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Abstract: This paper presents an extended predictive trajectory control scheme combined with an 
inner torque ripple minimization considering the current-, flux-linkage-, and voltage-planes of 
permanent magnet synchronous machines. The extension of a fundamental machine model with 
flux-linkage harmonics allows the calculation of the inner torque ripple and enables its 
minimization. For this, the control is divided in two cases: (1) The dynamic operation or large signal 
behavior which uses the maximal torque gradient for the trajectory strategy during each control 
period for fastest dynamic operation, and (2) The stationary operation or small signal behavior, 
utilizing a real time capable polynomial approximation of the rotor position dependent torque 
hyperbolas (iso-torque curves) of permanent magnet synchronous machines for the ideal torque to 
current reference values. Since dynamic and steady-state operation is covered, torque to current 
look-up tables, such as maximum torque per ampere (MTPA)/maximum torque per volt/voltage 
(MTPV) look-up tables, are not required anymore. The introduced, new control approach is 
implemented in Matlab/Simulink based on finite element analysis and measured data. Furthermore, 
test-bench implementations based on measurement data are presented to show the real-time 
capability and precision. 

Keywords: permanent-magnet synchronous machine; predictive control; trajectory control; online 
maximum torque per current; optimal control; torque ripple minimization 

 

1. Introduction 

The calculation of the ideal reference values for permanent magnet synchronous machine 
(PMSM) control is still intensively investigated [1]. Today’s control algorithms for PMSMs are mostly 
direct torque control (DTC) or field oriented control (FOC) algorithms. Both require precalculated 
torque dependent reference values for the control. In case of the DTC flux references are necessary 
and for FOC current references are necessary. In this paper only FOC approaches and therefore the 
current references are investigated. By calculating the maximum of the machine’s inner torque 
depending on the applied current magnitude the optimal reference values can be obtained. This 
method is called maximum torque per current (MTPC) or maximum torque per ampere (MTPA). At 
higher speed of the PMSM, in the field weakening operation, an optimization considering the voltage 
limit is mandatory. This principle is called maximum torque per volt/voltage (MTPV). Figure 1 shows 
the results of this basic MTPA and MTPV calculations. 
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Figure 1. Result of the reference torque calculation. The x-axis denotes the direct current, the y-axis 
the quadrature current. The torque hyperbolas (iso-torque curves) in grey are calculated considering 
the machines flux-linkages and currents. The maximum current magnitude is the red dotted circle. 
The maximum torque per ampere (MTPA) locus for maximum torque at minimum current is the solid 
red line. The maximum torque per volt/voltage (MTPV) locus for maximum torque at constrained 
voltage is the solid blue line. 

[2] gives a good overview over several basic methods. In addition, it describes and classifies the 
MTPA/MTPV methods and working principles. According to [2], the approach discussed in this 
paper can be classified as advanced, predictive online, model-based, and open loop torque control 
algorithm. A quite similar concept is described in [3], which also uses online estimation of the 
references by variation of the model parameters for only ideal fundamental reference torque. 

However, not only the fundamental reference value calculation is an important issue in recent 
research, but also the calculation of precise torque references, which suppress additional torque 
oscillation due to spatial flux linkage harmonics. In the past, for this torque ripple suppression several 
possibilities were introduced. One of the methods is known as harmonic current injection (HCI). Its 
working principle are pre-calculated and/or optimized harmonic currents for each point of operation. 
This is calculated, mostly by using FEA (finite element analysis). These injected harmonic currents 
compensate, e.g., the cogging torque and/or the inner torque ripple which results in a smoother 
torque [4,5]. Quite similar to this, is the method described in [6]. Based on the identified machine 
parameters the MTPA/MTPV current references for smooth torque are pre-calculated and stored in 
lookup tables. These references are applied during regular FOC control. In [7] and [8] also an 
advanced PMSM model is used for the pre-calculation of the optimal currents or direct current 
trajectories for minimal torque ripple. 

1.1. Motivation 

The main contribution of this paper is an algorithm which calculates the optimal torque 
references at dynamic operation and minimizes the torque ripple at stationary operation, directly 
online. The novelty is the combination of both the compensating of the torque ripple and choosing 
the ideal dynamic torque trajectory during real time operation. The calculation of the necessary rotor 
position dependent references is challenging and often done offline due to their complexity. 
However, the online calculation enables possibilities of adaptable torque references even when the 
machines parameters vary during operation caused by rotor temperature, faults or aging effects, 
which can be detected and adopted, e.g., by online identification algorithms. 
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In the presented approach, with the predictive trajectory control scheme from [9], based on the 
necessary underlying flux-linkage and inverse fundamental current-lookup tables, is used and 
further extended for a predictive and direct calculation of the torque references at dynamic and 
steady-state operation considering the harmonic behavior. Furthermore, the suppression of torque 
harmonics is enabled considering the estimated rotor position and current dependent PMSM. 

1.2. Preliminary Work 

The introduced algorithm is based on the predictive trajectory current control scheme 
introduced in [9] and extended with a new rotor position dependent model. The new control scheme 
uses thereby precise test bench identified fundamental flux-linkage models parameterized with 
measured data. By considering the available control voltage in every time step, each operational point 
yields individual limited system values. The limited values are separated and visualized as different, 
so-called rotor position dependent system-planes, the flux-linkage plane, the current plane, and the 
voltage plane. For dynamic and stationary control, two different cases are distinguished. First, the 
current reference value is reachable which yields directly solvable nonlinear voltage equations. 
Second, the current reference is not reachable within one control period and has to be limited. In this 
case, the optimization of the limitation and the trajectory planning for the connection of the latest 
current to the reference current value is calculated. The introduced approach extends this principle 
by the online calculation of reference currents and by considering position-dependent flux-linkages 
for a smooth torque. 

1.3. Outline of the Paper 

First, in Section 2 the necessary time-continuous and time-discrete machine model with position 
dependent flux-linkages and the resulting inner torque are introduced. Furthermore, the test bench 
identification of the flux-linkages is briefly introduced (see Section 2.2). The control algorithm is 
derived for dynamic (Section 3.3.1) and steady-state operation (Section 3.3.2). After the explanation 
of the test setup, first simulation (Section 3.4) and measurement results (Section 5) are shown. The 
paper concludes with a discussion of some simulation and measurement results in Section 6. 

2. Machine Model 

In this section the necessary dq-model equations, assumptions and the principle of flux-linkage 
parameter identification are described. These model equations and its parameters form the basis of 
the control algorithm derived in the next section. For usage within time-discrete systems, the 
discretization of the model equations is also shown. 

2.1. Permanent Magnet Synchonous Machine Model 

The model equations of the equivalent circuit are derived from the known three-phase model 
equations. We assume three symmetric stator windings. For simplification, the friction as well as the 
iron losses are neglected. Furthermore, dielectric currents, thermal, skin, and proximity effects are 
not considered. The machine’s three-phase stator voltage equations are derived from Ohm’s law, 
Kirchhoff’s law, and the Maxwell equations. Park-transformation of the three phase system provides 
the rotor-oriented dq0-reference frame and thus the Equations (1)–(3), [10,11]. 

The ohmic resistance of the stator windings is 𝑅, the electric angular frequency is 𝜔. The voltage, 
flux-linkage, and current components of the direct-axis, quadrature-axis, and zero-axis 
are 𝜓௫,𝑣௫ and 𝑖௫ with 𝑥 ∈ {d, q, 0}. 

𝑣ୢ =  𝑅𝑖ୢ + dd𝑡 𝜓ୢ − 𝜔𝜓୯ (1) 

𝑣୯ =  𝑅𝑖୯ + dd𝑡 𝜓୯ + 𝜔𝜓ୢ (2) 
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𝑣଴ =  𝑅𝑖଴ + dd𝑡 𝜓଴, (3) 

The torque of the electrical machine can be derived from the power balance of mechanical and 
electrical power as shown in [10]. In the Equation (4) for the power is shown. 𝑇 denotes the inner 
torque of the machine, 𝑝 is the number of pole pairs. The inner torque is assumed to be the shaft 
torque neglecting the magnetic stray/leakage flux (which causes, e.g., the cogging torque) and the 
friction losses, [8,12]. 𝑇𝜔𝑝 = 32 ൤𝑅൫𝑖ଶୢ + 𝑖୯ଶ + 2𝑖଴ଶ൯ + 𝜔൫𝜓ୢ𝑖୯ − 𝜓୯𝑖ୢ൯ + ൬𝑖ୢ dd𝑡 𝜓ୢ + 𝑖୯ dd𝑡 𝜓୯ + 2𝑖଴ dd𝑡 𝜓଴൰൨, (4) 

In this case, the machine is assumed to be star-connected. Therefore, there is no zero-sequence 
current and the zero sequence dependent terms of the inner torque are disappearing in the following. 
The dq-equivalent circuit model layout is shown in Figure 2. 

  
(a) (b) 

Figure 2. Equivalent circuit model: (a) of the d-axis component; (b) of the q-axis component. 

Assuming that the ohmic losses do not affect the torque, the stator resistance dependent terms 
are ignored. The partial derivatives for the total derivative  ୢୢ௧ 𝝍ୢ୯  of the flux-linkages  𝜓ୢ୯  = 𝑓(𝑖ୢ, 𝑖୯, 𝛾) considering the variables 𝑖ୢ, 𝑖୯, 𝛾 yield the expression of the differential inductances. The 
partial derivatives are  𝐿ୢୢ ୢ௜ౚୢ௧ , 𝐿ୢ୯ ୢ௜ౚୢ௧ , 𝐿୯୯ ୢ௜౧ୢ௧ , 𝐿୯ୢ ୢ௜౧ୢ௧  and the derivative considering  𝛾  are  பటౚபఊ ୢఊୢ௧  
and பట౧பఊ ୢఊୢ௧. 

Assuming that the differential inductances are only part of the inner magnetic power of the 
machine and do not couple into the inner torque. Only the term  பபஓ ୢఊୢ௧ 𝜓ୢ୯  is considered for the 

extended torque equation. At constant speed (which is assumed in this paper) the derivative of the 
electric angle 𝛾 is the electric angular velocity ୢఊୢ௧ = 𝜔. The resulting, simplified equation for the inner 
torque is (5). The factor ଷଶ is due to the amplitude invariant transformation [10]. The term ൫𝜓ୢ𝑖୯ −𝜓ୢ𝑖୯൯ describes the fundamental torque, ቀ𝑖ୢ பటౚபఊ + 𝑖୯ பట౧பఊ ቁ is the dynamic torque term caused by rotor 

revolution. The flux-linkages are modelled by a function 𝝍ୢ୯ = 𝑓(𝑖ୢ, 𝑖୯, 𝛾). This yields the simplified 
inner torque Equation (5). 𝑇 = 32 𝑝 ቈ൫𝜓ୢ𝑖୯ − 𝜓୯𝑖ୢ൯ + ቆ𝑖ୢ ∂𝜓ୢ∂𝛾 + 𝑖୯ ∂𝜓୯∂𝛾 ቇ቉, (5) 
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The necessary flux-linkages for the equation can be identified either by simulation (e.g., finite 
element analysis, FEA) or by measurement. Due to manufacturing influences and additional parasitic 
effects, which are not always considered in FEA, in this case the measured flux-linkages are preferred. 
The test-bench identification of the rotor-position and current dependent flux-linkage is a challenging 
task and will be shortly described in the following section. 

2.2. Parameter Identification 

The identification of the stator-resistance 𝑅 is done by four-terminal sensing at balanced thermal 
condition. The, for the control, necessary flux-linkages can be identified are identified by test-bench 
measurement as explained in the following. For the test-bench flux-linkage identification there are 
certain requirements. At first the load machine has to be controlled at constant rotational speed. 
Enough inertia of the test-bench is helpful to ensure this requirement. Second, the device under test 
machine has to be ideally current controlled to ensure ideal constant dq-currents. A possible control 
algorithm in this case, with mitigation of the current harmonics, is described in [13]. The pre-
initialization of this model based control, with current harmonic mitigation, can be done with 
approximated fundamental flux-linkages or first FEA results. Measuring the voltages  𝑢ୢ,𝑢୯  at 
various operating points with evenly distributed 𝑖ୢ, 𝑖୯ currents at constant rotational speed enables 
the calculation of the flux-linkages. 

For the solution of the resulting coupled differential Equations (6) and (7) the “separation of the 
variables” method is used [14]. 𝑣ୢ = 𝑅𝑖ୢ + ∂𝜓ୢ∂𝛾 d𝛾d𝑡 − 𝜔𝜓୯𝑖ୢ (6) 

𝑣୯ = 𝑅𝑖୯ + ∂𝜓୯∂𝛾 d𝛾d𝑡 + 𝜔𝜓ୢ𝑖୯, (7) 

The voltage time-series is rewritten as a Fourier series (8); thereby, 𝜌 denotes the order of the 
investigated harmonic frequency in the dq-reference frame. 

𝒗ୢ୯(𝑡) =  𝒗ୢ୯2തതതതത + ෍𝒗ୢ୯,ୟ,ఘ cos(𝜔𝜌𝑡)ேଶ
ఘୀଵ + 𝒗ୢ୯,ୠ,ఘsin (𝜔𝜌𝑡), (8) 

The general solution  𝑦  of the differential equation is  𝑦 = 𝑦ୡ + 𝑦୮.  Equation (9) shows the 
particular integral 𝑦୮, which is the trivial solution of this differential equation. The variables of 𝑦୮ are 
time-invariant. 

ቆ𝜓തୢ𝜓ത୯ቇ = 1𝜔 ቀ 0 1−1 0ቁ ⋅ ൭ቆ𝑣̅ୢ𝑣̅୯ቇ − 𝑅 ൬𝑖ୢ𝑖୯൰൱, (9) 

The complementary function 𝑦ୡ includes only the time-variant terms (10), the current or stator 
resistance dependencies are vanished. ቆ𝑣ୢ,ఘ(𝑡)𝑣୯,ఘ(𝑡)ቇ = dd𝑡 ቆ𝜓ୢ,ఘ(𝑡)𝜓୯,ఘ(𝑡)ቇ + 𝜔 ቀ0 −11 0 ቁ ⋅ ቆ𝜓ୢ,ఘ(𝑡)𝜓୯,ఘ(𝑡)ቇ, (10) 

As the flux-linkage is the time-derivative of the voltages, the flux-linkage harmonics are of the 
same order as the voltage harmonics. The flux-linkages are interpreted as Fourier series analogous to 
the voltages. Insertion of both Fourier series simplifies Equation (10) to Equation (11). The Fourier 
series coefficients for the voltages are 𝒗ୢ୯,ୟୠ,ఘ, as derived in (8), the coefficients for the flux-linkages 
are 𝝍ୢ୯,ୟୠ,ఘ. The matrix 𝑽 denotes the Fourier coefficients of the voltage, the matrix 𝝍 denotes the 
Fourier coefficients of the flux-linkage. The matrix 𝑭 describes the vector ቀୡ୭ୱ (ఠఘ௧)ୱ୧୬ (ఠఘ௧)ቁ. 𝑽 ⋅ 𝑭(𝜔𝜌𝑡) = dd𝑡 ൫𝝍 ⋅ 𝑭(𝜔𝜌𝑡)൯ + 𝜔 ቀ0 −11 0 ቁ𝝍 ⋅ 𝑭(𝜔𝜌𝑡), (11) 
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After mathematical simplification, using the chain-rule and following solution of Equation (11), 
the Fourier series coefficients of the dq-flux-linkages can be calculated directly through the measured 
voltage coefficients as displayed in (12). 

I.𝜓ୢ,ୟ,ఘ = ି௩౧,౗,ഐିఘ௩ౚ,ౘ,ഐఠ(ఘమିଵ)  

II.𝜓ୢ,ୠ,ఘ = ି௩౧,ౘ,ഐାఘ௩ౚ,౗,ഐఠ(ఘమିଵ)  

III.𝜓୯,ୟ,ఘ =  ௩ౚ,౗,ഐିఘ௩౧,ౘ,ഐఠ(ఘమିଵ)  

IV.𝜓୯,ୠ,ఘ =  ௩ౚ,ౘ,ഐାఘ௩౧,౗,ഐఠ(ఘమିଵ) , (12) 

With the flux-linkage coefficients 𝝍ୢ୯,ୟୠ,ఘ  of the Fourier series for each harmonic 𝜌 the flux-
linkages 𝝍ୢ୯(𝑡) at constant rotor speed ω and constant currents 𝒊ୢ୯ can be established. This time-
variant Fourier series can be discretized and stored rotor position dependent, considering 𝛾(𝑡) = 𝜔𝑡. 
The flux-linkages assumed now as 𝝍ୢ୯൫𝑖ୢ, 𝑖୯, 𝛾൯หఠୀୡ୭୬ୱ୲.. A more detailed view on the derivation of 
this parameterization approach, the assumptions, implementation, and measurement are presented 
in [14,15]. For example, the flux-linkages 𝜓ୢ and 𝜓୯ of the prototype for the practical measurements, 
assuming  𝜔 = const  at a fixed rotor position  𝛾  is shown in Figure 3. The currents-
planes 𝒊ୢ୯൫𝜓ୢ,𝜓୯, 𝛾൯หఠୀୡ୭୬ୱ୲. , necessary for the control algorithm, can be calculated by numerical 
inversion of the flux-linkages 𝝍ୢ୯൫𝑖ୢ, 𝑖୯, 𝛾൯หఠୀୡ୭୬ୱ୲.. 

  

(a) (b) 

Figure 3. Finite element analysis (FEA)-calculated flux-linkages for the used machine in simulation 
and for the explanations, assuming 𝜔 = const at a fixed rotor position 𝛾: (a) flux-linkage of the direct-
axis (b) flux-linkage of the quadrature-axis. The displayed data are of a machine with a maximum 
speed up to 15.000 rpm at 70 kW peak power at a voltage of 300 Vୈେ. 

2.3. Time-Discrete Model Equations 

Modern control algorithms are implemented on microprocessors. Thus, Equations (6) and (7) 
have to be time-discretized. Therefore, the trapezoidal rule is used for numerical integration. For the 
discretizing of the voltage equations further assumptions have to be taken. First, the electric 
frequency has to be assumed to be constant from the beginning 𝑡୬ to the end 𝑡୬ାଵ (with n ∈ ℕ) of one 
control period 𝑇ୡ. This is given if the inertia of the machine is sufficiently large enough. Second, it is 
assumed that the error, due to the flux-linkage linearization, within a short control period is 
negligible. The stator voltages can generally be expressed as (13) and (14), [9]. 

𝑣ୢ,௧೙,೙శభ = 12𝑅൫𝑖ୢ,௧೙ + 𝑖ୢ,௧೙శభ൯ + 𝜓ୢ,௧೙శభ − 𝜓ୢ,௧೙𝑇ୡ − 12𝜔൭൫𝜓୯,௧೙ + 𝜓୯,௧೙శభ൯ − ቆ𝜕𝜓ୢ,௧೙𝜕𝛾 + 𝜕𝜓ୢ,௧೙శభ𝜕𝛾 ቇ൱ (13) 

𝑣୯,௧೙,೙శభ =  12𝑅൫𝑖୯,௧೙ + 𝑖୯,௧೙శభ൯ + 𝜓୯,௧೙శభ − 𝜓୯,௧೙𝑇ୡ + 12𝜔൭൫𝜓ୢ,௧೙ + 𝜓ୢ,௧೙శభ൯ − ቆ𝜕𝜓୯,௧೙𝜕𝛾 + 𝜕𝜓୯,௧೙శభ𝜕𝛾 ቇ൱ , (14) 
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The in [9] introduced control scheme requires the conversion between the different so called 
system-planes, e.g., the conversion from the flux-linkages 𝜓ୢ୯ as function of 𝑓(𝑖ୢ, 𝑖୯,𝛾) = (𝜓ୢ,𝜓୯, 𝛾) 
to the inverse flux-linkages 𝑖ୢ୯ as function 𝑓ିଵ൫𝜓ୢ,𝜓୯, 𝛾൯ =  ൫𝑖ୢ, 𝑖୯, 𝛾൯. Therefore, the dynamic part of 
the ohmic voltage drop as well as the dynamic part of the voltage due to the position dependency of 
the flux-linkages have to be neglected for simplification of the calculations, (15) and (16). Which is 
admissible due to their mostly small influence. 𝑣ୢ,௧೙,೙శభ = 𝑅𝑖ୢ,௧೙ + 𝜓ୢ,௧೙శభ − 𝜓ୢ,௧೙𝑇ୡ − 12𝜔൫𝜓୯,௧೙ + 𝜓୯,௧೙శభ൯ + 𝜔𝜕𝜓ୢ,௧೙𝜕𝛾  (15) 

𝑣୯,௧೙,೙శభ =  𝑅𝑖୯,௧೙ + 𝜓୯,௧೙శభ − 𝜓୯,௧೙𝑇ୡ + 12𝜔൫𝜓ୢ,௧೙ + 𝜓ୢ,௧೙శభ൯ + 𝜔𝜕𝜓୯,௧೙𝜕𝛾 , (16) 

2.4. Inverter- and Iron-Losses 

The control algorithm derived in this paper is considered as a fully model-based approach. Due 
to the missing integral component of the control, every mismatch of the calculated reference voltage 
influences the torque output of the machine. Especially two major effects, which were neglected in 
the derivation of the model equations, influence this behavior. At first, the iron losses of the electrical 
machine which are mostly speed depended have to be considered for a full implementation. Second, 
the inverter and the wire loss have to be compensated for correct reference values. 

Characterization of the machines iron-losses is possible, e.g., as described in [16]. The losses can 
be recalculated as voltage error and be applied at the respective operational point. Similar to the iron 
losses the inverter and wire losses can be calculated or identified also as voltage error between the 
reference voltage and the measured voltage at the machine terminals. The sum of the voltage errors 
due to iron losses and inverter losses can thus be described as a function 𝑔 = 𝑢ୢ୯(𝑖ୢ, 𝑖ୢ, 𝛾,𝜔), but this 
is not necessary for the principle of the control algorithm. For reasons of simplification, it is therefore 
neglected in this paper. 

3. Control Algorithm 

In the following section the principle of the algorithm is explained. The explanation and 
visualization of the trajectory-based algorithm is done using a virtual model with more distinct 
mutual and cross-saturation effects. At first the basic equations and principle of the predictive control 
according [9] are explained. Second the new algorithm and some simulation results are explained. 

3.1. Simulation Environment 

For the simulations and the visualization of the derived control algorithm, based on the physical 
parameters, a virtual test environment in Matlab/Simulink/Simscape from Mathworks has been set 
up. For a better understanding and explanation of the algorithm the simulation results are generated 
with a separately FEA build-up machine with distinct saturation effects, not with the later introduced 
test-bench used easier PMSM. This FEA build-up machine has more nonlinear effects as saturation 
and cross-saturation flux-linkages (Figure 3) which is useful, because the more challenging control 
behavior compared to the test-bench PMSM. The FEA data were generated with the software Flux2D 
from Altair. 

The used virtual test environment enables rapid implementation, visualization, and 
development of control algorithms. The machine model equations are implemented in an acausal 
manner, which enables also analysis of the short circuit condition and examining the harmonic 
content of the induced voltage. The rotor speed in the simulation is utilized by an ideal constant 
source. In simulation, the inverter is modelled by means of equivalent dq-voltage sources. A 
description of the full machine behavior, based on FEA or measured data-sets, is thereby possible as 
described in [17]. 
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3.2. Basic Principle of the Predictive Current Control 

3.2.1. Operation Area Constraints 

The drive system is limited due to physical conditions, which have to considered in the control 
algorithm. First, the thermal domain is limited by maximum current amplitude. The maximum 

current can be described as a circle with the radius of 𝑖୫ୟ୶ = ට𝑖ଶୢ + 𝑖୯ଶ. The maximum voltage has also 

to be bounded due to the limited DC-link. Second, the with the inverter reachable area can thus be 
described as voltage hexagon, with simplified linear connection of each of the six-corners, due to the 
six possible voltage phasors of the three phase two-level inverter. This voltage hexagon with the six 
corners 𝑣ୢ୯,௝,௧೙ with 𝑗 ∈ {1,2,3,4,5,6} is depending on the actual operational point of the machine. For 
robust and stable control, especially at stationary operation, the voltage hexagon is shortened to its 
inner circle. This is necessary to reduce and simplify the calculation effort because of the rotor 
position dependent flux-linkage as well as the rotor position dependent voltage hexagon. 

3.2.2. Current-, Flux-Linkage-, and Voltage-Planes 

The algorithm is based on the visualization of the reachable operating points at the time 𝑡௡ାଵ 
considering the latest operating point 𝑡௡  within the different planes of the machine as shown in 
Figure 4. The evaluation of these planes enables the calculation of the ideal voltage references. The 
necessary procedure is motivated in the following. 

  
(a) (b) 

 
(c) 

Figure 4. Different planes: (a) current plane; (b) flux-linkage plane; (c) voltage plane. The planes (a), 
(b), and (c) are showing the latest operating point (small black circle). The reachable operating points 
inside the blue hexagon and chosen trajectory considering of each time-step and voltage hexagon 
(purple star). The current limitation of the machine is marked as red circle. In (c) also the rotating 
inverter voltage hexagon with the black inner circle is drafted. 
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3.2.3. Timing of the Digital Control  

In each sampling interval the predicted operating point, the reachable operating points and the 
reference values are calculated within the control procedure, Figure 5. To explain the chronological 
sequence of the calculations, 𝑡଴ is set as the current point in time. The time span (period) between 𝑡ିଵ 
and 𝑡଴ is therefore the sampling interval of the currents and rotor position. These values are allocated 
to the control at 𝑡଴. The result of the calculation of the predicted operating point is ൫𝑖ୢ,௧భ , 𝑖୯,௧భ , 𝛾௧భ൯ 
with ൫𝜓ୢ,௧భ ,𝜓୯,௧భ , 𝛾௧భ൯ due to the dead-time/delay-time of one sampling period. The result of the 
calculation of the following desired operating point for the trajectory is  ൫𝑖ୢ,௧మ∗ , 𝑖୯,௧మ∗ , 𝛾௧మ൯ 
with ൫𝜓ୢ,௧మ∗ ,𝜓୯,௧మ∗ , 𝛾௧మ൯. The corresponding voltage reference values is ቀ𝑣ୢ,௧భ,మ∗ ,𝑣୯,௧భ,మ∗ ቁ and realized in 
the sampling interval 𝑡ଵ to 𝑡ଶ. Since the calculation of the nominal values of the sampling interval 𝑡ଵ 
to 𝑡ଶ must be carried out in the sampling interval 𝑡଴ to 𝑡ଵ, a calculation dead-time results. This is 
taken into account in the prediction formulas of the operating variables and voltage reference values 
derived in Equations (15)–(18). 

 
Figure 5. Visualization of the different control periods with sampling, prediction, and reference value 
calculation within the control procedure. 

3.2.4. Prediction of the Reachable Operational Area 

The algorithm uses an optimization based on the reachable operating points considering the 
latest operating point within the different planes. Therefor the flux-linkages have to be calculated 
according to (15) and (16) at each time 𝑡௡ 𝑛 ∈ ℕ and for each corner of the reachable control voltage 
hexagon. Considering the inverse flux-linkages ൫𝑖ୢ, 𝑖୯, 𝛾൯ = 𝑓టି ଵ ൫𝜓ୢ,𝜓୯, 𝛾൯ yields the estimation of 
the attainable currents. Furthermore, the torque can be calculated considering (5). 

𝜓ୢ,௧భ =  𝜓ୢ,௧బ + 𝑇ୡ ∙ 𝑢ୢ,௧బ∗ − 𝑅𝑖ୢ,௧బ + 𝜔௧బ𝜓୯,௧బ − 𝜔௧బ 𝜕𝜓ୢ,௧బ𝜕𝛾1 + 14𝜔௧బଶ 𝑇ୡଶ  

+𝑇ୡଶ ∙ 12𝜔௧బ𝑢୯,௧బ∗ − 12𝜔௧బ𝑅𝑖୯,௧బ − 12𝜔௧బଶ 𝜓ୢ,௧బ − 12𝜔௧బଶ 𝜕𝜓୯,௧బ𝜕𝛾1 + 14𝜔௧బଶ 𝑇ୡଶ  

(17) 

𝜓୯,௧భ =  𝜓୯,௧బ + 𝑇ୡ ∙ 𝑢୯,௧బ∗ − 𝑅𝑖୯,௧బ − 𝜔௧బ𝜓ୢ,௧బ − 𝜔௧బ 𝜕𝜓୯,௧బ𝜕𝛾1 + 14𝜔௧బଶ 𝑇ୡଶ  

+𝑇ୡଶ ∙ − 12𝜔௧బ𝑢ୢ,௧బ∗ + 12𝜔௧బ𝑅𝑖ୢ,௧బ − 12𝜔௧బଶ 𝜓୯,௧బ + 12𝜔௧బଶ 𝜕𝜓ୢ,௧బ𝜕𝛾1 + 14𝜔௧బଶ 𝑇ୡଶ , (18) 

3.3. Online Torque Reference Calculation and Control 

The control algorithm is visualized in Figure 6. The prediction is similar to [9] and motivated 
before. The control strategy is thereby divided in two main cases as follows: (1) The dynamic 
operation which means that the reference torque is not reachable with the given constraints due to 
control voltage limited hexagonal area, and (2) the stationary operation, which means that the 
reference torque is reachable in the next control period and inside of the constrained voltage region. 
If one of these cases not feasible or if it is not a plausible case, a simplified linear approach to ensure 
stable operation is used, but this will not be covered in this paper. 
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Figure 6. Simplified diagram of the introduced control algorithm, executed for each control period. 

3.3.1. Dynamic Operation 

The dynamic trajectory determination is implemented by an extended additional plane, the 
torque plane as shown in Figure 7. It is obtained by evaluating the torque according to (5) at the 
predicted operating points, which are determined by the flux linkages and currents. Figure 7 shows 
the offline calculated torque gradient of the torque plane. 

 
Figure 7. Torque plane (z-axis) at present current, speed and rotor position. The gradient of the ideal 
reference torque trajectory is the black line, the actual torque the black circle. The boundaries are 
marked as blue voltage hexagon and the chosen next reference value is in purple. The reference torque 
is the red star with the offline calculated red MTPA trajectory for ideal steady-state operation. 
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To determine the online reference trajectory, we introduce a modified gradient within the torque 
plane. For dynamics, the gradient is acquired by calculating the difference quotient of the torque 
normalized on the flux-linkage plane. First, for each corner of the hexagon the torque difference to 
the actual torque is calculated as ∆𝑇௝,௧೙శభ =  𝑇௝,௧೙శభ − 𝑇௧೙ . The gradient of each corner towards the 

hexagon can finally be defined as  ∇𝑘 = ൜∆்ೕ,೟೙శభ∆టೕ,೟೙శభൠ , with  ∆𝜓௝,௧೙శభ =ට(𝜓ୢ,௝,௧೙శభ − 𝜓ୢ,௝,௧೙)ଶ + (𝜓୯,௝,௧೙శభ − 𝜓୯,௝,௧೙)ଶ. For a more precise control, ∇𝑘 is calculated at several 

supporting points between the corners via linearization. Choosing the maximum gradient with 
respect to the reference torque yields the target trajectory. This is visualized in Figure 8. The 
supporting points in this case are the d- and q-axis flux-linkages at certain rotor position and speed 
values. Figure 9 shows the dynamic case with the torque plane and different supporting points. 

 

Figure 8. Calculation of the ideal reference value considering the gradient ∇𝑘 with ቄ୼்୼టቅ under the 

certain constraints. The purple arrow shows the chosen reference value with optimal trajectory. 

(a) (b) 
Figure 9. Dynamic case: (a) and (b) torque contour lines (z-axis) and constraint area due to the 
applicable voltage hexagon in blue, present value as black circle. In (a) the current plane (x- and y-
axis) is shown, (b) shows it in the equivalent flux linkage plane. The purple arrow shows the chosen 
reference value from Figure 8 with fastest achievable torque for the next control period. 
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3.3.2. Stationary Operation 

At stationary operation, the algorithm has to find the ideal references with maximized torque at 
minimal current (MTPA) or at the available voltages (MTPV). In this implementation, an iterative, 
real time capable procedure is implemented. Therefore, the reference iso-torque curve is 
approximated using a second order polynomial function of the currents looking for the maximum 
torque at minimum currents. At first, similar to the dynamic case, the reachable torque due to the 
voltage limitation is calculated. To achieve a polynomial interpolation, three supporting points are 
needed. Two points can be determined by linear interpolation of the torque along the edges of the 
prediction hexagon (the supporting points are marked in light blue and green in Figure 10). Due to 
nonlinearity of the torque plane the torque at the determined supporting points does not match the 
reference torque. Therefore, an iterative procedure is applied to achieve a convergence of the 
supporting points towards the reference torque. Figure 11 shows the procedure which calculates the 
desired value. An additional supporting point between both (marked in orange in Figure 12) allows 
the forming of the polynomial equation. 

 
Figure 10. Stationary case (first iterations of two): With torque contour lines (surface) and constraint 
area due to the applicable voltage hexagon in blue and the current limit in red. (#1) to (#3) are the 
values for the polynomial approximation, (*) is the solution of the first iteration of the polynomial 
approximation. As visible, the first approximation of the iso-torque curve (purple) does not suit the 
iso-torque curve, another iteration is necessary. The x- and y-axis are the direct and quadrature 
currents. 
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(a) (b) 

Figure 11. Supporting points with intersection to the hexagonal area: Both diagrams with reference 
torque in black, present torque (iso-curve) in green. (a) hexagon edges with corresponding torque 
intersection. As shown in Figure 10 both hexagon edges (2 and 3) with the chosen supporting point 
(d- and q-current) marked with the purple cross and the green circle. (b) shows the selection of the 
desired value by considering the sign and the intersection of the reference torque with the different 
iterations displayed with black arrows. As a result, the desired value is identified as purple cross and 
the green circle similar to Figure 10. 

  

(a) (b) 

Figure 12. Stationary case: (a) Second order polynomial approximated d- and q-current (red dashed 
line). The supporting points are marked with black circles, the solution of the minimization problem 
(b) is marked as star. (b) shows the minimization problem as described in (20). 

For the polynomial approximation, the current is assumed as 𝑖୯ = 𝑎𝑖ଶୢ + 𝑏𝑖ୢ + 𝑐. Considering the 
three supporting points yields Equation (19). The current amplitude is defined as 𝑖abs2  = 𝑖ୢଶ  + 𝑖୯ଶ. 

൦𝑖ୢ,#ଵଶ𝑖ୢ,#ଶଶ𝑖ୢ,#ଷଶ
𝑖ୢ,#ଵ𝑖ୢ,#ଶ𝑖ୢ,#ଷ

111൪ ∙ ቈ𝑎𝑏𝑐቉ = ቎𝑖୯,#ଵ𝑖୯,#ଶ𝑖୯,#ଷ቏, (19)

With (19) and the maximum current definition the polynomial function can be calculated, and 
the minima of the current can derived, as shown in (20). d(𝑖ୢଶ + 𝑖୯ଶ)d(𝑖ୢ) = 4𝑎ଶ𝑖ଷୢ + 6𝑎𝑏𝑖ଶୢ + 2(2𝑎𝑐 + 𝑏ଶ + 1) + 2𝑎𝑐 = 0, (20)
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The visualization of the procedure is shown in Figure 12. The determined polynomial function 
with the supporting points is shown in Figure 12a. The solution of the minimization is marked as 
star. The minimization problem for the calculation of the minimum d- und q-current is shown in 
Figure 12b, with the calculated minimum marked as star. 

Since a second order polynomial function cannot globally approximate the iso-torque curves, 
iteration is performed in the direction of the previously determined MTPA point of Figure 12 (purple 
star) to calculate the next reference closer to the ideal reference value (both marked with purple stars) 
in Figure 13. If the torque difference to reference torque drops below a threshold, the iteration is 
completed, and the control voltage is calculated and realized. For visualization, there are two 
iterations drafted in the torque plane in Figure 13. Thereby the approximated curve whose 
supporting points lie on the hexagon’s edge and corner is the first iteration. The other curve shown 
is the second iteration with its respective supporting points. The solution of both iterations is marked 
as explained with purple stars in the figure. 

 
Figure 13. Stationary case with two iterations: The area, which is attainable within the control period 
is enclosed by the blue hexagon. The current limit is displayed in red. The surface describes the 
machine torque. Both iterations of the polynomial approximation are shown in purple. The first 
iteration (Figure 10) does not match the iso-torque curve, where the second iteration matches well 
with the green iso-torque curve within the range of interest. 

3.4. Simulation Results 

For development, the algorithm was excessively investigated in the motivated simulation 
environment. A simulation time-series with the dynamic and the stationary case as well as the 
operation within the field weakening is exemplarily shown in the following. The DC-voltage of the 
system was set to 250 V, the switching frequency 8 kHz. As displayed in Figure 14 the speed was set 
to up 500 rpm in the beginning and increased after 0.02 s to 7000 rpm for the operation at field-
weakening. 

 
Figure 14. Simulation setup with 500 rpm in the beginning and increased after 0.02 s to 7000 rpm for 
the operation at field-weakening. In Figure 15 is the corresponding torque displayed. 
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Figure 15. Operation of the control algorithm at two different torques. The corresponding speed is 
shown in Figure 14. The torque T, controlled with the introduced algorithm, is shown in black, the 
torque for control with equivalent constant currents 𝑇୰୧୮. is shown in light brown. 

The control and simulation start with no-load torque at 𝑇଴ = 0 Nm. The reference torque in the 
beginning is 30 Nm. At the field-weakening operation the torque must be reduced due to the limited 
control voltage. Therefore, the torque was also reduced to  15 Nm  at  0.0225 s . In Figure 15 the 
resulting torque 𝑇 is shown in black, the torque for control with equivalent constant currents 𝑇୰୧୮. is 
shown in light brown. At 0 s the control is enabled, and the dynamic case is calculated for time steps 
to around  0.001 s.  After the dynamic control, stationary operation is enabled compensating the 
resulting torque harmonics. At 0.0225 s, the speed and the reference torque are changed, requiring 
field-weakening. At this operation, the control cannot fully compensate the torque harmonics. The 
calculation of the control voltage depends in this case on the present reachable area of the voltage 
hexagon which yields, because of the turning rotor, a time-varying area which also contains 
parameter mismatches due to the taken assumptions. As a result, it is only possible to damp the 
torque ripple not to fully mitigate it, as described and shown before. 

The calculated current references can also be depicted in the d- and q-current figure as drafted 
in Figure 16. The red indicated points describe the operation at 30 Nm and 500 rpm. The orange is the 
transient operation at changing speed. The blue points are at 15 Nm and 7000 rpm. The red dots 
show the dynamic operation at which the algorithm follows the torque gradient as described in 
Section 3.3.1. The red crosses are at stationary operation with the introduced polynomial function 
and the minimization of the current within the voltage hexagon. The orange crosses are the reference 
at changing speed and torque as motivated in Figures 14 and 15. The blue dot and crosses are the 
dynamic and stationary operation. Both the red and blue stationary operation ensure with the 
varying current references the compensation of the inner torque ripple. 

 
Figure 16. Simulation of the trajectory in red at 30 Nm and 500 rpm, with the red dots at dynamic 
operation and the red crosses at stationary operation. In blue at 15 Nm and 7000 rpm, with the blue 
dots at dynamic operation and the blue crosses at stationary operation. The orange crosses show the 
behavior during changing the speed. 
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In Figure 17 a simulative comparison, of the introduced algorithm with typical pre-calculated 
MTPA reference values and a predictive current control is displayed. The simulation was done at a 
rotor speed of 600 rpm. For simulation, the FEA data-set considering the harmonics was utilized. The 
reference d- and q-currents were pre-calculated based on the corresponding fundamental flux-
linkages considering the MTPA criterion. For control of these currents a predictive current control 
algorithm, as described in [9] is used. The parameterization of the control was done with the same 
fundamental flux-linkages. The controlled currents for the different torques are shown in Figure 17b. 
The corresponding torque is shown in Figure 17a as expected the torque is not constant due to the 
flux-linkage harmonics. In contrast in Figure 17c shows the smooth torque (in brown), controlled 
with the introduced algorithm and also the torque of the presented method in Figure 17a. In Figure 
17d the online calculated reference currents are displayed. It is visible that these currents match the 
pre-calculated currents. The additional ripple of these currents is due to the minimization of the inner 
torque ripple as described before. 

  
(a) (b) 

  
(c) (d) 

Figure 17. Torque control with a fundamental predictive control algorithm and pre-calculated 
reference values in (b) the controlled currents to the corresponding torque (a) are displayed. In (c) the 
torque of the introduced algorithm is shown in brown. The minimized torque ripple is displayed 
black. (d) shows the corresponding online calculated currents including the current ripple needed for 
the minimization of the torque ripple. The simulations were done at 600 rpm rotor speed. 
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4. Test-Setup 

The introduced algorithm is implemented as described in simulation and on a test-bench. The 
used hardware and software for the testing and validation is following shown. 

4.1. Device-Under-Test 

As device under test, a special manually manufactured PMSM prototype based on a commercial 
stator and rotor lamination from Kienle + Spiess of the type KSPM 80/4.70 was available for the 
testbench measurements. The device under test is built up with distributed windings and is, in this 
case, star connected. The main quantities are displayed in Table 1.  

Table 1. Main quantities of the device under test. 

Quantities Symbol Value 
Maximum voltage 𝑣 48 V 
Maximum current 𝑖 16 A 

Nominal speed 𝑛 1000 rpm 
Nominal torque 𝑇 3.3 Nm 

Permanent magnet flux-linkage  𝜓୔୑ 70.1 mVs 
Stator resistance 𝑅 340 mΩ 

The measured flux-linkages for a constant speed and a fixed rotor position are shown in Figure 
18a,b. These flux linkages are used for the test-bench implementation and the following measurement 
results. As described before for the development of the algorithm and the visualization FEA 
generated data are used. 

  
(a) (b) 

Figure 18. Measured/estimated flux-linkages of the device under test at the test-bench, assuming 𝜔 =1000 rpm at a fixed rotor position 𝛾 = 60°: (a) flux-linkage of the direct-axis (b) flux-linkage of the 
quadrature-axis. 

4.2. Test-Bench Setup 

The back to back mounting of the device under test and the load machine is shown in Figure 
19b. The device under test (right side) and the load machine (left side). The load machine is a PMSM 
type Nanotec DB80C04803-ENM05J. The used voltage source inverters have a shared DC-link, 
supplied by a DC power supply. The inverter MOSFETs are of the type Texas Instrument 
CSD19535KCS with a switching frequency of 6 kHz. The currents for the control of the DUT are 
measured by current transducers of type LEM LAX 100-np. The voltages are directly measured via 
precise voltage dividers. The sampling frequency of the ADCs, type Texas Instrument THS 1206 (12 
bit), is 1.5 Msps. The rotor speed and the rotor position are determined with a Heidenhain ROC1013 
13-bit encoder. The load machine is speed controlled by a standard cascaded PI type control 
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algorithm. The control is done by a TMS320C6748 digital signal processor from Texas Instruments. 
The introduced control algorithm for the device under test, runs on an ARM Cortex A-9 in a Xilinx 
System-on-Chip device of type Zynq-Z7030 in real-time. The control period is  Tୡ  = 166.6 μs , 
according to the switching frequency of 6 kHz. The inverter switching signals are generated on a 
Cyclone IV field programmable gate array from Intel. A more detailed view of the modular signal 
processing system can be found in [18] and [19]. The whole power electronics and signal processing 
system cabinet is shown in Figure 19a. 

 

 

(a) (b) 

Figure 19. Test-bench setup: (a) Testbench cabinet with inverters and signal processing; (b) 
mechanical assembly of device under test and load machine (Source: Amadeus Bramsiepe, KIT). 

5. Measurement Results 

In this section the measurement and implementation results of the test-bench realization, as a 
complementation to the derived theory and simulated control algorithm, are shown. This section 
focuses on the proof of concept of the algorithm and especially the real-time-capability. For 
verification, a comparative measurement with simulation and the same parameters of both, is shown. 
Intensive investigations of the stationary and dynamic control behavior in the whole operating range 
are not subject in this paper but are subject to future work. The measurements are done with the 
available device under test on the introduced test-bench, the flux-linkages of the PMSM are shown 
in Figure 18. The stator resistance is identified to 340 mΩ. 

Test-Bench Measurement 

As described in the test-bench section, the algorithm is implemented on the introduced signal 
processing hardware based on a Zynq-Z7030. The necessary lookup-tables ( 𝑖ୢ୯(𝜓ୢ,𝜓୯, 𝛾) 
and 𝜓ୢ୯(𝑖ୢ, 𝑖୯, 𝛾)) are stored in the DDR memory of the device. The control algorithm itself is real-
time capable with a calculation time of  90 μs  at the dynamic case and  105 μs  for the stationary 
operation, including the peripheral control and management of the test-bench. The inverter switching 
frequency is set to 6 kHz. The shown torque is the inner torque, calculated based on the flux-linkages. 
Even with the torque meter, the measured torque would be unreliable, because of the not separable 
load machine torque ripple, the damping of the clutches, the shaft, the torque meter, and other 
parasitic effects. For precise torque measurement without calculations a special test-bench could be 
necessary. 

Figure 20 shows a torque step from zero torque to 2 Nm. The speed is controlled by the load 
machine to 500 rpm. The brown line is the inner torque according to Equation (5). The brown stars 
describe the beginning of each discrete control period 𝑇ୡ.. The reference torque is reached with the 
gradient search within seven control periods 𝑇ୡ. This can also be seen in Figure 21. The values from 
bottom right to the left show the gradient search algorithm in the torque plane as introduced in Figure 
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7. After an intersection with the reference iso-torque curve has been detected, the stationary case is 
applied. This is achieved by approximation of the iso-torque curve and searching for the minimum 
current at this curve. The heap of the values shows both, the reference flux-linkage and the current 
reference values which yield a smooth inner torque of the PMSM. The green dotted curve in Figure 
20 displays an equivalent operational point with constant currents without compensation of the inner 
torque ripple. Considering the position depended flux-linkages for the control, as shown by the 
brown line, yields in a smoother torque. With the inner torque ripple compensation parasitic effects, 
measurement inaccuracies, nonlinearities, mismatch of the used parameters, and other effects still 
influence the controlled torque and show differences compared to the simulations which shows ideal 
smooth inner torque. However, compared to control with constant currents, the torque ripple is 
significantly reduced. 

 
Figure 20. Torque step from zero torque to  2 Nm  at  500 rpm . The reference torque is thereby 
displayed black, the present inner torque (according Equation (5)) calculated as describe before is 
brown. The predicted torque used in the control is shown as purple line. The torque in this operational 
point, controlled with equivalent constant currents (as is done in fundamental approaches without 
torque ripple compensation) is shown as green dashed line. 

  
(a) (b) 

Figure 21. Current plane (a) and flux-linkage plane (b) with the currents/flux-linkages at each time 
step. The values form bottom right to the left show the gradient search algorithm. After the 
intersection with the iso-torque curve the stationary case is applied. The heap of the values is due to 
the stationary torque ripple compensation. 
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Figure 22 shows the stationary operation close to the nominal speed. The brown controlled 
torque is the controlled inner torque with the new approach, the green curve with the ripple 
controlled at equivalent constant currents. The displayed results show the feasibility and 
effectiveness of the approach even with the requirements for real-time capability and testbench 
operation. 

 
Figure 22. Stationary operation close to the nominal speed with 1000 rpm at 2 Nm. In brown: the inner 
torque applied by the introduced control. In green the torque with uncompensated ripple, controlled 
with equivalent constant. Black shows the reference torque. 

In Figure 23 an additional comparison of simulation and measurement is shown as confirmation 
of the simulation environment, simulation results and test-bench measurements. In Figure 23a, the 
simulated and measured currents are displayed. The simulation currents are blue and red, the 
measured currents are green and purple. The rise time thereby is almost the same. The overshot of 
the measured currents can be explained with the difference in the rotor speed as shown in Figure 24. 
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Figure 23. Measurement and equivalent simulation of (a) current response (measurement in green 
and purple, simulation in red and blue) and (b) torque response (measurement in brown, reference 
torque in black and simulation in green) at a rotor speed of 500 rpm. 

 
Figure 24. Rotor speed of the measurement in green and constant rotor speed of 500 rpm in the 
simulation. 

Due to the fast torque step the load machine’s standard PI speed controller is not able to ensure 
constant speed in this short time. Moreover, parameter mismatches, in particular for the simple 
model of the used inverter and the wiring could be not sufficient. However, the changing currents, 
clearly show the same behavior in simulation as well as in the measurement for the minimization of 
the inner torque ripple. In Figure 23b, the corresponding torque is shown where simulation in green 
look similar to the results in brown. The marked discrete sampling points of both, are looking also 
good even the absolute timings differ, which is because the not ideal superposition of simulation and 
measurement results. 

6. Discussion and Conclusions 

This paper shows an approach for predictive trajectory control with online MTPA calculation 
and minimization of the inner torque ripple of PMSMs. 

6.1. Parameteridentification and Modelling 

The basic machine equations and assumptions, particularly the extended torque equation, are 
motivated in the beginning of this paper. For the developed control algorithm which considers the 
inner torque ripple of the PMSM, the position dependent flux-linkages are mandatory. 

The theory and principle for the challenging test-bench identification of these position 
dependent flux-linkages, using Fourier analysis and solving the differential equation, is shown. 
Based on the identified model parameters of the flux-linkages and the stator resistance an acausal 
simulation environment is parameterized. This simulation environment enables rapid control 
prototyping and provides the shown simulation results and explanations of the derived control 
algorithm. 

The extension of a predictive trajectory control algorithm, adapted by the current plane, the flux-
linkage plane and the voltage-plane with the machines inner torque yields not only the possibility 
for the online calculation of the reference torque values, including the position-dependent flux-
linkages yields also the possibility of the inner torque ripple compensation. 

6.2. Introduced Control Algorithm 

The introduced control algorithm is split up in two main cases. (1) The dynamic operation which 
executes an online gradient search on the introduced torque plane for the fast response to the 
reference torque as described in Section 3.3.1. (2) The stationary operation (Section 3.3.2) has the goal 
of a minimal current for a maximum torque under certain restrictions as the available voltage of the 
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inverter, the current limitation, and the present state of the machine. At stationary operation, the 
online-capable iterative polynomial approximation of the iso-torque curve solves the minimization 
problem for ideal reference values. Considering these cases and constraints in the algorithm enables 
the control with online MTPA calculation and the compensation of the inner torque ripple. 

6.3. Results 

In this paper the control algorithm is explained in detail, supported with realistic parameter 
based simulations for understanding. Both, the dynamic case, and stationary case are shown with 
corresponding simulations. The verification of the simulation results and the test-bench 
measurements is done by a comparison of both. Furthermore, the testbench implementations and the 
measurements shows that the algorithm is fully real-time-capable at 6 kHz control frequency without 
further optimizations. The testbench results also indicate an improvement of the controlled torque 
compared to state-of-the-art control with constant and precalculated MTPA/MTPV currents. 
Furthermore, with the introduced approach no additional lookup table necessary for the torque to 
current references as used in classical offline calculated MTPA strategies. The online calculated 
torque to current references offer new possibilities as parameter adaption by online identification or 
thermal observers without the need to manipulate the MTPA/MTPV reference parameters during 
control. The measurements and the test-bench implementations show the efficiency of the introduced 
algorithm. However, for global statements, further investigations are necessary. Investigations of the 
precise and detailed control behavior in the whole operating range, stability analysis, and 
measurement with special test-benches which allow precise torque ripple measurement, has to be 
done in further research and will probably published in future papers. 
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