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Abstract: In this paper, we propose an optimized power distribution method for hybrid electric
energy storage systems for electric vehicles (EVs). The hybrid energy storage system (HESS) uses
two isolated soft-switching symmetrical half-bridge bidirectional converters connected to the battery
and supercapacitor (SC) as a composite structure of the protection structure. The bidirectional
converter can precisely control the charge and discharge of the SC and battery. Spiral wound
SCs with mesoporous carbon electrodes are used as the energy storage units of EVs. Under the
1050 operating conditions of the EV driving cycle, the SC acts as a “peak load transfer” with a
charge and discharge current of 2isc~3ibat. An improved energy allocation strategy under state of
charge (SOC) control is proposed, that enables SC to charge and discharge with a peak current of
approximately 4ibat. Compared with the pure battery mode, the acceleration performance of the EV is
improved by approximately 50%, and the energy loss is reduced by approximately 69%. This strategy
accommodates different types of load curves, and helps improve the energy utilization rate and
reduce the battery aging effect.
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1. Introduction

In recent years, energy shortages and environmental degradation have attracted increasing
attention [1–6]. Increasing car ownership has led to an increase in pollution from automobile exhaust
emissions, thereby forcing the acceleration of energy transformation in the automotive industry. As a
new type of transportation, electric vehicles (EVs) have great advantages in energy saving, emission
reduction and reduction of fossil fuel dependence, which has greatly promoted their development.

The power supply system is the core part of the EV and directly affects the overall performance
of the vehicle [7–10] and currently, the power supply problem of electric vehicles is a major obstacle
to the development of EVs [11]. To promote and use EVs more widely, electric vehicles need higher
specific energy, higher specific power, longer cycle life of energy storage system and higher charging
efficiency [12–16].

Conventional EV energy storage systems are battery-based storage devices, which have large
deficiencies and limitations [17–20]. First, the power density of the battery is low, thereby it cannot
meet the peak power demand of EVs under acceleration or climbing conditions. Although the power
demand can be satisfied by increasing the number of battery cells, the EV load will be increased
considerably. Second, in battery energy storage systems, frequent current changes generate additional
heat, reducing efficiency and battery life.

Therefore, we herein study a hybrid energy storage system (HESS) comprising batteries and
supercapacitors (SCs). As a new type of environmentally friendly energy storage device, SC has the
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advantages of high power density, high efficiency, fast response speed, and long cycle life that can
improve energy utilization and dynamic performance to some extent [21–26].

The range of power required for operation under certain operating conditions (such as starting,
acceleration, deceleration, stopping, and climbing) is wide. When the SC is directly connected to
the battery, stabilizing the output voltage and controlling the energy distribution is difficult. In our
research, we adopted the half-bridge of the control topology, wherein a bidirectional DC/DC converter
connects the SC to the battery [27–30]. To enhance the discharge persistence of the battery current,
the battery current is reduced to a minimum. The entire driving cycle strategy is employed to reduce
the power loss in a given load curve. A discrete optimization design is used to improve the control
effect of EVs.

This paper analyzes the deficiencies of the topology and control strategies of traditional HESSs,
improves the previous topology, and proposes an optimized power allocation strategy based on the
current control of EVs, thereby accurately predicting future power requirements. In addition, on the
basis of current control, we herein add the SOC control of SCs based on the driving speed of EVs,
thereby reducing the overcharge and overdischarge of the battery, improving the climbing performance
of the EV, improving the energy utilization rate and reducing the battery aging effect [31–37].

2. Hybrid Energy Storage System

Energy storage devices can be divided into physical energy storage devices, chemical energy
storage devices, and electromagnetic energy storage devices. Table 1 lists the main parameters of the
common energy storage devices.

Table 1. Main parameters of common energy storage.

Energy Storage Type Efficiency
(%)

Energy Density
(Wh/kg)

Power Density
(W/kg)

Service
Cycle

Cost
($/kW/Year)

Battery 60–80 30–240 100–700 ≤2000 25–120
Lithium battery ≥85 250–300 800–1100 103–104 120
Supercapacitor ≥90 ≤10 700–18,000 ≥105 85

Superconducting energy storage ≥95 ≤10 ≥104
≥105 200

Table 1 shows that a single energy storage device cannot unify power density and energy density,
and cannot meet the complex and variable power demand of EVs. Combining the advantages of
batteries and SCs, it is proposed that batteries and SCs be used as composite energy sources to meet
the needs of EV power supply changes. The high energy density of the battery guarantees EV mileage
for one charge. SCs can provide instantaneous high current output to meet the peak power (such as
for acceleration and climbing) required by EVs, thus ensuring dynamic performance. When the EV
decelerates or degrades, the power system is in an energy feedback state; thus, the SC can more
efficiently and quickly absorb feedback energy, improve the energy efficiency of the system, and protect
the battery from heavy currents. There are four common structures of HESS composed of two energy
storage devices and one load device [38–41]:

(1) The SC, battery and load are directly connected in parallel, as shown in Figure 1a.
This connection is low cost and fast response, but it also has several limitations: such as the capacity
of the energy storage system cannot be fully utilized, and the power allocation is not controlled;
the voltage of the SC is not controlled, and it depends on the SOC of the battery, which will affect the
optimal utilization of SC.

(2) The SC control structure, as shown in Figure 1b. The SC is connected to the DC/DC bidirectional
converter, and the battery is directly connected to the DC bus. This structure can lead to the capacity of
the SC being fully utilized, and this is advantageous to the high-power throughput capacity of the SC.
However, the charging and discharging and the power of the battery cannot be effectively controlled.
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(d) Structure of two power supply control.

(3) The battery control structure, as shown in Figure 1c. The power of the battery can be controlled,
and the charging and discharging current of the battery can be optimized that can prolong the service
life of the battery. The SC can achieve a fast response speed when the peak power output changes,
but obtaining a stable voltage is difficult, resulting in poor system stability.

(4) The dual-power control structure, as shown in Figure 1d. The structure can provide flexible
voltage control, and can better allocate power to the battery and the SC. The battery can also prolong
the service life, and its energy can be fully utilized. Bidirectional DC/DC can be used for an energy
management system with a more flexible configuration. However the existence of bidirectional DC/DC
will increase the cost and loss of the system, as well as increase the complexity of the system structure
and the mass of EVs [42–44].

Currently, SC control structures are widely used in EV composite power supply systems. In this
study, a new power allocation strategy is required to accurately control the charging and discharging
of the battery and SC. Figure 1d shows a schematic of the structure. In this study, the bidirectional
DC/DC converter adopts half-bridge topology structure. The principle of the bidirectional DC/DC
converter in HESS of EVs. When the system is discharged, the bidirectional DC/DC controller operates
in the Boost mode, and the energy flows from the low-voltage side to the high-voltage side; when the
system is in charge, the bidirectional DC/DC controller operates in the Buck mode, and the energy
flows from the high-voltage side to the low-voltage side.

A supercapacitor is a type of energy storage device, that stores electric energy converted from
various clean energy sources. It is conventionally divided into two types: stacked and wound. Electrode
materials are important factors affecting the energy storage characteristics of SCs. Ordered mesoporous
carbon materials not only have the characteristics of uniform pore size distribution, large pore volume
and high specific surface area, but also have the advantages good chemical inertness, strength, electrical
conductivity and thermal stability. In this study, a spiral wound SC with ordered mesoporous carbon
electrodes was used. Figure 2 shows the diagram of the SC structure.
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Figure 3 shows the electrochemical properties of the ordered mesoporous carbon (OMC) electrode.
According to the X-ray diffraction (XRD) pattern of the ordered mesoporous carbon, it is known that
no impurity peak appears, the full width at half maximum is large, and the degree of crystallization
is small, indicating it to be a good electrode material. According to the SEM (scanning electron
microscope) image of the ordered mesoporous carbon, the basic unit structure is uniform in size.
According to the transmission electron microscope (TEM) image of the ordered mesoporous carbon,
the pore structure is arranged in order and the conductivity is strong. The charge and discharge curves
of the electrode material at 5 mA show good linearity, the self-discharge current is relatively small,
and there is no obvious voltage drop at the initial discharge, indicating that the electrode material has
a small internal resistance and ideal capacitance performance; moreover, it is suitable as an energy
storage system unit for EVs.
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Figure 3. Electrochemical properties: (a) =XRD spectrum of the synthesized OMC; (b) SEM photograph
of the OMC; (c) and (d) =TEM photographs of the OMC.

To detect the characteristics of SCs, constant current charge and discharge experiments were
carried out on the SC cells used herein. The charge and discharge voltage range was set to −1.0–0 V,
and the charge and discharge currents were 5, 8 and 10 mA. The single charge and discharge curves
have good reversibility, and the two sides of the curve are basically symmetrical. The initial voltage has
no significant voltage drop and has ideal capacitive characteristics. As shown in Figure 4b, the half-arc
of the high-frequency region is small, indicating that the charge transfer resistance at the interface
between the electrode and the electrolyte is small. In the intermediate-frequency region, the slope is
close to 45◦, which is related to the charge transfer impedance; the straight line in the low-frequency
region is similar to the vertical line, demonstrating good capacitance characteristics. As shown in
Figure 4c, the curve shows a typical capacitance characteristic. The time constant (the product of
capacitance and resistance) determines the steepness of the potential conversion. When the scanning
direction changes, the electrode exhibits a fast current response and is rapid in a stable state, indicating
that the internal resistance is small, the RC time constant is small, and it is suitable for high current. As
shown in Figure 4d, as the number of cycles increases, the attenuation of capacitance weakens. In the
initial stage of the cycle, the surface functional groups of the OMC will decompose, thereby consuming
part of the capacitance. Second, as the number of cycles increases, the increase in the temperature of
the capacitor will decrease the capacitance, causing a partial fragile hole to be broken. Simultaneously,
the increase in temperature further exacerbates the decomposition of the surface functional groups.
However, the overall fit is good, and it is suitable as an energy storage system unit for EVs.
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Figure 5 shows the state of health (SOH) estimation during the supercapacitor cycle. When the
number of cycles was less than 6000, the SOH of the supercapacitor was maintained above 80%, and the
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Currently, SC control structures are widely used in EV composite power systems. Based on
the dual-power control structure, a new power allocation strategy is proposed to accurately control
the charging and discharging of the battery and the SC. The DC converter used herein a composite
converter with an isolated soft-switching symmetrical half-bridge bidirectional converter as a protection
structure. The principle of bidirectional DC/DC converter in HESS of Ev is as follows: When the system
is discharged, the bidirectional DC/DC controller works in the boost mode, and energy flows from
the low-voltage side to the high-voltage side. When the system is charged, the bidirectional DC/DC
controller operates in the buck mode, and energy flows from the high-voltage end to the low-voltage
end. Figure 6 shows a device used in EV testing.
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3. Typical Control Policy

The basic structure of the control strategy in the EV HESSs is shown in Figure 7. The DC/DC
converter uses a composite converter with an isolated soft-switching symmetrical half-bridge
bidirectional converter as a protection structure when extreme currents occur, as opposed to the
non-isolated DC/DC converter used previously. In the event of a sudden increase in current, switching
to an isolated converter is possible to avoid damage to the energy storage system due to direct electrical
connections. Under normal operating conditions, the DC/DC converter operates in the boost mode
during discharge and operates in the buck mode during energy feedback.Energies 2020, 13, x FOR PEER REVIEW 7 of 14 
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Figure 7. Conventional control structure.

The power distribution method is as follows. When the EV is driven at a constant speed, the battery
unit is separately powered in the HESS. At this time, the battery cells were discharged at a constant
current. When the EV accelerates or climbs a hill, the remaining peak power is provided by the SC to
meet the power demand. When the EV is decelerated, the feedback power generated by the brake is
obtained by the battery, reducing energy waste. When the bus current changes abruptly, the battery
unit maintains a constant current through the power distribution module, and the remaining peak
current is absorbed and released by the SC.

The driving cycle test was performed under the working condition of 1015 as shown in Figure 8.
The simulation results of power distribution are shown in Figure 9. It can be concluded that the
operating current of the SC is relatively large under this control mode, and isc is 2–3 times that of
the ibat. The SC acts as a “peak load transfer” to help extend battery life. This control method can
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effectively play the role of SC’s “peak clipping and valley filling”, improve the energy utilization rate
of the HESS, and limit the peak current of the battery unit to a safe range.
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Figure 9. Charge and discharge current distribution of supercapacitors and batteries under the
traditional strategy.

As shown in Figure 10, the SOC of the SC demonstrated a large decline at the end of the EV
driving cycle and at the lowest point, it dropped to 0.67. This causes the terminal voltage of the SOC of
the SC to drop, thereby reducing the transmission efficiency of the DC/DC circuit.
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Figure 10. SOC curve of supercapacitors in the typical strategy.

This phenomenon occurs owing to some frequent peak acceleration and deceleration during
driving, which result in a large discharge current, but the feedback current is small. During the braking
process, most feedback current is absorbed by the battery unit, and the SC cannot recover to a higher
SOC value in a short time. In response to this drawback, the feedback object is replaced, and the
control SC preferentially absorbs the feedback energy. However, this method allows the SC to charge
in a short time. If the remaining large current is still absorbed by the battery, it will reduce the battery
life and reduce the energy efficiency.
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When an EV operates under extreme acceleration or emergency braking, the energy storage system
needs to provide a large peak power or a large peak current. If it is through a non-isolated bidirectional
DC/DC converter, direct electrical connections can cause significant damage to the energy storage
system. When the peak current exceeds a certain threshold, the current in the DC converter passes
through the isolated soft-switching symmetric half-bridge bidirectional converter that protects the
safe operation of the energy storage system to some extent. Compared with a full-bridge bidirectional
converter, the symmetrical half-bridge bidirectional converter is only half of the latter; therefore,
the loss is small and the efficiency is high. The protection circuit topology is shown in Figure 11.Energies 2020, 13, x FOR PEER REVIEW 9 of 14 
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4. Improved SOC Control Strategy

Based on the disadvantages of the traditional control strategy, an improved control strategy is
proposed herein based on the compound converter structure with an isolated soft-switching symmetric
half-bridge two-way converter as the protection structure. As shown in Figure 12, speed and SC SOC
control are added to the controller as influencing factors, thereby forming a four-dimensional space
vector control strategy.
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According to the above discussion, the driving cycle has an important influence on the control effect.
Therefore, the new strategy adjusts SC SOC to the optimal state by analyzing the relationship between
SC SOC, speed and power demand. During the electric vehicle is running, the SC provides peak
power and the battery provides average power. Considering the kinetic energy theorem, the following
relationship can be obtained (excluding power losses):

1
2

mv2
max −

1
2

mv2 =
1
2

cu2
sc −

1
2

c(0.5usc)
2 + pbatt0 (1)

pbat = ubatibat (2)



Energies 2020, 13, 5297 9 of 13

Here, v is the current vehicle speed, vmax is the maximum vehicle speed, m is the vehicle total
mass, c is the SC system capacitance, usc is the current voltage of the SC end,

_
usc is the rated voltage

of the SC, Pbat is the rated power of the battery, t0 is the time for battery to release energy, ubat is the
battery nominal voltage, and ibat is the battery nominal current. From (1) and (2), the optimal SC SOC
is given by:

q∗sc =

√
mv2

max −mv2 − 2ubatibatt0

cusc
2 + 0.25 (3)

where, q is the SOC of the ultracapacitor, and q* is the ideal SOC of the SC. To verify the performance
of the optimized power distribution strategy, experimental tests were performed under different
conditions. The results of the current distribution are shown in Figure 13. Unlike the traditional
control strategy, the battery transfers charge to SC at a constant speed driving and stopping stage,
and the current frequency is higher than that of the traditional control strategy. At the end of the
acceleration process (380–500 s), the SC provides approximately four times higher ibat peak current
than the conventional mode. Based on the comparison between traditional control strategy and the
SOC control strategy, the SOC control strategy is concluded to be more conducive to EV acceleration
performance. The SOC curve of the SC is shown in Figure 14.
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The SOC value of SC is 0.97. In the acceleration and braking stages, the actual SC SOC deviates
from the expected value owing to the drastic change in SC charging and discharging current. The SC
SOC approaches the optimal curve when EVs continue to operate. Compared with the SOC changes of
SC shown in Figure 10, the SOC control strategy is more ideal. Under the optimized control strategy,
the SOC of the SC has a small decrease, which can meet the energy output requirement.
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The acceleration test of the system is shown in Figure 15a. The acceleration performance under the
SOC control is approximately 50% higher than that of the pure battery, and approximately 25% higher
than that of the conventional control. The energy loss test under EDUC, NYCC, 1050 and CSHVR is
shown in Figure 15b. The energy loss under SOC control is approximately 4%, which is 23% lower
than that of conventional control and 69% lower than that of the pure battery. The test parameters
of the EV are shown in Table 2. The EV with the SOC control strategy has the shortest acceleration
time and the lowest energy consumption. The SOC control strategy proposed herein is superior to the
traditional control strategy in terms of acceleration performance and power distribution.
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Table 2. Vehicle, Battery and SC Parameters.

Variable Symbol Value Units

Vehicle total mass m 1150 [kg]
SC system capacitance C 5 [F]

SC system nominal voltage usc 305 [V]
Battery nominal voltage ubat 325 [V]
Battery nominal current ibat 21 [A]

Power assisting time t0 9 [s]
Maximum speed Vmax 80 [mph]

5. Conclusions

The ordered mesoporous carbon electrode SC prepared herein exhibits good performance
under high current conditions through charge and discharge experiments. Using the prepared SC,
an optimized hybrid energy distribution method was proposed for the HESS. A hybrid converter
with an isolated soft-switching symmetric half-bridge bidirectional converter is used as the protection
structure to accurately control the charging/discharging of the SC and battery. Through the optimized
power distribution method, the SC energy can be quickly supplemented when stopping and driving at
a constant speed; this makes up for the shortcomings of the traditional control strategy. On the other
hand, by controlling the SOC of the SC via the speed of EV enables the energy storage system to have
better flexibility and adaptability, thereby enhancing the demand for the acceleration performance
and energy variation of EVs. The experimental results demonstrate that the optimized SOC control
strategy proposed herein can meet the peak power demand and energy loss, shorten the acceleration
time of EVs but reduce the energy loss, improve the performance of EVs and extend the service life of
the battery.
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