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Abstract: From a control perspective, the energy management system and the thermal management
system of an electrified vehicle are often developed separately, which may not yield the optimal
solution. Moreover, an optimal system design requires concurrent plant (topology and size) and
controller optimization, which should apply to both energy and thermal domains. This paper
originally provides a comprehensive analysis of design and control optimization layers to reveal
the interconnections between them and how they influence the optimality of an electrified vehicle
design considering both energy and thermal domains. It was found that energy and cost savings
can be achieved by integrating these optimization layers, and the energy and thermal domains
with four coordination schemes, namely, sequential, iterative, nested and simultaneous. There is
a trade-off between optimality, causality, complexity and computational time. Additionally,
future research directions in terms of reducing energy consumption and system costs of electrified
vehicles are identified herein, such as using integrated design and control methods, employing
electrified actuators, exchanging heat between powertrain components and utilizing waste heat
recovery systems.

Keywords: electrified vehicle; energy management; thermal management; topology optimization;
component sizing; rule-based control; optimization-based control

1. Introduction

Powertrain electrification plays a crucial role in reducing the unsustainable consumption of
natural resources to tackle energy and environmental issues. To fulfill the potential of an electrified
vehicle, it is important to develop an energy management system (EMS). The main goal of the EMS is
to maximize powertrain efficiency, by optimizing the power flow, through means such as the power
split between the internal combustion engine (ICE) and the battery in a parallel hybrid electric vehicle
(HEV). While electrified powertrains bring opportunities of improving energy efficiency, due to added
heat source components and distinct driving modes, they introduce complexities to the associated
thermal management systems (TMSs) [1,2]. A TMS is essential to maintaining powertrain components
at predefined temperatures to guarantee efficiency, comfort, safe operation and reliability. Earlier works
have shown that a TMS has a significant impact on the energy consumption of an electrified vehicle,
e.g., heating, ventilation, and air conditioning (HVAC) [3,4]. The EMS and the TMS of an electrified
powertrain were often treated independently in previous studies, as shown in Figure 1. In this scheme,
the TMS requests a certain amount of power from the EMS, but whether the control decision of the
TMS is energy beneficial is not verified by the EMS. It may not yield the optimal solution [5]. Therefore,
it is imperative to integrate these two systems.
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Figure 1. Separate energy and thermal management.

The EMS and the TMS are referred to as control algorithms, which are often developed for fixed
configurations and parameters [6,7]. However, an optimal system demands combined design and
control optimization, taking into account the coupling between the physical system and the control
strategy [8]. In principle, there are three optimization layers for designing an electrified vehicle,
including topology, size and control optimization [9]. Hence, these optimization layers should apply
to both energy and thermal domains. In this respect, the thermal domain was usually not considered
in previous research, which may not arrive at an optimal solution. For instance, different powertrain
configurations would require distinct thermal management topologies.

As far as the coupling between the plant (topology and size) and the controller is concerned,
there are generally four coordination schemes, including sequential, iterative, nested and
simultaneous [8], as demonstrated in Figure 2. Sequential indicates that the dependency between the
plant and the controller is not taken into consideration, and the controller is developed for a fixed
plant, where only the operational cost (e.g., fuel consumption) is considered. Iterative means that
the plant that determines the component cost (e.g., battery price) is first designed, and the controller
that determines the operational cost is built based on the given plant. The loop repeats until the
coupled variables converge. Nested implies that the controller is optimized for each evaluation of
the plant. Simultaneous represents that the plant and the controller are optimized simultaneously.
From an energy perspective, an iterative coordination scheme to solve a combined topology and size
optimization problem is proposed for double planetary gear (PG) hybrid powertrains in [10], but the
thermal domain is not taken into consideration. The thermal response and power consumption of the
cooling system and its sizing of a series HEV were investigated in [11] with a sequential approach;
however, the energy aspect has yet to be considered. Based on the current literature, a systematic way
to analyze and to link those optimization layers for electrified powertrains has yet to be established,
in consideration of both energy and thermal aspects.

Plant design
(energy and thermal)

Controller design
(energy and thermal)

Plant design
(energy and thermal)

Controller design
(energy and thermal)

Plant design
(energy and thermal)

Controller design
(energy and thermal)
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Figure 2. Coordination schemes between the plant and the controller.
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Energy-efficient and cost-effective electrified powertrains, however, demand a holistic and
integrated approach to synthesize design and control aspects in consideration of both energy and
thermal domains. Motivated by the above discussion, this study originally provides a comprehensive
overview of those optimization layers and coordination methods for electrified vehicles considering
both energy and thermal aspects. The main contributions of this paper can be summarized as follows.
First, with updated literature, from an energy perspective, we summarize the general problem of
combined topology, size and control optimization of electrified powertrains and introduce that to
the thermal domain, and show how they are connected mathematically. Second, we classify and
survey energy and thermal management systems for electrified vehicles, which only started to appear
recently, to highlight the importance of integration. Finally, we identify potential research directions of
combined optimal design and control optimization of electrified powertrains, taking into account both
energy and thermal aspects. The remainder of this paper is organized as follows. Section 2 analyzes
the optimization layers and coordination schemes from an energy perspective, which are investigated
from a thermal viewpoint in Section 3. Recent energy and thermal management systems proposed in
the literature are discussed in detail in Section 4. Section 5 presents opportunities found for future
developments. Finally, conclusions are drawn in Section 6.

2. Energy-Aware Design and Control Optimization

If a system is optimized from an energy point of view, e.g., identifying an optimal powertrain
configuration with optimized component sizes and power flow, neglecting the thermal domain, it is
said to have an energy-aware design and control optimization.

Normally, a design process starts with choosing an architecture to focus on. A configuration
that defines the connections between components influences efficiency, cost, comfort, performance,
complexity and durability. The best topology can be identified with the lowest total-cost-of-ownership
(TCO), consisting of operational costs, e.g., the battery energy consumption, and component costs,
such as the engine price, subject to various constraints, for example, performance requirements.
The operational costs are related to the control algorithm, for instance, how the battery is used,
and the component costs are associated with the component size, e.g., the electric machine size in kW.
Topology optimization is therefore often coupled with the control and size layers [12]. Additionally,
for a given vehicle architecture, there is a strong dependency between the size and control layers.
For example, the battery would be used differently depending on the battery size of an electrified
powertrain. Compared to a blended strategy, a larger battery is needed when employing a rule-based
(RB) one [13].

2.1. Topology Generation

This study mainly focuses on the most common electrified powertrains (e.g., with engine and
electric machine(s)), as depicted in Figure 3, including series, parallel and series-parallel (power-split)
hybrids. In a series hybrid, the engine is not directly connected to the wheels, which can be controlled
to operate efficiently [14], yet it needs a larger battery and electric machine, compared to a parallel
hybrid. A parallel hybrid eliminates the need for conversion of engine mechanical power to electrical
power, but the engine cannot operate in its most efficient way. Despite complexity, power-split hybrids
with PGs combine the advantages of series and parallel hybrids due to added control freedom, and an
increasing number of vehicles (e.g., Toyota Prius and Highlander) use this configuration. In Figure 3,
the engine (ICE) mode indicates when only the engine is utilized to drive the wheels. The charging (CH)
mode represents that the engine not only propels the vehicle, but also charges the battery. The electric
vehicle (EV) mode reflects that the electric machine is the only power source to drive the wheels.
The motor assist (MA) mode means when the electric machine is used to support the engine to satisfy
the propulsion power. The brake energy recuperation (BER) mode is a mode wherein the braking
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energy is recovered, which is eventually stored in the battery. Selecting a suitable architecture is
essential, as it influences efficiency and cost. Topology generation can be formulated as follows:

Generate T f
e ⊆ T p

e , (1a)

s.t. ge(T
f
e ) ≤ 0, (1b)

where subscript e represents the energy domain, T f
e the feasible architectures, T p

e the possible
configurations and ge(T

f
e ) the constraints—for example, certain connections between powertrain

components are needed in order to realize a hybrid functionality, which are used to eliminate
infeasible topologies.

In reality, an HEV configuration is typically chosen based on expert knowledge, taking into
account, for example, application, component availability and the market trend. It is obvious that the
selected topology T f

e is likely not optimal due to limited options T p
e . As reported in [15], for power-split

hybrids with one PG, among all possible architectures, small design changes can bring about significant
cost and energy benefits; Toyota Prius and Chevy Volt were modified into Prius+ and Volt−. It should
be noted that in this study, the design space is still small; i.e., there are only 12 possible configurations
for power-split hybrid powertrains with a single PG, which makes enumeration of topologies possible.
When the design space is large, however, it is intractable, as exploring feasible architectures is
combinatorial in nature. Therefore, a systematic and efficient way is required to evaluate all possible
topologies. In this context, automatic topology generation that aims to find feasible architectures
is emerging [16,17]. For power-split hybrids with multiple PGs, clutches and brakes, automated
modeling techniques are being developed, which capture the fundamental dynamics of the vehicle
based on physics to represent modes and configurations [16]. Subsequently, various constraints, such as
kinematics, complexity and redundancy constraints, can be utilized to eliminate infeasible topologies.
In [17], a bond graph was used to represent an architecture and constraints were employed to arrive at
feasible configurations. However, these studies are limited to power-split hybrids with multiple PGs.
For a predefined set of 16 components, feasible series, parallel and series-parallel hybrid topologies
were found in [18], by using constraint logic programming, which automatically generated all possible
HEV architectures efficiently and in a structured way. Specifically, each component was a node of
an undirected connected finite graph that represented an architecture. Afterwards, functionality and
cost constraints were applied, essentially a screening process, to filter out infeasible configurations.
Functionality constraints mean that, for instance, to realize hybrid functions, certain connections
between components are required. Cost constraints indicate that component redundancy is restricted.
Finally, based on the predefined set of 16 powertrain components, the initial search space of 5.7× 1045

possible topologies was reduced to 4779 feasible topologies in less than 5 min. However, the feasible
configurations have yet to be assessed based on TCO and vehicle performance, by integrating with
control and size layers.
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Figure 3. Common electrified powertrain architectures, where BA represents the battery, DC-AC
the DC (direct current) to AC (alternating current) inverter, GEN the generator, TR the transmission,
WH the wheel, ICE the engine only mode, CH the charging mode, EV the electric vehicle mode,
MA the motor assist mode and BER the brake energy recuperation mode. The series and parallel HEVs
are indicated with “series” and “parallel.” The main powertrain components are shown as blocks
connected via bi-directional mechanical (solid) and electrical (dashed) energy flows.

2.2. Control Optimization

In this respect, earlier works mainly focused on the control layer for a given architecture T f
e

generated by (1a) and fixed powertrain parameters represented by se. The main objective of the
controller (EMS) is to determine the power flow of the electrified powertrain in an optimal manner so
that the energy efficiency is maximized, such as the torque split between the engine and the electric
machine in a parallel HEV. For a known drive cycle starting at t0 and ending at tf, the EMS aims to
find the optimal control variables to minimize a cost function Je, for example, fuel consumption of an
HEV, given by

Je(xe(t), ue(t), t | (T f
e , se)) =

∫ tf

t0

Pe(xe(t), ue(t), t)dt, (2a)

s.t. ẋe(t) = f (xe(t), ue(t), t), (2b)

he(xe(t), ue(t), t) = 0, (2c)

ge(xe(t), ue(t), t) ≤ 0, (2d)

xe(tf) = xe(t0), (2e)

where xe denotes the vector of state variables. Equation (2b) denotes the energy dynamics of the system,
for instance, the state of charge of the battery. ue denotes the control inputs—e.g., the power sharing
between the engine and the battery, he(·) the equality constraints, for example, the power balance of
the vehicle, ge(·) the inequality constraints, such as the torque limits of the electric machine (EM),

τm,0(t) ∈ [τm,0(wm(t)), τm,0(wm(t))]. (3)

Equation (2e) constrains the dynamic states, such as charge sustaining.
This problem can be solved by two main categories of methods: RB and optimization-based

(OB), as illustrated in Figure 4. A thermostat control (TC) strategy was used in [19] for a series
HEV, which aimed to maintain the state of charge of the battery within its predefined boundaries,
by turning the engine on/off. For a series HEV, a power follower (PF) control strategy is presented
in [20], where the engine is the primary source of power to meet the propulsion load and the state
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of charge is midway between its predetermined upper and lower limits. In [21], fuzzy logic (FL) is
utilized to decide the power sharing between the battery and the engine of a power-split HEV to
improve the fuel economy, by using preestablished rules that are implemented in a map-based format.
RB approaches generally use a set of rules, e.g., if–then conditions, derived from engineering intuition,
to make decisions, e.g., letting power sources operate in their efficient regions. These strategies are
easy to implement and computationally efficient. However, the rules are often configuration and
cycle-dependent. In addition, they require tuning of many parameters and cannot obtain the optimal
solution [22].

Energy management system

Rule-based Optimization-based

Offline Online

DP

PMP

CP

SDP

ECMS

MPC

TC

PF

FL

Figure 4. Energy management strategies, where TC represents thermostat control, PF power follower,
FL fuzzy logic, DP dynamic programming, PMP Pontryagin’s minimum principle, CP convex
programming, ECMS equivalent consumption minimization strategy, SDP stochastic dynamic
programming and MPC model predictive control.

These drawbacks necessitate the development of optimal controllers. OB methods can be
categorized into offline and online algorithms. Dynamic programming (DP), which uses Bellman’s
principle of optimality, is widely adopted for handling non-linear constraints and finding a globally
optimal solution [23], where component models are represented by static maps based on measurements.
DP requires a backward-facing powertrain model; i.e., the drive cycle is given in advance. The optimal
control sequence is found using an exhaustive search. Its computation time increases exponentially
with the number of states and control variables. To reduce the computation time, Pontryagin’s
minimum principle (PMP) is applied to a power-split HEV [24], as it evaluates second-order differential
equations. Under reasonable assumptions, the optimal power split is obtained by finding an
appropriate costate for battery power consumption. However, tuning of equivalent parameters
is not straightforward, which is sensitive to drive cycle characteristics, especially in the presence of
multiple states. Moreover, it is challenging to use PMP to solve problems with complex constraints.
To overcome these limitations, convex programming (CP) was used in [25] for a parallel HEV to
minimize the fuel consumption, which reduced the computation time and increased the solution
robustness, by taking advantage of fast and reliable solvers. It simplified the search for the solution.
CP enables optimization of problems with many dynamic states. However, it requires the optimization
problem and component models to be convex. The solution optimality may be compromised due
to model simplifications. These offline optimization strategies demand that the driving condition is
known a priori, which is not implementable.

This disadvantage motivated the development of online controllers, which use forward-facing
models; i.e., the future driving profile is not required. To tackle the implementation issue of DP,
stochastic dynamic programming (SDP) was developed for a power-split HEV to optimize the fuel
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economy, which replaces the disturbance with a random Markov process and enables real-time
implementation [26]. The quality of solution may be reduced though. The equivalent consumption
minimization strategy (ECMS) is used in real-time control of a parallel HEV to minimize the fuel
consumption, which translates the battery electricity into its equivalent fuel cost using an equivalence
factor [27]. ECMS can be regarded as the online counterpart of PMP, and they have almost the same
structure, i.e., with the equivalence factors being the co-states. However, it may lose optimality,
since ECMS is derived using PMP conditions. Due to the inherent robustness against model
uncertainties, model predictive control (MPC) which is capable of predicting the future driving
conditions, is used to solve the energy management problem of a power-split HEV online [28].
The MPC problem can be formulated as a convex optimization problem. The advantages and
disadvantages of the foregoing energy management strategies are summarized in Table 1. Note that
some algorithms are combined due to similar characteristics.

Table 1. Advantages and disadvantages of energy management strategies.

Strategy Main Advantages Main Disadvantages Application

Rule-based [19–21] Easy to implement
Tuning of many parameters
Cycle- and configuration-dependent rules Series and power-split HEV

DP [23]
Handling complex constraints
Global optimal

Limited states and control variables
Long computation time Powers-split HEV

CP [25]
Low computation time
Handling many states and control variables Problem formulation in convex form Parallel HEV

ECMS [27]
Real-time control
Single objective

Equivalence factor sensitive to cycle
Sub-optimal Parallel HEV

MPC [28]
Predictive and adaptive
Real-time implementation Sensitive to model quality and prediction horizon Power-split HEV

It should be noted that all these energy management strategies were developed for given design
parameters. For a fixed vehicle configuration, however, the powertrain component size, e.g., the battery
size, affects the control decision, e.g., the torque split between the engine and the EM, and vice versa.
Previous studies have reported that energy efficiency can be improved remarkably by integrating
the control and size layers [29,30]. Moreover, the component size influences the system cost and
performance. To obtain better designs, the size layer should be included.

2.3. Combined Size and Control Optimization

Generally, there are two ways to size the components, i.e., RB and OB strategies, as demonstrated
in Figure 5. RB approaches based on experience and simple calculations often fail in view of optimality
and large numbers of plant variables [31,32]. OB algorithms in this regard can be classified into
derivative-free and gradient-based methods.

Dividing rectangles (DIRECT), as a sampling derivative-free algorithm, is used to find the sizes of
the battery, EM and engine of a series HEV to minimize the fuel consumption [33]. DIRECT gives equal
weights to global and local searches and can handle a discontinuous objective function, equality and
inequality constraints. Simulated annealing (SA), as a stochastic global search algorithm, by analogy
with the annealing process of metals, is applied to find the optimal sizes of the engine, EM, battery and
final drive of a parallel HEV to minimize the TCO [34]. A new solution is only accepted when satisfying
the Boltzmann criterion, where the temperature depends on the number of iterations. To minimize
the fuel consumption and emissions of a parallel HEV, the genetic algorithm (GA), as an evolutionary
algorithm, inspired by the process of natural selection, is utilized to identify the maximum engine
power, maximum EM power, battery capacity and final drive ratio [35]. The best candidates are
chosen based on the fitness value (objective), and there is a trade-off between computation time
and accuracy. Particle swarm optimization (PSO), which iteratively improves a candidate solution,
by moving particles towards the best known positions in the search space, is developed for finding
the optimal component sizes of a parallel HEV to minimize the TCO [36]. It can handle optimization
problems with large search space and complex objective functions. However, PSO does not guarantee
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that an optimal solution is found. Sequential quadratic programming (SQP), as a gradient-based
algorithm, which is an iterative method for constrained nonlinear optimization, is used to solve the
sizing problem of a parallel HEV to minimize the TCO [37]. However, it is challenging to utilize
SQP for large problems with many variables or constraints. CP is used to find the optimal sizes of
a parallel HEV to minimize the TCO, by reformulating the optimization problem and powertrain
model in convex form [30]. The advantages and disadvantages of the foregoing sizing strategies are
summarized in Table 2.

The main goal of a combined size and control method is to find the optimal set-point of the power
source to increase the energy efficiency and the optimal component sizes to reduce the powertrain cost,
by minimizing

Je(se, xe(t), us
e(t), t | T f

e ) = TCOe

=
∫ tf

t0

[βPf(se, xe(t), us
e(t), t) + γPb(se, xe(t), us

e(t), t)]dt + Ce(se), (4a)

s.t. ẋe(t) = f (se, xe(t), us
e(t), t), (4b)

he(se, xe(t), us
e(t), t) = 0, (4c)

ge(se, xe(t), us
e(t), t) ≤ 0, (4d)

se ∈ [se, se], (4e)

xe(tf) = xe(t0), (4f)

where se represents the design parameters, e.g., the EM size, β the price of gasoline, Pf the fuel power,
γ the price of electricity, Pb the battery power and Ce the powertrain cost—e.g., the battery price Cb,
which depends on the battery size represented by a scaling factor sb [38], i.e.,

Cb = Cb,0 + sbC1, (5)

where Cb,0 is the initial battery cost and C1 the linear cost coefficient. As an example, referring to (3),
the component size influences the control strategy in the sense that

τm(t) ∈ sm[τm,0(wm(t)), τm,0(wm(t))], (6)

where sm is the scaling factor for the EM. Therefore, the control input ue in (2a) is changed to us
e in (4a)

due to the influence of design parameters se introduced, which is reflected by the superscript s.
Theoretically, the combination of the size layer from Figure 5 and the control layer from Figure 4

yields different solution methods to (4a), which are connected with the four coordination schemes,
as shown in Figure 2.

Table 2. Advantages and disadvantages of sizing strategies.

Strategy Main Advantages Main Disadvantages

Rule-based [31,32] Relatively simple calculations
Non-optimal
Cycle- and configuration-dependent sizes

Derivative-free [33–36]
Handling large design space
Handling complex functions and constraints

Tuning of parameters
Large number of function evaluations
No guarantee of an optimal solution

Gradient-based [30,37] Low computation time
Constraint handling
Convex formulation
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Component sizing

Derivative-free Gradient-based

SQP

CP

DIRECT

SA

GA

PSO

Figure 5. Component sizing strategies, where DIRECT represents dividing rectangles, SA simulated
annealing, GA genetic algorithm, PSO particle swarm optimization and SQP sequential
quadratic programming.

For given component sizes, a power split control strategy based on ECMS strategy for a series HEV
was developed in [39]; it uses a sequential approach. DP is applied to solve the energy management
problem of a parallel HEV with given design parameters [40]. Obviously, the coupling between
the component sizes and the controller is ignored in these cases, which find sub-optimal solutions.
To consider this dependency, for a parallel HEV, the energy management problem is solved by using DP
and the battery, engine and EM sizes are optimized by utilizing CP with an iterative scheme, which is
one step forward from the sequential method, resulting in a near-optimal solution [38]. In order to
improve solution’s optimality, a nested approach is used in [41] for a parallel HEV, where PSO is
employed in the outer loop to optimize the component sizes, and the optimal control input for each
candidate is selected by adopting DP to minimize the fuel consumption. Furthermore, the authors
report that compared to a RB strategy, PSO using optimal control improves the energy efficiency
by around 11% and reduces the cost by around 14% [41]. For a series HEV, the sizing problem is
solved by using PSO at the upper level and the energy management problem is solved by using
ECMS at the lower level, by using a nested approach [42]. The effectiveness of the optimization is
validated by hardware-in-the-loop experiments, which outperforms a traditional single-upper-level
optimization strategy in term of fuel consumption (by around 3.4%). With a nested coordination
scheme, to minimize the TCO of a parallel HEV, the optimal component sizes are found by using SQP
in the outer loop, and the optimal power split is solved by utilizing DP in the inner loop [37]. However,
the nested approach leads to high computation time. To overcome this limitation, simultaneous
optimization of torque split, charging and component sizes is solved via CP [30], which achieves the
optimal solution. However, the optimal control problem and the quasi-static models are required to be
convex. The advantages and disadvantages of the foregoing optimization structures are summarized
in Table 3.

Table 3. Advantages and disadvantages of coordination schemes.

Strategy Main Advantages Main Disadvantages Application

Sequential [39,40] Easy to implement No coupling between the plant and controller Series and parallel HEV
Iterative [38] Computationally efficient Sub-optimal Parallel HEV
Nested [37,41,42] Solution optimality Long computation time Series and parallel HEV
Simultaneous [30] Strong coupling between the plant and controller Complex problem formulation Parallel HEV
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Notice that all these combined size and control methods are developed for a given vehicle
configuration. The topology layer will influence design parameters and control variables. For example,
as described in [8], the design and control variables of a parallel HEV are very different from those of
a series or a series-parallel topology. Each configuration results in a TCO. Therefore, the generated
powertrain architectures T f

e from (1a) should be compared based on TCO.

2.4. Combined Topology, Size and Control Optimization

To fully consider the design aspects and to obtain an optimal system, topology optimization
should also be taken into consideration. Integrated topology, size and control optimization can be
formulated by combining (1a), (2a) and (4a). The goal is to find the best design that has the lowest
TCOT

e , while satisfying performance requirements, e.g.,

Je(T
f
e , sT

e , xe(t), uT
e (t)) = TCOT

e , (7a)

s.t. v(T f
e , sT

e , xe(t), uT
e (t)) ≥ vd, (7b)

ta(T
f
e , sT

e , xe(t), uT
e (t)) ≤ ta,d, (7c)

α(T f
e , sT

e , xe(t), uT
e (t)) ≥ αd. (7d)

TCOT
e represents the effect of topology on TCOe in (4a). Specifically, the design parameters se and

control vector us
e in (4a) are updated to sT

e and uT
e in (7a), respectively. Performance requirements

are in this example the top speed, acceleration time and gradability, which are enforced by (7b)–(7d),
respectively. Other constraints on control and size optimization are associated with (2a) and (4a).

Recent studies have attempted to investigate the influence of the architecture layer. Note that
the four coordination schemes introduced before are also applicable here to solve the combined
optimization problem. A layered control strategy is proposed in [43], where a supervisory controller
is used to determine the powertrain configuration, including series and parallel types, and an
EMS is utilized to determine the power split. Optimal topologies are designed for HEVs with
different transmission technologies in [44], which include precoupled, postcoupled and switching
topologies, by using DP. A reduction of up to around 8% in CO2 emission is shown, by finding the
optimal fixed topology. For a torque-assist and a full-parallel topology [45] presents a method to
identify the best configuration based on minimization of fuel usage and powertrain cost by using
DP and PSO with a nested approach. Constraints on top speed and acceleration time are taken into
account. However, all those studies only consider a small number of configurations, which may
not be optimal. For power-split hybrids with double PGs, [10] generated and evaluated 3.4× 109

possible configurations. The integrated optimization problem was solved with two methods, namely,
nested optimization and iterative optimization. The nested approach based on exhaustive search
found the optimal solution, but it was computationally heavy. The iterative method could converge
to the optimal design found by the nested one much faster, as shown in Figure 6. It started from an
initial design (T0

e , s0
e), and topology optimization and component sizing were executed alternately.

The best design was determined based on the minimum fuel consumption. That study shows that
integrated configuration, size and control optimization can improve energy efficiency by around 16.6%,
compared to only combined size and control optimization. However, this research did not consider the
influence of topology on design and control variables. In addition, only few powertrain parameters
were optimized and powertrain cost was not taken into account.
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Figure 6. Flowchart of integrated topology, size and control optimization via an iterative approach,
where Te represents the topology and se the component size.

Current studies mainly focus on the energy domain. The thermal domain is also important as it
influences vehicle energy efficiency and cost, but it is often not considered in optimization problems.

3. Thermal-Aware Design and Control Optimization

If a system is only optimized from the thermal viewpoint for a given EMS, for example, finding
an optimal thermal management architecture with optimized thermal system size and heating/cooling
power flow, it is said to have had thermal-aware design and control optimization.

A TMS may be defined as a system that is capable of maintaining specified component
temperatures for efficiency and comfort with minimum power consumption, recovering waste heat
energy and exchanging heat between components efficiently. As far as the thermal domain is concerned,
combined control, size and configuration optimization is generally not available in the literature.
Therefore, these design layers are analyzed separately here.

3.1. Topology Generation

Typical temperature levels of electrified powertrain components, also termed heat source
components, can be seen in Figure 7. It can be observed that there are three relative temperature levels
in an electrified vehicle and three cooling circuits can thus be created.
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Figure 7. Typical temperature levels of electrified vehicle components, where CAB represents the cabin.

A common thermal management configuration for an electrified powertrain is shown in Figure 8,
including both transient and steady-state behaviors. Here, the battery is cooled with an air conditioning
(AC) system onboard [2]. The transmission is cooled with the electric drive circuit [46]. For example,
the engine is not only a power source but also a heat source. When θe < θe, indicating the transient
behavior, the engine heats up itself and the radiator as the heat sink is bypassed. When θe ≥ θe,
representing the steady-state phase, the fluid circulated by the pump as the fluid delivery device flows
through the radiator to remove heat from the engine. This process is controlled by the thermostat as
the control device. The same analysis can be applied to other powertrain components.
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Heat 
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Figure 8. A common thermal management configuration for a series hybrid electric vehicle, where the
blue line represents the cold cooling medium, the red line the hot cooling medium, which can be
gaseous and liquid (water and oil), θe the engine temperature and θe the desired engine temperature.
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From the thermal perspective, automatic topology generation is not available in the literature.
If automatic generation of thermal management architectures is considered, similarly to the energy
domain in Section 2.1, feasible thermal management topologies can be found by

Generate T f
t ⊆ T p

t , (8a)

s.t. gt(T
f
t ) ≤ 0, (8b)

where subscript t represents the thermal domain, T p
t the possible thermal management architectures

and T f
t the feasible thermal management configurations. Equation (8b) represents constraints;

for example, each cooling circuit should have at least a heat source component, a heat sink and
a fluid delivery device, to filter out infeasible topologies. The generated feasible architectures have yet
to be evaluated based on TCO and packaging constraints, by combining with control and size layers.

3.2. Control Optimization

In this regard, previous studies mostly concentrated on the control layer for a given
thermal management configuration T f

t generated from (8a) and fixed thermal system parameters
(e.g., heating/cooling capacity in kW) denoted by st. Different techniques can be used to model thermal
systems based on number of dimensions, e.g., from black box and 0D models to 3D models [1,47].
Black box models are fast but cannot capture system dynamics. 3D computational fluid dynamics
are useful for predicting high frequency dynamics and providing detailed design considerations.
However, the computation time is high (e.g., 2000 times longer than the actual process). The 0D
modeling technique (e.g., lumped capacitance analysis method), which strikes a balance between
computation time (e.g., real-time) and model fidelity (e.g., capturing low frequency dynamics with
sufficient accuracy), is widely used for controller design. The main goals of the controller (TMS) are to
improve temperature tracking with respect to a prescribed threshold of the component and to reduce
heating/cooling power consumption Jt, i.e.,

Jt(xt(t), ut(t), t | (T f
t , st)) =

∫ tf

t0

[(xt − xt,d)
T Rx(xt − xt,d)+

(ut − ut,d)
T Ru(ut − ut,d)]dt, (9a)

s.t. ẋt(t) = f (xt(t), ut(t), t), (9b)

xt ∈ [xt, xt], (9c)

ut ∈ [ut, ut], (9d)

where xt represents the vector of thermal state variables. Equation (9b) represents the thermodynamics
of the system, e.g., the EM temperature θm, which depends on how the EM is used from the EMS (ue)
(see (2a)), resulting in different power losses Pm,loss (heat generation) and yielding

θ̇m =
Pm,loss

Cm
, (10)

where Cm is the EM heat capacity. However, the EM temperature is constrained by (9c). Therefore,
cooling power is required to keep the EM temperature below its thermal limit. ut denotes the control
variables; for example, the cabin heating power Pc,

Pc(t) ∈ [Pc, Pc]. (11)

xt,d and ut,d are the references of the state vector and control vector, respectively. Rx and Ru are the
weighting matrices.
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This control problem can be tackled by two major groups of strategies: RB and OB, as shown in
Figure 9. RB approaches utilize a set of rules to compute the control signals on the basis of predefined
thresholds. These thresholds are often determined based on expert knowledge. An on/off control
method is utilized in [48] for battery cooling. The cooling system is triggered on with maximum speed,
when the battery temperature is greater than the prescribed upper threshold. The cooling system
is switched off when the battery temperature is lower than the predefined lower limit. Moreover,
the on/off control strategy is typically related to mechanical actuators, such as mechanical fans and
pumps that are coupled with the engine through clutches, which have only two states, open and
closed. Due to engine speed-dependent actuation, this kind of system often proves more than
necessary, leading to parasitic losses and excess energy usage. For the EM TMS of a series HEV,
a proportional-integral controller is used to improve the tracking performance based on the error
between the hot spot temperature and the target temperature [49]. The proportional and integral
gains need to be tuned and the solution optimality cannot be guaranteed. RB methods are easy
to understand and implement. However, they generally require tuning and yield non-optimal
solutions. To reduce energy consumption, of particular importance is adopting electrified actuators,
e.g., electronic thermostats, electric fans, electric water pumps and electric compressors, instead of their
mechanical counterparts. Continuous adjustment of thermal actuators is now possible, for example,
with motors. Costs of electrified actuators are higher, which depend on their sizes. Note that the price
difference is decreasing. In this context, OB controllers can be used to provide heating/cooling on
demand, depending on driving conditions. DP is applied to minimize the power consumption of
the battery cooling system of a series HEV [50]. An electric radiator fan matrix of an engine cooling
system is controlled to minimize the cooling power consumption by using mixed integer nonlinear
programming in [51]. Energy savings of up to 67% can be achieved. This method has the advantage
of solving nonlinear problems with continuous and integer variables. However, the optimization
result depends on model fidelity and assumptions, and this strategy is not real-time implementable.
To improve the tracking performance and reduce the power consumption of the electrical components’
cooling circuit of a parallel HEV, a real-time nonlinear MPC was developed [52]; it reduces the
electrical consumption by up to 8%, compared to a finite-state machine method. However, this strategy
is complex, which requires model simplification, and the performance depends on the drive cycle and
cost function formulation in the presence of multiple objectives. The advantages and disadvantages of
the foregoing thermal management strategies are summarized in Table 4.

Thermal management system

Rule-based Optimization-based

On/Off

PI

DP

MINP

MPC

Figure 9. Thermal management strategies, where PI represents proportional-integral and MINP mixed
integer nonlinear programming.
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Table 4. Advantages and disadvantages of thermal management strategies.

Strategy Main Advantages Main Disadvantages Application

On/Off [48] Easy to implement Unnecessary power consumption Battery cooling system
PI [49] Improved tracking performance Tuning of parameters Electric machine cooling system
DP [50] Global optimal Curse of dimensionality Battery cooling system
MINP [51] Handling continuous and integer variables Not implementable Engine cooling system
MPC [52] Real-time implementation Model fidelity Electrical components of a parallel HEV

It should be noted that the control action of the TMS is not checked by the EMS, which may
not be optimal. The TMS has yet to be integrated into the EMS, where the control signal of the TMS
is generated from the EMS, considering overall energy consumption from both energy and thermal
aspects.

Additionally, all these thermal management strategies are developed for a given thermal system
size. However, the thermal system size influences the control strategy and vice versa. For example,
a large radiator would reduce the need of providing more cooling power. The control algorithm helps
optimize the thermal system size [53]. Furthermore, the thermal system size affects the system cost.
From the thermal perspective, the control layer has yet to be integrated with the size layer.

3.3. Size Optimization

All powertrains have tight packaging constraints. It is desirable to reduce cooling system size,
resulting in reduced volume, weight, air drag, parasitic losses and cost, while meeting cooling
requirements. The main sizing methods can be categorized into RB and OB strategies.

As described in [54], the cooling capacity of a radiator is proportional to the temperature difference
between the component coolant temperature and the cooling air temperature. Moreover, reference [54]
shows that for the engine cooling system of a minivan, increasing the temperature difference by around
20 ◦C can reduce the radiator size by around 30%. This can be achieved by increasing the component
coolant temperature through technological advancements [55] in which powertrain components can
work at elevated temperatures that are still lower than their allowable limits to avoid failure. For the
engine cooling system of a class 3 pickup truck, reference [56] demonstrated that the pump power
can be reduced significantly by around 87% and the radiator can be downsized by around 27% under
a grade load condition on the FTP 74 driving cycle. This was realized by upgrading the mechanical
water pump to an electric one. However, solution optimality in terms of radiator size could not be
guaranteed in these studies, which motivated the development of OB strategies.

For a series hybrid heavy duty vehicle under a grade load condition, reference [57] took a reference
to a similar class of conventional vehicle to obtain the initial cooling system parameters. The optimal
pump and radiator sizes were found by using SQP to minimize power consumption, subject to
temperature and packaging constraints. Taking into account cooling power consumption and heat
removal capability, a search-based optimization algorithm was implemented in [58] to minimize the
heat exchanger size of the engine cooling system of a heavy duty military truck, subject to a power
constraint. However, the size layer and the control layer have yet to be coupled to obtain better thermal
system designs.

For a fixed thermal management topology, if the control and size loops are integrated, the optimal
control problem may be formulated as follows:

Jt(st, xt(t), us
t (t), t | T f

t ) = TCOt =
∫ tf

t0

(γPt(st, xt(t), us
t (t), t))dt + Ct(st), (12a)

s.t. ẋt(t) = f (st, xt(t), us
t (t), t), (12b)

xt ∈ [xt, xt], (12c)

us
t ∈ [us

t , us
t ], (12d)

st ∈ [st, st], (12e)
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where TCOt denotes the energy consumption and cost of the thermal system. The thermal power Pt

is converted to cost using γ. st denotes the thermal design parameters, e.g., the pump scaling factor,
and Ct the thermal system cost. As of the effect of st, the control variable ut in (9a) was updated to us

t
in (12a), which reveals the strong coupling between them.

Note that the component sizing strategies (Figure 5) from the energy domain can theoretically
also be employed here. Hence, the combination of the size layer from Figure 5 and the control layer
from Figure 9 yield different solution methods to (12a), which are connected with the four coordination
schemes introduced in Figure 2. Furthermore, the size of the powertrain component influences its
cooling system size. For example, a downsized and more efficient engine would imply a compact
and smaller cooling system; i.e., st ∝ se. It indicates that the thermal system size is proportional
to the powertrain component size. Moreover, similarly to (6), the thermal system size affects the
control decision of the TMS. Additionally, topology optimization needs to be considered, as thermal
management configurations are important for efficiency, comfort, cost and reliability.

3.4. Topology Optimization

In general, designs of thermal management architectures for electrified vehicles are less
available, compared to designs of powertrain configurations. Compared with conventional vehicles,
thermal management of power electronics and EM adds a new challenge to electrified ones. Normally,
power electronics (inverter) and EM are combined together with a dedicated water or oil cooling circuit
because the coolant temperature is in a similar range, as illustrated in Figure 7. In order to reduce size,
weight and cost, two ways of integration of cooling circuits for a parallel HEV were proposed in [46].
The first method is to incorporate the power electronics and EM cooling loop into the engine cooling
circuit and the second approach is to combine it with the AC circuit. The criteria combine systems
having similar temperature levels and exhibiting misalignment of peak heat loads after integration.
For the first strategy, even though it seems possible to combine them with respect to misalignment of
peak heat loads, the issue remains the different temperature specifications of the engine and power
electronics and EM as mentioned before. It is reported that future technologies may be able to increase
the temperature of electronic modules [55]. However, currently it is still an obstacle. Regarding the
second approach, it appears that this integration meets the requirements stated above, for instance,
with a low temperature liquid coolant, but a thorough analysis is required to verify such concepts.

Comprehensive thermal modeling and architecture design guidelines are given in [11] for a
heavy-duty series HEV, where two induction motors are used to drive the wheels. Two main
design guidelines derived can be summarized as follows. Heat sources with different temperature
specifications should not share the same cooling loop. Moreover, powertrain components working
in different operation groups should not share the same cooling circuit. Based on these guidelines
and simulation results in terms of power consumption of the cooling system, the authors proposed
the following topology [59], as demonstrated in Figure 10. Obviously, this system is modular because
almost all the components have their own cooling loops. However, considering of cost, weight and
size, this configuration is hardly appealing. The authors report that in this case, parasitic losses can
be reduced significantly, resulting in fuel savings of up to around 6.1%, because of the separate loops
compared with combined circuits. In combined loops, powertrain components are cooled in a single
circuit, where the coolant temperature is limited by the component that has the lowest temperature
specification, resulting in over-cooled components and unnecessary power consumption. However,
one of the reasons may be that not all the components in this system are electronically controlled,
leading to this conclusion. Here, the simulation results are dependent on the simulation conditions,
assumptions and vehicle type.
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Figure 10. Thermal management architecture for a series hybrid electric vehicle, where MP represents
the mechanical pump, EP the electric pump and CAC the charge air cooler.

Overall, current thermal management topologies for electrified vehicles are designed based on
expert knowledge, and the identified architecture is likely sub-optimal because of limited choices.
Moreover, in order to obtain an optimal thermal management configuration, topology optimization
has to be coupled with the size and control layers. If these layers are integrated, e.g., by combining (8a),
(9a) and (12a), for simplicity, the optimization problem may be described as

Jt(T
f
t , sT

t , xt(t), uT
t (t)) = TCOT

t , (13a)

s.t. θi(T
f
t , sT

t , xt(t), uT
t (t)) ≤ θi,d, (13b)

V(T f
t , sT

t , xt(t), uT
t (t)) ≤ V0, (13c)

where TCOT
t represents the influence of topology on TCOt in (12a). To be more specific, the design

parameters st and control vector us
t in (12a) are changed to sT

t and uT
t in (13a), respectively.

Equation (13b) ensures that the component temperature is always maintained below its thermal limit
and (13c) means that the thermal system should respect the packaging constraint. Other constraints
are related to (9a) and (12a). This optimization problem can be solved in a similar fashion as (7a).

Additionally, given the strong coupling between energy and thermal domains, a suitable
thermal management topology should be determined in combination with energy-aware design
and control optimization.

4. Energy and Thermal-Aware Design and Control Optimization

Taking into account design and control aspects, if a system is optimized from both energy and
thermal perspectives, it is said to have energy and thermal-aware design and control optimization.

4.1. Topology Generation

Choosing a suitable powertrain and thermal management configuration is vital, since it affects
vehicle energy efficiency, cost, performance, comfort and reliability. From both energy and thermal
viewpoints, automatic topology generation is not available in the literature. If automatic generation of
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powertrain and thermal management architectures is taken into consideration, feasible powertrain
and thermal management configurations can be identified by combining (1a) and (8a), given by

Generate T f
e,t ⊆ T p

e,t, (14a)

s.t. ge,t(T
f
e,t) ≤ 0, (14b)

where T f
e,t represents the feasible powertrain and thermal management topologies and T p

e,t the possible
powertrain and thermal management configurations. Equation (14b) includes the constraints from (1a)
and (8a). The generated feasible architectures have yet to be compared based on TCO, by integrating
with control and size layers.

4.2. Control Optimization

Earlier works mainly focused on the control layer for a given topology T f
e,t generated by (14a) and

fixed powertrain and thermal parameters represented by se and st. The aim of an integrated energy
and thermal controller is to optimally decide on the power flow of the electrified powertrain while
considering the energy and thermal aspects to minimize the overall energy consumption and satisfying
the driver demand and heating/cooling requirements. By combining (2a) and (9a), this control
problem can be expressed as

Je,t(xe(t), xt(t), ue(t), ut(t), t | (T f
e,t, se, st)) =

∫ tf

t0

[wp(Pe(xe(t), xt(t), ue(t), ut(t), t))+

wt(Pt(xe(t), xt(t), ue(t), ut(t), t))]dt, (15a)

s.t. ẋe(t) = f (xe(t), xt(t), ue(t), ut(t), t), (15b)

ẋt(t) = f (xe(t), xt(t), ue(t), ut(t), t), (15c)

he,t(xe(t), xt(t), ue(t), ut(t), t) = 0, (15d)

ge,t(xe(t), xt(t), ue(t), ut(t), t) ≤ 0, (15e)

where wp and wt are the weights. The energy domain and the thermal domain are coupled, as can be
seen in the constraints.

The associated algorithm to solve (15a) is referred to as the energy and thermal management
system. Recall that there are two categories for both EMSs and TMSs: RB and OB algorithms. Hence,
the combination of the EMS from Figure 4 represented by {RB, OB} and the TMS from Figure 9
represented by {RB, OB} yield different solution methods represented by {RB, OB} × {RB, OB}
to (15a). Consequently, energy and thermal management systems can be divided into two principle
groups, separate energy and thermal management systems (SETMSs) and combined energy and
thermal management systems (CETMSs), as shown in Table 5; examples can be found in the
literature [60]. The SETMS is denoted by EMS + TMS, while the CETMS is denoted by (EMS,TMS).
The key difference is that the control variables are determined simultaneously at the supervisory
level in a CETMS, considering whether the control decision of the TMS is energy beneficial. The TMS
receives the control signal from the EMS, which can be seen in Figure 11. In a SETMS, however,
there are explicitly two layers, and the EMS and the TMS are treated independently.
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Table 5. Energy and thermal management strategies.

Control Strategy Composition Optimality Causality Application

SETMS

PF + On/Off Sub-optimal Causal Heavy-duty series HEV powertrain [11]
TC + MPC Sub-optimal Causal Battery pack of a series HEV [61]
ECMS + On/Off Sub-optimal Causal Battery of a hybrid electric truck [62]
OB + MPC Sub-optimal Causal HEV powertrain [2]

CETMS

(RB, RB) Sub-optimal Causal Engine and electrical power equipment of an HEV [63]
(RB, OB) Sub-optimal Causal Engine and electrical power equipment of an HEV [63]
(DO, On/Off) Close-to-optimal Acausal Climate control system, refrigerated semitrailer, and air supply system [64]
(DP, MPC) Optimal Acausal Battery pack of a series HEV [50]

Mechanical

Electrical

DC-AC

GEN

TMSDriver

Control signal

BA

DrivelineEM

ICE

CETMS

Figure 11. Combined energy and thermal management.

Previous research mostly focused on SETMSs. For a heavy-duty series HEV powertrain, a PF
control strategy was developed in [11] based on heuristics to decide on the operation of a power
generation unit to meet the power request from the driver. Powertrain components generate heat
accordingly. A low-level on/off controller is utilized to remove the heat to keep the components’
temperatures below their prescribed thermal limits. These controllers are easy to implement and
can be used in real-time control. However, they cannot provide an economic solution in terms of
energy consumption, because both control strategies are RB. An improved version is presented in [61];
even though the EMS is similar, a TC, the TMS was developed based on MPC, which reduces cooling
power consumption. A clear drawback of this study is that the EMS is a RB method, which generates a
non-optimal set-point of the power source and has a negative impact on the MPC result. To overcome
this limitation, for an HEV powertrain, both OB algorithms were implemented for high-level energy
management and low-level thermal management in [2] to improve energy efficiency. However, the EMS
did not verify whether the control action of the TMS is energy beneficial, resulting in a sub-optimal
solution. This disadvantage of SETMSs motivated the development of CETMSs, which started to
appear recently and were proven to be superior to their separate counterparts [62].

In this respect, the EMS designed based on rules still cannot yield an optimal solution, regardless of
the TMS used [63]. To overcome this issue, an online energy and battery TMS was presented in [65] to
tackle multiple states with energy dynamics and thermodynamics. The battery pack can be cooled
down with a radiator or chilled down with a chiller in association with an AC system, which maintains
the battery temperature within its optimal range. The switch between the cooling mode and the
chilling mode is decided by physics. The AC compressor can only be turned on or off, as it is linked
to the engine with a clutch. The propulsion and cooling requirements are eventually met by the
engine. The main objective is to minimize the fuel consumption, while keeping the battery temperature
within its optimal range, by finding the optimal control inputs. This problem is solved with ECMS
(Figure 4). The optimal solution is found using necessary conditions and the initial values of the
co-states are calculated offline. Proportional controllers are employed to update co-states in real-time.
Fuel savings of around 1.8% were reported, compared to its separate counterpart, where the EMS
makes decisions without considering the battery cooling power consumption, i.e., ECMS + on/off [65].
Note that the solution can be sensitive to the initial values of the co-states [27]. It is also sensitive to the
physics-based mode selection. Moreover, even though in this study only battery thermal management
was taken into account, this method can be extended to consider other powertrain components.
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However, as the number of states increases, many parameters need to be tuned and the optimal
solution cannot be obtained, which necessitates the development of offline optimal control strategies.

In order to tackle these problems, a scalable distributed optimization approach is proposed in [64],
concentrating on convex approximation of auxiliaries. The auxiliaries consist of an air supply system,
a refrigerated semitrailer and a climate control system, which can only be turned on or off, as they
are connected to the engine with clutches. The complete problem can be seen as an energy network.
Each auxiliary is a subsystem of the energy network, comprising energy storage systems, for example,
the battery, and converters, for instance, the EM. The aim is to minimize the fuel consumption of the
whole system, which is equivalent to minimizing the energy losses of the subsystems. The subsystems
are connected to meet the power demand. To preserve convexity, quadratic equality constraints that
describe the input and output power of the converter are relaxed to inequality constraints. It should
be noted that the equality holds at the optimum [30]. In the presence of propulsion requirements,
where power is aggregated in the energy network, the problem cannot be separated and solved
easily. The original problem is then decomposed into several smaller optimization problems via
dual decomposition, which augments the cost function with the power demand. Owing to the
one-on-one mapping between the subsystem and the Lagrange dual function, the subsystems can
be solved individually and efficiently, by utilizing Lagrangian method and alternating direction
method of multipliers. Compared with its separate counterpart, where the EMS and the TMS are
treated independently, fuel savings of around 1.08% were reported [64]. The presented method can be
extended to include more thermal systems. However, in this study, the TMS was limited to on/off
control, leading to a large number of switches and excess power consumption, which needs to be
upgraded to optimal controllers.

To address this issue, reference [50] presents an integrated DP and MPC approach. The system
architecture is similar to Figure 11, where the CETMS represented by DP consideres both propulsion
and battery cooling requirements. The TMS represented by MPC receives the control signal from DP to
regulate an AC system so as to maintain the battery temperature within its optimal range. Specifically,
the cooling air circulated by an air pump, removes heat from the battery. The compressor that is
attached to the EM provides the desired coolant flow rate continuously. In view of high computation
time of DP, the battery cooling system is simplified as a static map, where the compressor power of the
AC system is described as a function of heat rejection and cooling air temperature. The propulsion
power and the cooling power are ultimately met by the battery power and engine-generator power.
Overall, the system has two state variables, the state of charge of the battery and cooling air temperature,
and two control variables, the engine-generator power and compressor power. Discretization of
these variables is required, which entails a trade-off between accuracy and computation time [9].
The objective is to evaluate system dynamics and find optimal control variables at each time instance
to minimize the fuel consumption in charge sustaining mode. Compared to a SETMS as the baseline,
where the energy management and the thermal management are not integrated, up to roughly 5% in
fuel savings was achieved [50]. Note that, however, the result can be sensitive to the discretization
of those state and control variables. In addition, simplified models are not representative in reality.
Moreover, as the number of states grows, it can be expected that the computation time increases
exponentially, which may not be tractable.

However, the foregoing studies only consider control optimization and the plant has yet to be
incorporated to obtain an optimal system.
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5. Observations and Future Trends

5.1. Controller Design

From EMS point of view, OB algorithms (Figure 4) are gaining popularity, such as using DP
as an offline strategy to obtain a global optimal solution to benchmark online controllers. Since DP
is computationally heavy, to shorten the computation time and achieve the same accuracy, CP is
a promising alternative. Even though the online counterparts of the offline OB methods facilitate
real-time implementation, to simplify the problem, rules can be extracted from offline OB algorithms
to form control strategies. An example is RB-DP [43], which strikes a balance between optimality,
computation time and complexity. Moreover, taking into account discrete variables, for example,
engine on/of and gear shift [66], which results in a mixed-integer optimization problem, necessitates
the development of integrated algorithms [67] and hybrid optimal control techniques [68]. In [67],
the engine on/off and gear shift are determined by DP in the outer loop, and the continuous variable,
power split, is solved by using CP in the inner loop. Apart from energy consumption (fuel and
electricity), the objective function to be minimized is also expected to consider more factors to find the
trade-off, such as emissions for eco-driving [69], battery aging for cost reduction [70] and drivability
for comfort [71]. Additionally, to further increase powertrain efficiency, it is essential to include the
thermal domain.

From TMS perspective, since conventional mechanical actuators with the on/off control method
fail to provide an economic solution, the current trend is to upgrade them to their electrified
counterparts, enabling heating/cooling on demand with OB algorithms [72]. Compared with a
traditional control method, the overall power consumption of the cooling system with advanced
electromechanical actuators and control strategies can be reduced by around 45% [73].

Regarding energy and thermal management systems, as CETMSs achieve better performance
than their separate counterparts, they will get more and more attention. As is made evident by Table 5,
there are eight ways of integrating energy and thermal management systems, but limited comparisons
can be found in the literature. To identify energy savings in different scenarios, it is important
to conduct more comparisons. Furthermore, in CETMSs, there is a trade-off between optimality,
complexity, causality and computation time. Such integrated systems can also communicate with other
electronic control units onboard and provide guidelines for drivers via human machine interface to
maximize efficiency.

Currently, however, only the control layer has been taken into consideration for energy and
thermal management systems. To obtain an optimal system and reveal the real coupling between the
energy and thermal domains, it is imperative to incorporate the design layer.

5.2. Waste Heat Recovery

To gain insights into areas where most of the powertrain efficiency improvements could be
attained, a simulation was conducted to analyze the energy balance of an HEV with cabin heating in
charge sustaining mode, as demonstrated in Figure 12 [74]. It can be seen that a large portion of the fuel
energy is dissipated as exhaust gas. Recovering a part of that energy would promote energy efficiency.
There are two ways to recover engine waste heat: organic Rankine cycle [75] and thermoelectric
generator [76]. Based on the Seebeck effect, a thermoelectric generator generates electricity when there
is a thermal gradient across the junctions of two dissimilar materials. The organic Rankine cycle is
preferred to a thermoelectric generator, taking into account conversion efficiency, technology maturity
and cost. It is estimated that organic Rankine cycle has an efficiency of up to around 15% [75,77].
A typical organic Rankine cycle system with an EM (generator) is illustrated in Figure 13. The working
fluid absorbs heat from engine exhaust gases. Expansion of vaporized fluid generates mechanical
power, which is transformed into electrical power and stored in the battery. The recovered energy
would downsize the battery pack.
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Figure 12. Typical energy balance of an HEV in charge sustaining mode [74], where DC-DC represents
the DC to DC converter and DNR the drive, neutral and reverse set.

Typically, in an HEV (Figure 12), auxiliaries, e.g., cabin heating, consume a large amount of energy.
It is apparent that electric heaters powered by the battery fail to provide an optimal solution. Owing to
higher coefficient of performance, a heat pump can be employed instead [78]. While conventionally a
heat pump only extracts heat from ambient air, substantial waste heat from the electric drive, as shown
in Figure 14 [79], can also be used to boost heating performance, resulting in a decrease in battery
load and an increase in driving range. As reported in [80], the coefficient of performance and heating
capacity can be increased by around 9.3% and 31.5%, respectively, by utilizing the waste heat from
ambient and electric devices. Besides, as is made evident by Figure 7, transmission and electric drive
have similar temperature levels, which could be combined together with a single cooling loop [81].
This would contribute to the heat that can be recovered by heat pump, leading to an improved heating
performance. The electric drive and transmission cooling circuit exchange heat with the refrigerant
circuit and cabin to improve the heating performance, as demonstrated in Figure 15.
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Figure 13. Organic Rankine cycle.

Note that design and control of the organic Rankine cycle system and heat pump system have yet
to be integrated at system level to identify the energy savings. A detailed cost-benefit analysis would
also be required before mass production of these systems.
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2019, Elsevier.
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Figure 15. Heat pump system using waste heat from electric drive and transmission.

5.3. Heat Exchange

At low temperatures, the engine has higher frictional losses because of increased hydrodynamic
effects and poor combustion. The difference in fuel consumption between a warm engine and a cold
one is around 12% [82]. The battery performance deteriorates remarkably at low temperatures, which
has negative impacts on reliability, safety and efficiency. Due to cabin heating, the driving range of
an EV can be reduced by up to around 68% [83]. It can be observed from Figure 12 that the heat
energy transferred to the engine coolant is significant, which can be utilized to heat up lubrication
oils, the cabin, the battery and so on [84]. As shown in Figure 16, where electrified actuators are used,
engine coolant is utilized to warm up engine oil, transmission oil and the cabin’s heater core using a
three-way valve. It is reported that powertrain efficiency can be improved by around 4% due to fast
warm-up [84].

Additionally, as illustrated in Figure 14, in EV mode, the electric drive and transmission coolant
can be utilized to heat up the engine and battery during cold-start conditions to reduce power
dissipation. Overall, the heat exchange between powertrain components can be summarized in
Figure 17. Assume each cooling circuit is self-contained, consisting of heat source, fluid delivery device
and heat sink. However, optimal control strategies are needed to allocate and remove heat effectively,
which would increase efficiency and reduce the thermal system size and cost.

Combo cooler Condenser

Radiator

Electric fan

Engine block 
and head

Engine oil 
heater/cooler

Cabin heater 
core

Transmission

Trans. oil 
heater

Coolant 
pump

Electronic 
thermostat

3 way 
valve

Transmission oil

Transmission
thermostat

Figure 16. Heat energy distribution between powertrain components [84].
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Figure 17. Heat exchange between electrified powertrain components, where HX represents the
heat exchanger.

5.4. Transition to Electric Vehicles

In the electrification of vehicles, the first front is HEVs. They have played a pivotal role in
reducing energy consumption in the past decades. Nowadays, EVs have a greater positive impact on
the environment compared to HEVs, which has accelerated EVs’ resurgence. There exist a variety of
EV architectures, depending on the transmission type, the number of EMs and their locations [85].
Even though single-speed transmissions currently dominate the EV market, research on multi-speed
transmissions, such as two-speed ones and continuously variable transmission (CVT), is emerging,
focusing on cost function optimization, energy efficiency and vehicle performance [86]. For example,
depending on loading conditions, e.g., hill climbing, EVs would benefit from various operational states
provided by a CVT without torque interruption. In this respect, the integration of things such as the EM
and the transmission, plays an important role. As shown in [87], a CVT could provide opportunities of
optimizing the EM due to continuous ratio adjustment. In turn, the wider constant power region of
the EM could help in the optimization of the CVT. These would result in an optimized battery and an
optimized thermal system. Finding optimal component sizes and letting the system operate at high
efficiency would contribute to cost function reduction. Optimal thermal management with electrified
actuators also contributes to reducing the size and cost of the thermal system. Additionally, if waste
heat from the electric drive and transmission is used in an EV, the sizes of the heat pump and the
battery pack can be reduced.

5.5. Plant Design

For sizing of powertrain components, current studies mainly focus on OB methods (Figure 5),
such as the widely used PSO [88]. Limited research can be found in terms of applying OB algorithms
to determining the thermal system size. Moreover, to arrive at an optimal system design, component
sizing needs to be coupled with the control layer. Generally, in terms of optimality, nested and
simultaneous approaches outperform sequential and iterative ones. Simultaneous methods that
require convex features of a system are computationally more efficient than nested schemes relying on
exhaustive search. Recent studies mostly concentrate on nested and simultaneous schemes because of
optimality. Each method has its own strengths and limitations. For example, to find optimal energy
management and component sizes of a series PHEV, two methods were employed in [89], where CP
represents the simultaneous coordination scheme and PSO/DP represents the nested approach. In [89],
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the same optimal solution was obtained, which achieved a fuel efficiency improvement of around
10.4% compared to the initial powertrain design. CP delivered superior performance to PSO by a factor
of 20 in terms of computation time. Tuning for PSO is also required. Nevertheless, heuristics or DP are
needed in CP to handle integer variables, e.g., engine on/off. Moreover, CP requires the problem to
be solved in a convex form. To strike the balance between computation time and solution optimality,
an iterative coordination method can be utilized, such as DP/CP [38]. The (close-to) optimal solution
is then obtained in a considerably short time. Furthermore, topology dictates vehicle energy efficiency
and cost. In order to choose a suitable configuration with large design space, topology generation
has proven beneficial for design. However, current methods do not take into account the thermal
management architecture, which may not yield an optimal system. Topology optimization needs to be
integrated with size and control optimization so as to select the best configuration based on minimum
TCO. Additionally, integrated design and control of a complete electrified vehicle considering both
energy and thermal domains to reduce the TCO has yet to be addressed, while satisfying performance,
driving comfort, passenger thermal comfort and reliability requirements.

6. Conclusions

This paper presents a comprehensive analysis of design (topology and size) and control
optimization layers and coordination schemes for electrified vehicles, including energy and thermal
domains. By combining those optimization layers, energy consumption and cost reductions can be
obtained. Depending on the coupling and how sensitive the solution is to uncertainties in the design
parameters, nested and simultaneous coordination methods outperform sequential and iterative
ones with respect to solution optimality. Nested approaches are usually computationally heavy,
whereas simultaneous ones often require convexification of the original problem. Energy and thermal
management systems, which only started to appear recently, were thoroughly surveyed and classified
into SETMSs and CETMSs. In CETMSs, control decisions are made only once at the supervisory level,
which deliver superior performance to SETMSs in terms of energy savings. It was shown that there is
a trade-off between optimality, computation time, causality and complexity. In order to further reduce
TCO, an analysis of future trends in terms of integrated design and control of electrified vehicles is
presented, including employing WHR systems, exchanging heat between powertrain components and
upgrading mechanical actuators.
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Abbreviations

The following abbreviations are used in this paper:

AC Air Conditioning
BA Battery
BER Brake Energy Recuperation
CAB Cabin
CAC Charge Air Cooler
CETMS Combined Energy and Thermal Management System
CH Charging
CP Convex Programming
CVT Continuously Variable Transmission
DC Direct Current

www.m2i.nl


Energies 2020, 13, 5454 27 of 31

DIRECT Dividing Rectangles
DNR Drive, Neutral, and Reverse
DO Distributed Optimization
DP Dynamic Programming
ECMS Equivalent Consumption Minimization Strategy
EM Electric Machine
EMS Energy Management System
EP Electric Pump
EV Electric Vehicle
FL Fuzzy Logic
GA Genetic Algorithm
GEN Generator
HEV Hybrid Electric Vehicle
HVAC Heating, Ventilation, and Air Conditioning
ICE Internal Combustion Engine
MA Motor Assist
MINP Mixed Integer Nonlinear Programming
MP Mechanical Pump
MPC Model Predictive Control
OB Optimization-based
PF Power Follower
PG Planetary Gear
PI Proportional-Integral
PMP Pontryagin’s Minimum Principle
PSO Particle Swarm Optimization
RB Rule-based
SA Simulated Annealing
SDP Stochastic Dynamic Programming
SETMS Separate Energy and Thermal Management System
SQP Sequential Quadratic Programming
TC Thermostat Control
TCO Total Cost of Ownership
TMS Thermal Management System
TR Transmission

References

1. Yuan, R.; Fletcher, T.; Ahmedov, A.; Kalantzis, N.; Pezouvanis, A.; Dutta, N.; Watson, A.; Ebrahimi, K.
Modelling and Co-simulation of Hybrid Vehicles: A Thermal Management Perspective. Appl. Therm. Eng.
2020, 180, 115883. [CrossRef]

2. Tao, X. Design, Modeling and Control of a Thermal Management System for Hybrid Electric Vehicles.
Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2016.

3. Shojaei, S.; McGordon, A.; Robinson, S.; Marco, J.; Jennings, P. Developing a Model for Analysis of the
Cooling Loads of a Hybrid Electric Vehicle by Using Co-simulations of Verified Submodels. Proc. Inst. Mech.
Eng. Part D J. Autom. Eng. 2018, 232, 766–784. [CrossRef]

4. Biswas, S. Thermal Management System and Performance Characteristics of Electric Vehicle; SAE Technical Paper
2020-28-0022; SAE International: Warrendale, PA, USA, 2020.

5. Amini, M.R.; Kolmanovsky, I.; Sun, J. Hierarchical MPC for Robust Eco-cooling of Connected and Automated
Vehicles and Its Application to Electric Vehicle Battery Thermal Management. IEEE Trans. Control Syst. Technol.
2020, 1–13. [CrossRef]

6. Lei, Z.; Qin, D.; Hou, L.; Peng, J.; Liu, Y.; Chen, Z.A. Adaptive Equivalent Consumption Minimization
Strategy for Plug-in Hybrid Electric Vehicles based on Traffic Information. Energy 2020, 190. [CrossRef]

7. Afzal, A.; Mohammed Samee, A.D.; Abdul Razak, R.K.; Ramis, M.K. Thermal management of Modern
Electric Vehicle Battery Systems (MEVBS). J. Therm. Anal. Calorim. 2020. [CrossRef]

http://dx.doi.org/10.1016/j.applthermaleng.2020.115883
http://dx.doi.org/10.1177/0954407017707099
http://dx.doi.org/10.1109/TCST.2020.2975464
http://dx.doi.org/10.1016/j.energy.2019.116409
http://dx.doi.org/10.1007/s10973-020-09606-x


Energies 2020, 13, 5454 28 of 31

8. Silvas, E.; Hofman, T.; Murgovski, N.; Etman, L.F.P.; Steinbuch, M. Review of Optimization Strategies for
System-Level Design in Hybrid Electric Vehicles. IEEE Trans. Veh. Technol. 2017, 66, 57–70. [CrossRef]

9. Guzzella, L.; Sciarretta, A. Vehicle Propulsion Systems: Introduction to Modeling and Optimization, 2nd ed.;
Springer: Berlin, Germany, 2010.

10. Zhuang, W.; Zhang, X.; Peng, H.; Wang, L. Simultaneous Optimization of Topology and Component Sizes
for Double Planetary Gear Hybrid Powertrains. Energies 2016, 9, 411. [CrossRef]

11. Park, S. A Comprehensive Thermal Management System Model for Hybrid Electric Vehicles. Ph.D. Thesis,
University of Michigan, Ann Arbor, MI, USA, 2011.

12. Liu, J.; Peng, H. A Systematic Design Approach for Two Planetary Gear Split Hybrid Vehicles. Veh. Syst. Dyn.
2010, 48, 1395–1412. [CrossRef]

13. Moura, S.J.; Callaway, D.S.; Fathy, H.K.; Stein, J.L. Tradeoffs between Battery Energy Capacity and Stochastic
Optimal Power Management in Plug-in Hybrid Electric Vehicles. J. Power Sources 2010, 195, 2979–2988.
[CrossRef]

14. Chan, C.C.; Bouscayrol, A.; Chen, K. Electric, Hybrid, and Fuel-cell Vehicles: Architectures and Modeling.
IEEE Trans. Veh. Technol. 2010, 59, 589–598. [CrossRef]

15. Zhang, X.; Li, C.-T.; Kum, D.; Peng, H. Prius+ and Volt−: Configuration Analysis of Power-Split Hybrid
Vehicles with a Single Planetary Gear. IEEE Trans. Veh. Technol. 2012, 61, 3544–3552. [CrossRef]

16. Dagci, O.H.; Peng, H.; Grizzle, J.W. Hybrid Electric Powertrain Design Methodology with Planetary Gear
Sets for Performance and Fuel Economy. IEEE Access 2018, 6, 9585–9602. [CrossRef]

17. Bayrak, A.E.; Kang, N.; Papalambros, P. Decomposition-based Design Optimization of Hybrid Electric
Powertrain Arhitectures: Simultaneous Configuration and Sizing Design. J. Mech. Des. 2016, 138. [CrossRef]

18. Silvas, E.; Hofman, T.; Serebrenik, A.; Steinbuch, M. Functional and Cost-based Automatic Generator for
Hybrid Vehicles Topologies. IEEE/ASME Trans. Mechatronics 2015, 20, 1561–1572. [CrossRef]

19. Johri, R.; Filipi, Z. Optimal Energy Management of a Series Hybrid Vehicle with Combined Fuel Economy
and Low-emission Objectives. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 2014, 228, 1424–1439. [CrossRef]

20. Shabbir, W.; Evangelou, S.A. Threshold-changing Control Strategy for Series Hybrid Electric Vehicles.
Appl. Energy 2019, 235, 761–775. [CrossRef]

21. Singh, K.V.; Bansal, H.O.; Singh, D. Feed-forward Modeling and Real-time Implementation of an Intelligent
Fuzzy Logic-based Energy Management Strategy in a Series–parallel Hybrid Electric Vehicle to Improve
Fuel Economy. Electr. Eng. 2020, 102, 967–987. [CrossRef]

22. Ehsani, M.; Gao, Y.; Emadi, A. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory,
and Design, 2nd ed.; CRC: Boca Raton, FL, USA, 2010.

23. Vinot, E.; Trigui, R.; Cheng, Y.; Espanet, C.; Bouscayrol, A.; Reinbold, V. Improvement of an EVT-based HEV
Using Dynamic Programming. IEEE Trans. Veh. Technol. 2014, 63, 40–50. [CrossRef]

24. Kim, N.; Cha, S.; Peng, H. Optimal Control of Hybrid Electric Vehicles based on Pontryagin’s Minimum
Principle. IEEE Trans. Control Syst. Technol. 2011, 19, 1279–1287.

25. Hadj-Said, S.; Colin, G.; Ketfi-Cherif, A.; Chamaillard, Y. Convex Optimization for Energy Management of
Parallel Hybrid Electric Vehicles. IFAC-PapersOnLine 2016, 49, 271–276. [CrossRef]

26. Opila, D.F.; Wang, X.; McGee, R.; Grizzle, J.W. Real-time Implementation and Hardware Testing of a
Hybrid Vehicle Energy Management Controller based on Stochastic Dynamic Programming. J. Dyn. Syst.
Meas. Control 2013, 135. [CrossRef]

27. Nüesch, T.; Cerofolini, A.; Mancini, G.; Cavina, N.; Onder, C.; Guzzella, L. Equivalent Consumption
Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle.
Energies 2014, 7, 3148–3178. [CrossRef]

28. Borhan, H.; Vahidi, A.; Phillips, A.M.; Kuang, M.L.; Kolmanovsky, I.V.; Di Cairano, S. MPC-based Energy
Management of a Power-split Hybrid Electric Vehicle. IEEE Trans. Control Syst. Technol. 2012, 20, 593–603.
[CrossRef]

29. Sundström, O.; Guzzella, L.; Soltic, L.P. Torque-assist Hybrid Electric Powertrain Sizing: From Optimal
Control towards a Sizing Law. IEEE Trans. Control Syst. Technol. 2010, 18, 837–849. [CrossRef]

30. Pourabdollah, M.; Murgovski, N.; Grauers, A.; Egardt, B. Optimal Sizing of a Parallel Phev Powertrain.
IEEE Trans. Veh. Technol. 2013, 62, 2469–2480. [CrossRef]

31. Sinoquet, D.; Rousseau, G.; Milhau, Y. Design Optimization and Optimal Control for Hybrid Vehicles.
Optim. Eng. 2011, 12, 199–213. [CrossRef]

http://dx.doi.org/10.1109/TVT.2016.2547897
http://dx.doi.org/10.3390/en9060411
http://dx.doi.org/10.1080/00423114.2010.512634
http://dx.doi.org/10.1016/j.jpowsour.2009.11.026
http://dx.doi.org/10.1109/TVT.2009.2033605
http://dx.doi.org/10.1109/TVT.2012.2208210
http://dx.doi.org/10.1109/ACCESS.2018.2796939
http://dx.doi.org/10.1115/1.4033655
http://dx.doi.org/10.1109/TMECH.2015.2405473
http://dx.doi.org/10.1177/0954407014522444
http://dx.doi.org/10.1016/j.apenergy.2018.11.003
http://dx.doi.org/10.1007/s00202-019-00914-6
http://dx.doi.org/10.1109/TVT.2013.2271646
http://dx.doi.org/10.1016/j.ifacol.2016.08.041
http://dx.doi.org/10.1115/1.4007238
http://dx.doi.org/10.3390/en7053148
http://dx.doi.org/10.1109/TCST.2011.2134852
http://dx.doi.org/10.1109/TCST.2009.2030173
http://dx.doi.org/10.1109/TVT.2013.2240326
http://dx.doi.org/10.1007/s11081-009-9100-8


Energies 2020, 13, 5454 29 of 31

32. Ma, C.; Ko, S.Y.; Jeong, K.Y.; Kim, H.S. Design Methodology of Component Design Environment for PHEV.
Int. J. Automot. Technol. 2013, 14, 785–795. [CrossRef]

33. Patil, R.; Adornato, B.; Filipi, Z. Design Optimization of a Series Plug-in Hybrid Electric Vehicle for
Real-World Driving Conditions. SAE Int. J. Engines 2010, 3, 655–665. [CrossRef]

34. Geller, B.; Bradley, T. Objective Comparison of Hybrid Vehicles through Simulation Optimization; SAE Technical
Paper 2011-01-0943; SAE International: Warrendale, PA, USA, 2011.

35. Fang, L.; Qin, S.; Xu, G.; Li, T.; Zhu, K. Simultaneous Optimization for Hybrid Electric Vehicle Parameters
based on Multi-objective Genetic Algorithms. Energies 2011,4, 532–544. [CrossRef]

36. Ebbesen, S.; Dönitz, C.; Guzzella, L. Particle Swarm Optimisation for Hybrid Electric Drive-train Sizing.
Int. J. Veh. Des. 2012, 58, 181–199. [CrossRef]

37. Silvas, E. Integrated Optimal Design for Hybrid Electric Vehicles. Ph.D. Thesis, Eindhoven University of
Technology, Eindhoven, The Netherlands, 2015.

38. Pourabdollah, M.; Murgovski, N.; Grauers, A.; Egardt, B.A. Iterative Dynamic Programming/Convex
Optimization Procedure for Optimal Sizing and Energy Management of PHEVs. IFAC Proc. Vol. 2014,
47, 6606–6611. [CrossRef]

39. Sezer, V.; Gokasan, M.; Bogosyan, S. A Novel ECMS and Combined Cost Map Approach for High-efficiency
Series Hybrid Electric Vehicles. IEEE Trans. Veh. Technol. 2011, 60, 3557–3570. [CrossRef]

40. Lee, H.; Song, C.; Kim, N.; Cha, S.W. Comparative Analysis of Energy Management Strategies for HEV:
Dynamic Programming and Reinforcement Learning. IEEE Access 2020, 8, 67112–67123. [CrossRef]

41. Ebbesen, S. Optimal Sizing and Control of Hybrid Electric Vehicles. Ph.D. Thesis, ETH Zurich, Zurich,
Switzerland, 2012.

42. Zhu, J.; Chen, L.; Wang, X.; Yu, L. Bi-level Optimal Sizing and Energy Management of Hybrid Electric
Propulsion Systems. Appl. Energy 2020, 260, 114–134. [CrossRef]

43. Bianchi, D.; Rolando, L.; Serrao, L.; Onori, S.; Rizzoni, G.; Al-Khayat, N.; Hsieh, T.-M.; Kang, P. Layered
Control Strategies for Hybrid Electric Vehicles based on Optimal Control. Int. J. Electr. Hybrid Veh. 2011,
3, 191–217. [CrossRef]

44. Hofman, T.; Ebbesen, S.; Guzzella, L. Topology Optimization for Hybrid Electric Vehicles with Automated
Transmissions. IEEE Trans. Veh. Technol. 2012, 6, 2442–2451. [CrossRef]

45. Nüesch, T.; Ott, T.; Ebbesen, S.; Guzzella, L. Cost and Fuel-Optimal Selection of HEV Topologies using
Particle Swarm Optimization and Dynamic Programming. In Proceedings of the 2012 American Control
Conference, Montreal, QC, Canada, 27–29 June 2012.

46. Bennion, K.; Thornton, M. Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies;
Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2010.

47. Fletcher, T.; Kalantzis, N.; Ahmedov, A.; Yuan, R.; Ebrahimi, K.; Dutta, N.; Price, C. Holistic Thermal Energy
Modelling for Full Hybrid Electric Vehicles (HEVs); SAE Technical Paper 2020-01-0151; SAE International:
Warrendale, PA, USA, 2020.

48. Tao, X.; Wagner, J. A Thermal Management System for the Battery Pack of a Hybrid Electric Vehicle: Modeling
and Control. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2016, 230, 190–201. [CrossRef]

49. Tao, X.; Zhou, K.; Wagner, J.; Hofmann, H.A. Electric Motor Thermal Management System for Hybrid
Vehicles: Modelling and Control. Int. J. Veh. Perform. 2016, 2, 207–227.

50. Zhang, X.; Ivanco, A.; Tao, X.; Wagner, J.; Filipi, Z. Optimization of the Series-hev Control with Consideration
of the Impact of Battery Cooling Auxiliary Losses. SAE Int. J. Altern. Power 2014, 3, 234–243. [CrossRef]

51. Wang, T.; Jagarwal, A.; Wagner, J.R.; Fadel, G. Optimization of an Automotive Radiator Fan Array Operation
to Reduce Power Consumption. IEEE/ASME Trans. Mechatronics 2015, 20, 2359–2369. [CrossRef]

52. Lopez-Sanz, J.; Ocampo-Martinez, C.; Álvarez-Flórez, J.; Moreno-Eguilaz, M.; Ruiz-Mansilla, R.; Kalmus, J.;
Gräeber, M.; Lux, G. Thermal Management in Plug-in Hybrid Electric Vehicles: A Real-time Nonlinear
Model Predictive Control Implementation. IEEE Trans. Veh. Technol. 2017, 66, 7751–7760. [CrossRef]

53. Saha, J.; Chen, H.; Rahman, S. Model based Design and Optimization of Vehicle Thermal Management System;
SAE Technical Paper 2016-01-0283; SAE International: Warrendale, PA, USA, 2016.

54. Hughes, C.; Wiseman, M. Feasibility of Intelligent Control Strategies to Reduce Cooling System Size; SAE Technical
Paper 2001-01-1759; SAE International: Warrendale, PA, USA, 2001.

http://dx.doi.org/10.1007/s12239-013-0087-y
http://dx.doi.org/10.4271/2010-01-0840
http://dx.doi.org/10.3390/en4030532
http://dx.doi.org/10.1504/IJVD.2012.047382
http://dx.doi.org/10.3182/20140824-6-ZA-1003.02375
http://dx.doi.org/10.1109/TVT.2011.2166981
http://dx.doi.org/10.1109/ACCESS.2020.2986373
http://dx.doi.org/10.1016/j.apenergy.2019.114134
http://dx.doi.org/10.1504/IJEHV.2011.042147
http://dx.doi.org/10.1109/TVT.2012.2196299
http://dx.doi.org/10.1177/0954407015582323
http://dx.doi.org/10.4271/2014-01-1904
http://dx.doi.org/10.1109/TMECH.2014.2377655
http://dx.doi.org/10.1109/TVT.2017.2678921


Energies 2020, 13, 5454 30 of 31

55. Johnson, R.W.; Evans, J.L.; Jacobsen, P.; Thompson, J.R.; Christopher, M. The Changing Automotive
Environment: High-Temperature Electronics. IEEE Trans. Electron. Packag. Manuf. 2004, 27, 164–176.
[CrossRef]

56. Cho, H.; Jung, D.; Filipi, Z.; Assanis, D.N.; Vanderslice, J.; Bryzik, W. Application of Controllable Electric
Coolant Pump for Fuel Economy and Cooling Performance Improvement. J. Eng. Gas Turbines Power 2007,
129, 239–244. [CrossRef]

57. Park, S.; Kokkolaras, M.; Malikopoulos, A.; AbdulNour, B.; Sedarous, J.; Jung, D. Thermal Management
System Modeling and Optimization for Heavy Hybrid Electric Military Vehicles. In Proceedings of the
2010 NDIA Ground Vehicle Systems Engineering and Technology Symposium, Dearborn, MI, USA,
17–19 August 2010.

58. Tao, X.; Wagner, J. Optimization of a Military Ground Vehicle Engine Cooling System Heat Exchanger—Modeling
and Size Scaling; SAE Technical Paper 2017-01-0259; SAE International: Warrendale, PA, USA, 2017.

59. Park, S.; Jung, D. Design of Vehicle Cooling System Architecture for a Heavy Duty Series-hybrid Electric
Vehicle Using Numerical System Simulations. J. Eng. Gas Turbines Power 2010, 132. [CrossRef]

60. Wei, C.; Hofman, T.; Ilhan Caarls, E.; van Iperen, R. Evolution and Classification of Energy and Thermal
Management Systems in Electrified Powertrains. In Proceedings of the 2019 IEEE Vehicle Power and
Propulsion Conference, Hanoi, Vietnam, 14–17 October 2019.

61. Zhang, X. Supervisory Control Optimization for a Series Hybrid Electric Vehicle with Consideration of
Battery Thermal Management and Aging. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2016.

62. Pham, T.H. Integrated Energy and Battery Life Management for Hybrid Vehicles. Ph.D. Thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands, 2015.

63. Jiménez-Espadafor, F.J.; Guerrero, D.P.; Trujillo, E.C.; García, M.T.; Wideberg, J. Fully Optimized
Energy Management for Propulsion, Thermal Cooling and Auxiliaries of a Serial Hybrid Electric Vehicle.
Appl. Therm. Eng. 2015, 91, 694–705. [CrossRef]

64. Romijn, T.C.J.; Donkers, M.C.F.; Kessels, J.T.B.A.; Weiland, S. A Distributed Optimization Approach for
Complete Vehicle Energy Management. IEEE Trans. Control Syst. Technol. 2019, 27, 964–980. [CrossRef]

65. Pham, T.H.; Kessels, J.T.B.A.; van den Bosch, P.P.J.; Huisman, R.G.M.; Nevels, R.M.P.A. On-line Energy and
Battery Thermal Management for Hybrid Electric Heavy-Duty Truck. In Proceedings of the 2013 American
Control Conference, Washington, DC, USA, 17–19 June 2013.

66. Ngo, V.; Hofman, T.; Steinbuch, M.; Serrarens, A. Optimal Control of the Gearshift Command for Hybrid
Electric Vehicles. IEEE Trans. Veh. Technol. 2012, 61, 3531–3543. [CrossRef]

67. Nüesch, T.; Elbert, P.; Flankl, M.; Onder, C.; Guzzella, L. Convex Optimization for the Energy Management of
Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs. Energies 2014, 7, 834–856. [CrossRef]

68. Böhme, T.J.; Frank, B. Hybrid Systems, Optimal control and Hybrid Vehicles: Theory, Methods and Applications;
Springer: Cham, Switzerland, 2017.

69. Tate, E.D.; Grizzle, J.W.; Peng, H. SP-SDP for Fuel Consumption and Tailpipe Emissions Minimization in an
EVT Hybrid. IEEE Trans. Control Syst. Technol. 2010, 18, 673–687. [CrossRef]

70. Serrao, L.; Onori, S.; Sciarretta, A.; Guezennec, Y.; Rizzoni, G. Optimal Energy Management of Hybrid Electric
Vehicles Including Battery Aging. In Proceedings of the 2011 American Control Conference, San Francisco,
CA, USA, 29 June–1 July 2011.

71. Barbarisi, O.; Westervelt, E.R.; Vasca, F.; Rizzoni, G. Power Management Decoupling Control for a Hybrid
Electric Vehicle. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain,
12–15 December 2005.

72. Wang, T.; Wagner, J. A Smart Engine Cooling System—Experimental Study of Integrated Actuator Transient
Behavior; SAE Technical Paper 2015-01-1604; SAE International: Warrendale, PA, USA, 2015.

73. Tao, X.; Zhou, K.; Ivanco, A.; Wagner, J.; Hofmann, H.; Filipi, Z. A Hybrid Electric Vehicle Thermal Management
System—Nonlinear Controller Design; SAE Technical Paper 2015-01-1710; SAE International: Warrendale, PA,
USA, 2015.

74. Wei, C.; Hofman, T.; Ilhan Caarls, E.; van Iperen, R. Integrated Energy and Thermal Management for
Electrified Powertrains. Energies 2019, 12, 2058. [CrossRef]

75. Wang, T.; Zhang, Y.; Peng, Z.; Shu, G. A Review of Researches on Thermal Exhaust Heat Recovery with
Rankine Cycle. Renew. Sustain. Energy Rev. 2011, 15, 2862–2871. [CrossRef]

http://dx.doi.org/10.1109/TEPM.2004.843109
http://dx.doi.org/10.1115/1.2227035
http://dx.doi.org/10.1115/1.4000587
http://dx.doi.org/10.1016/j.applthermaleng.2015.08.020
http://dx.doi.org/10.1109/TCST.2018.2789464
http://dx.doi.org/10.1109/TVT.2012.2207922
http://dx.doi.org/10.3390/en7020834
http://dx.doi.org/10.1109/TCST.2009.2023512
http://dx.doi.org/10.3390/en12112058
http://dx.doi.org/10.1016/j.rser.2011.03.015


Energies 2020, 13, 5454 31 of 31

76. Martins, J.; Goncalves, L.M.; Antunes, J.; Brito, F.P. Thermoelectric Exhaust Energy Recovery with
Temperature Control through Heat Pipes. In Proceedings of the SAE 2011 World Congress & Exhibition,
Detroit, MI, USA, 12–14 April 2011.

77. Merz, F.; Sciarretta, A.; Dabadie, J.-C.; Serrao, L.O. the Optimal Thermal Management of Hybrid-electric
Vehicles with Heat Recovery Systems. Oil Gas Sci. Technol. 2012, 67, 601–612. [CrossRef]

78. Qi, Z. Advances on Air Conditioning and Heat Pump System in Electric Vehicles—A Review. Renew. Sustain.
Energy Rev. 2014, 38, 754–764. [CrossRef]

79. Wei, C.; Hofman, T.; Ilhan Caarls, E.; van Iperen, R. Energy-efficiency Improvement Potential of Electric
Vehicles Considering Transmission Temperature. IFAC-PapersOnLine 2019, 52, 211–216. [CrossRef]

80. Ahn, J.H.; Kang, H.; Lee, H.S.; Jung, H.W.; Baek, C.; Kim, Y. Heating Performance Characteristics of a Dual
Source Heat Pump using Air and Waste Heat in Electric Vehicles. Appl. Energy 2014, 119, 1–9. [CrossRef]

81. McFadden, C.; Hughes, K.; Raser, L.; Newcomb, T. Electrical Conductivity of New and Used Automatic
Transmission Fluids. SAE Int. J. Fuels Lubr. 2016, 9, 519–526. [CrossRef]

82. Dubouil, R.; Hetet, J.F.; Maiboom, A. Modelling of the Warm-up of a Spark Ignition Engine: Application to
Hybrid Vehicles. In Proceedings of the SAE International Powertrains, Fuels and Lubricants Meeting, Kyoto,
Japan, 30 August–2 September 2011. [CrossRef]

83. Titov, G.; Lustbader, J. Modeling Control Strategies and Range Impacts for Electric Vehicle Integrated Thermal
Management Systems with MATLAB/Simulink; SAE Technical Paper 2017-01-0191; SAE International:
Warrendale, PA, USA, 2017. [CrossRef]

84. Laboe, K.; Canova, M. Powertrain Waste Heat Recovery: A Systems Approach to Maximize Drivetrain
Efficiency. In Proceedings of the ASME 2012 Internal Combustion Engine Division Spring Technical
Conference, Torino, Italy, 6–9 May 2012.

85. Tie, S.F.; Tan, C.W. A Review of Energy Sources and Energy Management System in Electric Vehicles.
Renew. Sustain. Energy Rev. 2013, 20, 82–102.

86. Hofman, T.; Janssen, N.H.J. Integrated Design Optimization of the Transmission System and Vehicle Control
for Electric Vehicles. IFAC-PapersOnLine 2017, 50, 10072–10077.

87. van der Sluis, F.; Römers, L.; van Spijk, G.; Hupkes, I. CVT, Promising Solutions for Electrification; SAE Technical
Paper 2019-01-0359; SAE International: Warrendale, PA, USA, 2019. [CrossRef]

88. Scholl, M.; Minnerup, K.; Reiter, C.; Bernhardt, B.; Weisbrodt, E.; Newiger, S. Optimization of a Thermal
Management System for Battery Electric Vehicles. In Proceedings of the 2019 Fourteenth International
Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 8–10 May 2019.
[CrossRef]

89. Pourabdollah, M.; Silvas, E.; Murgovski, N.; Steinbuch, M.; Egardt, B. Optimal Sizing of a Series PHEV:
Comparison between Convex Optimization and Particle Swarm Optimization. IFAC-PapersOnLine 2015,
48, 16–22.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2516/ogst/2012017
http://dx.doi.org/10.1016/j.rser.2014.07.038
http://dx.doi.org/10.1016/j.ifacol.2019.11.676
http://dx.doi.org/10.1016/j.ifacol.2019.11.676
http://dx.doi.org/10.1016/j.ifacol.2019.11.676
http://dx.doi.org/10.1016/j.apenergy.2013.12.065
http://dx.doi.org/10.4271/2016-01-2205
http://dx.doi.org/10.1016/j.rser.2012.11.077
http://dx.doi.org/10.1016/j.ifacol.2017.08.1779
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Energy-Aware Design and Control Optimization
	Topology Generation
	Control Optimization
	Combined Size and Control Optimization
	Combined Topology, Size and Control Optimization

	Thermal-Aware Design and Control Optimization
	Topology Generation
	Control Optimization
	Size Optimization
	Topology Optimization

	Energy and Thermal-Aware Design and Control Optimization
	Topology Generation
	Control Optimization

	Observations and Future Trends
	Controller Design
	Waste Heat Recovery
	Heat Exchange
	Transition to Electric Vehicles
	Plant Design

	Conclusions
	References

