0) = ϕ(x), (5)

u(ξ(t), t) = u∗, (6)

κ Dαξ(t) = −k
∂u(x, t)

∂x

∣∣∣
x=ξ(t)

, (7)

where k is the thermal conductivity [W/(m K)], κ = w κ is scaled (fractional) latent heat of fusion per
unit volume [J sα−1/m3], that is the latent heat of fusion per unit volume κ [J/m3] multiplied by the
scaling constant w with the numerical value of one and unit [sα−1], u∗ is the phase change temperature
[K]. On the boundary Γ1 we do not set any boundary condition as we are going to reconstruct it in the
inverse problem.

The fractional derivative used in the above equations is of Caputo type. For α ∈ (0, 1) this
derivative is defined as follows [6]:

Dα f (t) =
1

Γ(1− α)

∫ t

0

f ′(t)
(t− s)α

ds,

where Γ(·) is the gamma function.
In case of the direct Stefan problem we know all of the functions and parameters describing the

initial and boundaries conditions, as well as the material physical parameters and we are looking for
the temperature distribution and the position of the moving interface. In case of the inverse problem,
in turn, we do not know a part of the input information, e.g., the function describing the boundary
conditions, but we do know, however, something about the solution. When considering the Stefan
inverse problem, this known information is more often than not, the temperature in the chosen points
of the domain or the position of the moving interface. The inverse problems for which the position of
moving interface is known are the so-called inverse design problems.

The presented inverse Stefan problem consists in finding a function u which describes the
temperature distribution in domain Ω and reconstruct functions θ and q describing the temperature
and the heat flux on the boundary Γ1, which will satisfy Equations (4)–(7). We assume that all of the
other functions and parameters are known.
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3. Solution of the Problem

For solving the discussed problem, the homotopy analysis method will be used. This method
was elaborated by the Chinese mathematician Shijun Liao and is designed for solving various kind of
linear and nonlinear operator equations. For the first time the method was described in 1992 in its
author PhD thesis [28] and has found an application in various fields since then. It allows us to solve
the operator equation:

N(u(x, t)) = 0, (x, t) ∈ Ω, (8)

where N is operator (in particular it can be the nonlinear operator), whereas u is unknown function.
First we define the homotopy operatorH as [29]:

H(Φ, p) ≡ (1− p) L
(
Φ(x, t; p)− u0(x, t)

)
− p h N

(
Φ(x, t; p)

)
, (9)

where p ∈ [0, 1] is an embedding parameter, Φ is an auxiliary function, h 6= 0 the convergence control
parameter, u0 an initial approximation of the solution of problem (8) and L an auxiliary linear operator.

Considering the equationH(Φ, p) = 0, we get the so-called zero-order deformation equation:

(1− p) L
(
Φ(x, t; p)− u0(x, t)

)
= p h N

(
Φ(x, t; p)

)
. (10)

For p = 0 we have L(Φ(x, t; 0)− u0(x, t)) = 0, from which we obtain Φ(x, t; 0) = L−1(L(u0(x, t))).
In turn, because for p = 1 we get N(Φ(x, t; 1)) = 0, then Φ(x, t; 1) = u(x, t), where u is the sought
solution of the Equation (8). This way the change of the parameter p from zero to one is corresponding
to the change from the trivial problem to the original problem.

By expanding the Φ into the Maclaurin series with regards to the parameter p and transforming it
we get:

Φ(x, t; p) = u0(x, t) +
∞

∑
m=1

um(x, t) pm, (11)

where

um(x, t) =
1

m!
∂mΦ(x, t; p)

∂pm

∣∣∣
p=0

= Dm
(
Φ(x, t; p)

)
, m = 1, 2, 3, . . . , (12)

where Dm is mth-order homotopy-derivative operator [29]:

Dm
(

f (x, t; p)
)
=

1
m!

∂m f (x, t; p)
∂pm

∣∣∣
p=0

.

If the series that occurs in the Formula (11) is convergent in the proper area, then for the p = 1 we
obtain the sought solution:

u(x, t) =
∞

∑
m=0

um(x, t). (13)

As the approximate solution we can choose the partial sum of the above series:

ûn(x, t) =
n

∑
m=0

um(x, t). (14)

To find the exact or approximate solution of the discussed equation it is necessary to determine
the function um. For this we need to differentiate the left and right side of the Formula (10) m-times,
with regards to the parameter p, then we divide the obtained result by m! and substitute p = 0
obtaining the formula that is called the mth-order deformation equation (m > 0):

L
(
um(x, t)− χm um−1(x, t)

)
= hDm−1

[
N
( ∞

∑
i=0

ui(x, t) pi
)]

, (15)



Energies 2020, 13, 5474 5 of 14

where

χm =

{
0 m ≤ 1,
1 m > 1.

(16)

By the proper choice of the h parameter, which was introduced in the Formula (9), we can impact
the region of convergence of the series (13) and its convergence rate [29–31]. This is why it is called the
convergence control parameter [32–34]. One of the methods of choosing the value of this parameter is
the so-called “optimization method” [29]. In this method the residue (deviation) function is defined
for the considered equation and determined approximate solution ûn:

En(h) =
∫
Ω

(
N
[
ûn(x, t)

])2
dx dt. (17)

The optimum value of the convergence control parameter is obtained by finding the argument for
which the En function reaches its minimum.

The effective region of the convergence control parameter is also defined as follows:

R =
{

h : lim
n→∞

En(h) = 0
}

. (18)

If we choose the value of the convergence control parameter different than the optimum but still
from the effective region R, the obtained series will also be convergent but the rate of the convergence
will be lower. The version of the method including the described above selection of the optimum value
of the convergence control parameter is called the basic optimal homotopy analysis method [29].

In order to speed up the computation, Liao [29] suggests to substitute the integral in the
Formula (17) by its approximate value using the appropriate numerical integration method. In the
examples demonstrated by him, the obtained values of the convergence control parameter did not
differ much from the values obtained by the application of the Formula (17).

In the discussed problem the N operator has the form:

N(u) = a
∂2u
∂x2 − Dαu. (19)

However, as the linear operator L we can choose the operator of form:

L(u) =
∂2u
∂x2 . (20)

Assuming that the series
∞
∑

i=0
ui(x, t) pi is convergent then for the derivative of a Caputo type

we get:

Dα
( ∞

∑
i=0

ui(x, t) pi
)
=

1
Γ(1− α)

∫ t

0

∂

∂t

( ∞

∑
i=0

ui(x, t) pi
) 1
(t− s)α

ds =

=
1

Γ(1− α)

∫ t

0

( ∞

∑
i=0

∂ui(x, t)
∂t

pi
) 1
(t− s)α

ds =

=
∞

∑
i=0

pi
( 1

Γ(1− α)

∫ t

0

∂ui(x, t)
∂t

1
(t− s)α

ds
)
=

∞

∑
i=0

Dαui(x, t) pi. (21)
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By using it we obtain:

Dm−1

(
Dα
( ∞

∑
i=0

ui(x, t) pi
))

= Dm−1

( ∞

∑
i=0

Dαui(x, t) pi
)
=

=
1

(m− 1)!

(
∂m−1

∂pm−1

( ∞

∑
i=0

Dαui(x, t) pi
))∣∣∣∣

p=0
=

=
1

(m− 1)!

(
(m− 1)! Dα um−1(x, t) +

∞

∑
i=m

w(i) Dα ui(x, t) pi−m+1
))∣∣∣∣

p=0
= Dα um−1(x, t), (22)

for m = 1, 2, . . . and where w(i) ∈ N for i = m, m + 1, . . .. Likewise we get:

Dm−1

(
a

∂2

∂x2

( ∞

∑
i=0

ui(x, t) pi
))

= a
∂2um−1(x, t)

∂x2 . (23)

Using this in mth-order deformation Equation (15) for m = 1, (19) and (23), we obtain:

L
(
u1(x, t)

)
= h

(
a

∂2u0(x, t)
∂x2 − Dα u0(x, t)

)
, (24)

and for m > 1:

L
(
um(x, t)

)
= L

(
um−1(x, t)

)
+ h

(
a

∂2um−1(x, t)
∂x2 − Dα um−1(x, t)

)
. (25)

Taking into account the L operator we obtain the set of partial differential equations that allow us
to determine the functions um. For m = 1 we have:

∂2u1(x, t)
∂x2 = h

(
a

∂2u0(x, t)
∂x2 − Dα u0(x, t)

)
, (26)

and for m > 1:
∂2um(x, t)

∂x2 =
(
1 + a h

) ∂2um−1(x, t)
∂x2 − h Dα um−1(x, t). (27)

To make the solution unambiguous, we need to supplement the above partial differential
equations with additional conditions. For this we will use the conditions (6) and (7). First equation we
supplement with the conditions of form:

u0(ξ(t), t) + u1(ξ(t), t) = u∗, (28)

−k
∂(u0 + u1)(ξ(t), t)

∂x
= κ Dα ξ(t). (29)

For the rest of the equations (m > 1), on the other hand, we set the conditions of form:

um(ξ(t), t) = 0, (30)

−k
∂um(ξ(t), t)

∂x
= 0. (31)

The above conditions provide us with the fact that any approximate solution constructed as the
partial sum of the series (13) will meet the specified boundary conditions. As the initial approximation
we can take the function that determines the initial condition:

u0(x, t) = ϕ(x). (32)
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Therefore, the problem was reduced to solving a series of partial differential
Equations (26) and (27), with the conditions (28) and (29) and (30) and (31) respectively. The obtained
equations are easier to solve than the initial problem. By knowing the function u or its approximation
ûn, we can easily determine the missing boundary conditions:

θ(t) = u(0, t), (33)

q(t) = −k
∂u(x, t)

∂x

∣∣∣
x=0

, (34)

or their approximations:

θ̂n(t) = ûn(0, t), (35)

q̂n(t) = −k
∂ûn(x, t)

∂x

∣∣∣
x=0

. (36)

It can be shown that the sum of the constructed series is a solution of the discussed equation.

Theorem 1. Let the functions um, m ≥ 1 be the solutions of the Equations (26) and (27) with the conditions
(28) and (29) and (30) and (31) respectively. Then if the series ∑∞

m=0 um(x, t) is convergent in the domain Ω,
then its sum designates the solution of the Equation (4).

The next theorem gives the sufficient condition for the convergence of the series constructed in
the method.

Theorem 2. Let the functions um, m ≥ 1 be the solutions of the Equations (26) and (27) with the conditions
(28) and (29) and (30) and (31) respectively. Then if the parameter h is selected in such a way that there exist
such constants γh ∈ (0, 1) and m0 ∈ N that for each m > m0 the inequality

‖um+1‖ 6 γh ‖um‖ (37)

is satisfied in the domain Ω, then the series ∑∞
m=0 um(x, t) is uniformly convergent in Ω.

The last theorem gives the approximate solution error estimation, which we obtain using the
partial sum of the series.

Theorem 3. If assumptions of Theorem 2 are satisfied and additionally n ∈ N and n > m0, then the estimation
of error of the approximate solution is described by the following formula:

‖u− ûn‖ 6
γn+1−m0

h
1− γh

‖um0‖, (38)

where ûn is determined by the Equation (14).

The proofs for all of the above theorems are similar to those for the classic Stefan inverse problem
and may be found in the paper [27].

4. Example

We will now present the method outlined in the previous chapter using an example. We will
consider the problem for which under discussion we take the following data: a = 1, α = 1

2 , t∗ = 1,
u∗ = 273, k = 2, κ = 2, ϕ(x) = 274− x, ξ(t) = t + 1. Let us mention that all of the calculations
presented here were carried out with the aid of Mathematica software [35].
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Assuming that u0(x, t) = ϕ(x) = 274− x in the first step, we get:

u1(x, t) =
√

t (1 + t− x)√
π

+ x− 1,

and
u2(x, t) = − 1

24
h
(
5 t− 2 x + 2

) (
t− x + 1

)2.

The optimal value of the convergence control parameter equals to −1.08347. Figure 2 displays the
graph of logarithm of the squared residual for n = 5. This way for this value of h parameter we obtain
the following approximate solutions:

û1(x, t) =
√

t (1 + t− x)√
π

+ 273

and

û2(x, t) =
√

t (1 + t− x)√
π

+ 0.04514458
(
5 t− 2 x + 2

) (
t− x + 1

)2
+ 273.

-2.0 -1.5 -1.0 -0.5 0.0

10
-6
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-5

10
-4

0.001

0.010

0.100

1

h

E
5

Figure 2. Logarithm of the squared residual E5.

Figure 3 displays the reconstructed boundary conditions, which are the temperature distribution
and the heat flux on the boundary Γ1. The obtained approximate temperature distribution for the whole
Ω area whereas is presented in the Figure 4. The next Figure 5, however, presents the convergence
of the sequence of the partial sums which are the consecutive approximate solutions. In the picture
the graphs of functions Ri(t) = |θ̂i(t) − θ̂i−1(t)| and Qi(t) = |q̂i(t) − q̂i−1(t)| are presented using
a logarithmic scale for i = 4, 6, 8, 10. The functions θ̂i and q̂i determine the approximate temperature
distribution θ̂i and the heat flux q̂i on the boundary Γ1, and are defined by Formulas (35) and (36)
respectively. The logarithmic scale was used because all of those functions take very small values.
At points where a peak down appears on the graph the corresponding function for which the absolute
value is taken changes its sign. This way the absolute value equals to zero and its logarithm tends
to minus infinity. Graphs of the R6 and R10 functions without a logarithmic scale are presented in
Figure 6. Figure 5 shows as well that for the obtained approximate solutions the inequality (37)
holds. We may assume that the next approximations will behave the same way. This way according
to Theorem 2 the series forming the approximate solution is convergent, so its sum is the sought
solution (see Theorem 1).
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Figure 3. The reconstructed boundary conditions: (a) temperature distribution θ̂10, (b) heat flux q̂10.

Figure 4. The reconstructed temperature distribution û10 in the area Ω.
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Figure 5. The presentation of convergence (on a logarithmic scale): (a) temperature distribution,
where Ri(t) = |θ̂i(t)− θ̂i−1(t)|, (b) heat flux, where Qi(t) = |q̂i(t)− q̂i−1(t)|.
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Figure 6. Functions Ri without a logarithmic scale: (a) function R6, (b) function R10.
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In the considered inverse problem, the information compensating for the lack of part of the input
data is the known position of the moving interface. Therefore, in the example the stability of the
procedure was also examined by terms of the errors of this position determination. The location of
the moving interface was given with the random 1%, 2%, 5% and 10% errors. The relative errors of
the boundary conditions reconstruction on the boundary Γ1 and the temperature distribution in the
area Ω determined by the norm L2 are displayed in the Table 1. The relative errors were calculated
for the shifted temperature (u(x, t)− 273). In this case they achieve the greatest values then. For the
output temperature the relative errors do not exceed the 0.08% (for the greatest disturbance). In case
of the heat flux, the shift does not affect the relative error. In the case when the input data gets
disturbed by the 1% and 2% errors, the errors of reconstruction are on a similar level. Only for the
bigger disturbances of the input data the errors of reconstruction increase by about 5% relative to the
value of the input data disturbance. These errors are not yet very drastic, especially if looking at the
course of the reconstructed curves representing the boundary conditions (see Figure 7). As can be seen,
the shape of the proper curve has been maintained for each case. The graphs of the absolute errors of
the boundary conditions reconstruction for various disturbances of the input data are displayed in the
Figure 8. The Figure 9 just like before presents the convergence of the approximate solutions in case of
the input data disturbed by the 10% error.
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Figure 7. The reconstructed boundary conditions for the various noise of input data: (a) temperature
distribution θ, (b) heat flux q.

Table 1. The relative errors of reconstruction the boundary conditions and temperature distribution for
the disturbed input data.

Noise θ̂10 [%] q̂10 [%] û10 [%]

1% 0.76 0.82 0.74
2% 2.62 2.75 2.61
5% 9.73 10.19 9.66

10% 14.23 14.90 14.11
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Figure 8. The absolute errors of the boundary conditions reconstruction for the various noise of the
input data: (a) temperature distribution θ, (b) heat flux q.
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Figure 9. The presentation of convergence for the input data disturbed by the 10% error: (a) temperature
distribution, where Ri = |θ̂i(t)− θ̂i−1(t)|, (b) heat flux, where Qi = |q̂i(t)− q̂i−1(t)|.

The Figure 10 presents the reconstructed boundary conditions for the different values of the order
of the Caputo derivative α. For α ∈ (0, 1

2 ] this method converges quickly. The obtained solutions get
bigger values with increasing value of the α parameter. On the other hand, for α > 1

2 the improper
integrals that occur during the calculations do not converge. Thus, the method cannot be used in
this case.
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Figure 10. The reconstructed boundary conditions for different values of the order of the fractional
derivative: (a) temperature distribution θ, (b) heat flux q.

5. Conclusions

We use the homotopy analysis method to solve the one-phase fractional inverse Stefan problem.
The mathematical model considered in the paper consists of a differential equation with a Caputo
fractional derivative and the conditions on the boundaries of the considered domain, with the
temperature distribution and heat flux unknown on one of the boundaries. In order to find these
unknown functions, in accordance with the homotopy analysis method, an appropriate series
is constructed which, if it converges, is the solution of the considered equation. We present
theorems concerning the series convergence as well as the estimation of the error of the approximate
solution. We also present a numerical example illustrating the application of the described method,
its convergence and stability to the disturbances of the input data. As can be seen in the figures and the
table presented in Section 4, the method converges quickly and the errors of the approximate solution
are relatively small, especially for the input data disturbed by the 1% or 2% error. An important
advantage of the method is the fact that the solution is obtained in the form of a continuous function
and the considered domain does not need to be discretized. In the future, we plan to apply the method
to two-phase and multidimensional problems, as well as to models with other types of fractional
order derivative.
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Nomenclature

a scaled (fractional) thermal diffusivity [m2/sα]
a thermal diffusivity [m2/s]
D homotopy-derivative operator
E residue function
H homotopy operator
h convergence control parameter
k thermal conductivity [W/(m K)]
L linear operator
N operator (linear or nonlinear)
p embedding parameter
q heat flux [W/m2]
Q auxiliary function [W/m2]
R effective region
R auxiliary function [K]
t time [s]
t∗ end of time interval [s]
u temperature [K]
u∗ phase change temperature [K]
u0 initial approximation [K]
w scaling constant [sα−1]
x spatial variable [m]

Greek symbols
α order of the Caputo derivative
Γi boundary of the region
Γ(·) gamma function
θ temperature [K]
κ scaled (fractional) latent heat of fusion per unit volume [J sα−1/m3]
κ latent heat of fusion per unit volume [J/m3]
ξ position of the moving interface [m]
Φ auxiliary function [K]
ϕ initial temperature [K]
χ auxiliary parameter
Ω region

Superscriptŝ refers to approximations

Subscripts
n order of the approximation

References

1. Carpinteri, A.; Mainardi, F. Fractal and Fractional Calculus in Continuum Mechanics; Springer: New York, NY,
USA, 1997.

2. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000.



Energies 2020, 13, 5474 13 of 14

3. Kosztołowicz, T. Application of the Differential Equations with Fractional Derivatives for Describing the Subdiffusion;
Jan Kochanowski University Press: Kielce, Poland, 2008.
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