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Abstract: Renewable energy (RE) utilization is expected to increase in the coming years due to its
decreasing costs and the mounting socio-political pressure to decarbonize the world’s energy systems.
On the other hand, lithium-ion (Li-ion) batteries are on track to hit the target 100 USD/kWh price
in the next decade due to economy of scale and manufacturing process improvements, evident
in the rise in Li-ion gigafactories. The forecast of RE and Li-ion technology costs is important for
planning RE integration into existing energy systems. Previous cost predictions on Li-ion batteries
were conducted using conventional learning curve models based on a single factor, such as either
installed capacity or innovation activity. A two-stage learning curve model was recently investigated
wherein mineral costs were taken as a factor for material cost to set the floor price, and material cost
was a major factor for the battery pack price. However, these models resulted in the overestimation of
future prices. In this work, the future prices of Li-ion nickel manganese cobalt oxide (NMC) battery
packs - a battery chemistry of choice in the electric vehicle and stationary grid storage markets - were
projected up to year 2025 using multi-factor learning curve models. Among the generated models, the
two-factor learning curve model has the most realistic and statistically sound results having learning
rates of 21.18% for battery demand and 3.0% for innovation. By year 2024, the projected price would
fall below the 100 USD/kWh industry benchmark battery pack price, consistent with most market
research predictions. Techno-economic case studies on the microgrid applications of the forecasted
prices of Li-ion NMC batteries were conducted. Results showed that the decrease in future prices
of Li-ion NMC batteries would make 2020 and 2023 the best years to start investing in an optimum
(solar photovoltaic + wind + diesel generator + Li-ion NMC) and 100% RE (solar photovoltaic + wind
+ Li-ion NMC) off-grid energy system, respectively. A hybrid grid-tied (solar photovoltaic + grid +

Li-ion NMC) configuration is the best grid-tied energy system under the current net metering policy,
with 2020 being the best year to deploy the investment.

Keywords: lithium-ion NMC battery; battery prices; multifactor learning curve

1. Introduction

Renewable energy (RE) utilization is considered as one of the best solutions to combat climate
change and other environmental concerns such as land and air pollution and carbon footprint [1–3].
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However, their deployment into existing energy infrastructure is hampered by the intermittent nature
of RE technologies such as solar photovoltaics (PV) and wind turbines [4]. Integrating energy storage
technologies is important as they mitigate the intermittency of RE and perform additional functions
such as load arbitrage, contingency reserves, and ramping [5]. Lithium-ion (Li-ion) batteries are
attractive energy storage options for the power and transportation sectors [5,6]. This battery has six
commercially available chemistries: lithium cobalt oxide (LCO), lithium manganese oxide (LMO),
and lithium titanate (LTO) for low- to medium-power applications; and lithium iron phosphate (LFP),
lithium nickel cobalt aluminum oxide (NCA), and lithium nickel manganese cobalt oxide (NMC)
for medium- to high-power applications [7]. Among its chemistries, NMC is considered as the
most financially sound, widely suitable, and environmentally friendly option. Moreover, the NMC
market share is increasing for energy storage applications, electric vehicles (EV), and other high-power
applications [8,9].

One of the key drivers towards the shift of Li-ion battery chemistry preference is the immense
problem concerning cobalt (Co) metal due to its high price, market inelasticity, and associated
socio-political issues [10]. Innovations in the NMC battery chemistry have therefore focused on
reducing Co content while increasing nickel (Ni) content, which would further improve the energy
density and reduce the price of the battery [10,11]. However, increasing Ni content promotes thermal
runaway [12] due to localized oxidation which is prevented by the addition of manganese (Mn) in
NMC [13,14]. Over the years, the Ni to Co ratio in NMC has been increased from NMC111 (33% Ni,
33% Mn, 33% Co) to NMC532 (50% Ni, 30% Mn, 20% Co), and then NMC622 (60% Ni, 20% Mn, 20%
Co). Research and development (R&D) efforts are now focusing on NMC811 (80% Ni, 10% Mn, 10% Co)
to further increase the battery capacity and reduce the material cost [15]. Recycling valuable materials
such as Li and Co metals could also contribute to reducing the raw material and battery manufacturing
costs, but the large-scale global recycling rate so far is less than 5%. Due to the technical, economic,
and political barriers towards battery recycling, researchers have focused on developing lower-cost
batteries with higher capacities and longer lifespans [16]. The material costs are also considered in the
experience curve based on cost vs. units produced.

The price outlook for Li-ion batteries is encouraging as the battery pack volume-weighted average
price is falling annually by 20% [14]. This price improvement is attributed to innovations in material
science, increase in production, and increase in demand for energy storage technologies [17–20].
Previous works projected the future prices of Li-ion batteries using empirical models, including
learning by scaling [17–21] and learning by innovation [19], to provide reasonable estimates. A
modified two-stage learning curve model considered the practical limit on price reduction due to metal
cost [10]. However, these models overestimated the actual price of a Li-ion battery pack, which was
observed to be falling faster than the models’ predictions [14]. The overestimation occurs because the
models do not account for the dynamic nature of supply and demand. In addition, Li-ion battery
price estimates are typically agnostic to battery chemistries, thereby failing to consider that different
elements have different supply chain dynamics, material costs, and synthesis costs. The specificity of
the use-cases of each battery chemistry may yield different results. To the best of our knowledge, there
are no published works yet on a chemistry-specific Li-ion battery pack price projection.

In this work, different learning curve models were developed to capture the effects of the factors
and their interactions that contribute to the decline of Li-ion NMC battery pack prices. The factors
incorporated are: (1) the demand for energy storage; (2) innovation; and (3) the price of raw metals.
The future prices from the best model, based on statistical soundness and realistic results, were used
to determine the levelized cost of electricity (LCOE) from 2020 to 2025 of an off-grid island and a
commercial establishment. The LCOE determines the year in which investing in a RE system would be
economically competitive.
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2. Materials and Methods

2.1. General Approach

The general methodology is summarized in Figure 1. Historical data on the prices, cumulative
demand, Patent Cooperation Treaty (PCT) applications, and raw material costs of Li-ion NMC are
obtained. The future cost of Li-ion NMC is then forecasted from this data using different learning
curve models. Cost projections from the best model are then taken as the Li-ion NMC capital cost in
the HOMER Pro® microgrid optimization software. The software then calculates the optimum LCOE
of energy systems in an off-grid island and a grid-tied commercial facility. The LCOE determines the
best year for RE transition in both systems.
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Figure 1. Flowchart of the general research approach. Li-ion nickel manganese cobalt oxide (NMC)
prices, demand, patent applications, and raw material prices are used to generate the best cost projection
model. The load profile of the off-grid island and commercial establishment, projected costs of energy
generators and Li-ion NMC, and other techno-economic parameters are required in the analysis with
HOMER Pro®. The results are then used to determine the optimum levelized cost of electricity (LCOE)
and the best year to invest in renewable energy (RE)-based generation.

2.2. Learning Curves

2.2.1. Single-Factor Learning Curve Models

The conventional learning curve model simplifies the price reduction dynamics of a new technology
by aggregating closely related drivers into a single factor. The linearized form of this model is presented
in Equation (1), wherein y is the dependent variable, x is a factor, and ai are the coefficients.

log y = α0 + α1 log x (1)

This work considers price reductions due to the increasing demand for energy storage (learning
by using) and R&D (learning by innovation). Application of the conventional learning curve yields
Equations (2) and (3) wherein P is the battery price, D is the cumulative demand for Li-ion NMC, and I
is the number of PCT applications.

log P = β0 + β1 log D (2)

log P = κ0 + κ1 log I (3)
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Learning by using is represented by the cumulative demand for Li-ion NMC batteries, capturing
both EV and stationary applications to consider the consumer side of the supply chain. It was assumed
that NMC accounted for 53% of global shares, which is equal to its global EV market share [8]. The
actual produce that yielded revenue is dictated by the magnitude of the demand as manufacturers
tend to meet the supply-demand balance. R&D is geared towards increasing the energy density
and reducing the battery price [11]. This is quantified by the number of PCT applications to avoid
double counting similar patents and to only include high-value innovations [22]. Moreover, previous
works in the energy sector have established that patent count is a valid indicator of technological
progress [23,24].

2.2.2. Multi-Factor Learning Curve Models

A major issue about the conventional learning curve is that it fails to consider the relationship
between two independent factors. Increasing battery storage demand is mainly driven by the transition
into RE. The high energy density of Li-ion NMC batteries widens their applications from the EV
market to energy systems, which contribute to its increased demand [25]. On the other hand, pertinent
improvements on a technology are realized during actual product utilization [26].

This issue on conventional learning curve models is addressed by accounting for the price
reduction contribution of the relationship of the independent factors in a multi-factor learning curve
model. When multiple factors are considered, Equation (1) extends into Equation (4), wherein xi are
the factors.

log y = a0 + a1 log x1 + a2 log x2 + . . .+ aN log xN (4)

Equation (4) can be truncated into two-factor and four-factor equations as shown in Equations (5)
and (6), respectively. In these equations, the battery price is dependent on the cumulative demand for
Li-ion NMC batteries, PCT count, Li metal price PLi, and Co price PCo [27,28].

log P = a0 + a1 log D + a2 log I (5)

log P = a0 + a1 log D + a2 log I + a3 log PLi + a4 log PCo (6)

The demand for both battery and PCT counts may both be increasing over the analysis period
and this could result in a false correlation between the two. This correlation is removed by introducing
a residual variable η defined in Equation (7) [27,28].

log I = b0 + b1 log D + η (7)

Applying the residual variable in the two-factor and four-factor models yield Equations (8) and
(9), respectively.

log P = c0 + c1 log D + c2η (8)

log P = c0 + c1 log D + c2η+ c3 log PLi + c4 log PCo (9)

2.2.3. Cost Projection

The coefficients are determined by fitting the historical Li-ion NMC cumulative demand, PCT
count, and raw material costs to the historical Li-ion NMC prices. The Li-ion NMC prices are then
projected by evaluating the fitted model using the forecasted cumulative demand, PCT count, and
raw material costs. The pertinent data is presented in Appendix A. The best cost projection model is
selected using statistical tests and agreement with industry predictions.

2.3. Techno-Economic Case Study

Two case studies are analyzed in this work: the off-grid Sabtang Island in Batanes, Philippines and
a grid-tied commercial shopping mall in the Philippines. Each case study involves multiple scenarios
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outlined in Table 1. In the off-grid case study, solar PV and wind were considered due to the low
cost [4] and high energy potential of these technologies [29]. Philippine laws encourage the use of
RE for off-grid generation [30,31]. As for the grid-tied case study, solar PV generation was employed
because it potentially minimizes the energy costs compared to solely drawing power from the grid [32].
The LCOE in each year for each scenario was calculated in HOMER Pro® using the projected battery
prices from 2020 to 2025 as the capital cost of the Li-ion battery. The schematic diagrams of the case
studies are presented in Figure 2. The pertinent techno-economic parameters for the simulations are
detailed in Appendix B, while the generation and demand profiles are shown in Appendix C.

Table 1. Energy system LCOE calculation scenarios.

Case Study Scenario Description

Off-grid Optimum Case • Solar PV, wind, Li-ion, and diesel

100% RE • Solar PV, wind, Li-ion

Grid-tied NM-100 kW

• Net metered system
• Solar PV (<100 kW), Li-ion, and grid
• Based on the Renewable Energy Act of 2008

NM-Open

• Net metered system
• Solar PV (no limit), Li-ion, and grid
• Hypothetical extended policy

NoNM-Open
• No net metering
• Solar PV (no limit), Li-ion, and grid

NoNM-Max

• No net metering
• Solar PV (1745 kW), Li-ion, and grid
• Utilizes the maximum roof capacity
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3. Results

3.1. Learning Curves

3.1.1. Single-Factor Learning Curve Models

The conventional learning curve is fitted to historical data in Figure 3. This yields the learning
rates, which are 25.28% and 35.88% for learning by using and learning by innovation, respectively.
The projections based on the learning rates are shown in Figure 4. In both projections, the decrease in
Li-ion NMC price is predicted to slow down. Bloomberg New Energy Finance (BNEF) predicted that
the price of Li-ion battery packs in general would fall below the 100 USD/kWh benchmark price by
2024 at 94 USD/kWh. The price predictions of the single-factor learning curve models deviate from
this forecast since the predicted price from learning by using is 115.14 USD/kWh, while learning by
innovation resulted in 164.39 USD/kWh by 2024. Furthermore, the prices from the two single-factor
learning curve models do not fall below the 100 USD/kWh benchmark within the analysis period,
contrary to expert predictions in the Li-ion NMC battery industry [33].
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3.1.2. Multi-Factor Learning Curve Models

The projections based on the two-factor and four-factor learning curve models are shown in
Figure 5. Both cumulative Li-ion NMC battery demand and PCT count have a high correlation of 0.9684,
which raises a multicollinearity issue on the multiple regression technique [34]. This is confirmed by
the variance inflation factor (VIF) of 16.08. The correlation issue was resolved by introducing a residual
variable, which resulted in an almost zero correlation and a VIF of 1. The two-factor learning curve
model resulted in a 21.18% learning rate for Li-ion NMC battery demand and a 3% price decrease for
every 100 PCT patents filed. Lower forecast error on prices was observed, especially from 2015 to 2019,
compared to that of the single-factor learning curve model.
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Figure 5. Li-ion NMC battery pack historical prices and predicted prices according to a two-factor
(left) and four-factor (right) learning curve model. The two-factor model falls below the 100 USD/kWh
price point in agreement with expert predictions. The four-factor model is overfitted and may lead to
inaccurate results.

The four-factor learning curve examined the omitted variable bias using Li and Co metal prices.
The costs of other vital components of batteries such as Ni and graphite can also be considered, but Li
and Co were primarily chosen due to their immediate supply chain concerns [10]. Regardless of the
battery components considered as factors on the model, it is expected that the increasing costs of any
battery component would result in higher predicted prices of battery packs. The model resulted in
a 25.94% learning rate for the doubling of demand, a 0.3% increase for every 100 PCT patents filed,
and an 8.25% increase and a 6.46% decrease when the price of Li and Co, respectively, is doubled.
Although econometric analysis is in the context of hypothesis generation instead of hypothesis testing
and analysis using the p-value may provide inferential limitations [35], all variables are statistically
insignificant, suggesting that the whole model is insignificant. This model might lead to inaccurate
results when used for price prediction.

The future prices of Li-ion NMC batteries were overestimated using the conventional single-factor
learning curve models (Figure 4). Meanwhile, the cost prediction of the two-factor learning curve
model is relatively lower because the contributions of both factors were accounted in the battery pack
price reduction. Considering the four-factor learning curve model resulted in higher predicted prices,
but did not follow an increasing trend, contrary to the BNEF report [20]. Although there will be
contributions to the battery pack price when Li and Co metal prices increase, these are still less than
the weight of the demand for battery storage and innovation. The results agree with the BNEF market
research that doubling the prices of both metals would only increase battery pack prices by 5–10% [36].
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As discussed earlier, the BNEF report predicted that the price of Li-ion battery packs would
fall below the 100 USD/kWh benchmark price by 2024 at 94 USD/kWh. The results of the two-factor
learning curve are comparable with this projection among tested models. Note that battery prices may
still fall lower than the projected prices [20]. The forecasts of the two-factor learning curve model
would be more plausible, especially if the demand for Li-ion NMC batteries continues to accelerate. If
the demand for Li-ion NMC batteries were to increase by 33% each year, then its price would be less
than 100 USD/kWh by 2023.

3.2. Case Studies

3.2.1. Off-Grid Electrification of Sabtang Island

This case study applies the results of the two-factor learning curve model to determine the future
LCOE of the two different off-grid energy systems—optimum and 100% RE. The calculated future
LCOE are then compared with the future generation cost of a diesel-only system to determine the
year in which investing in the optimum or 100% RE system would be economically competitive. The
generation cost of the diesel-only system is highly dependent on volatile diesel fuel prices. The average
price of diesel in the Philippines is 0.9 USD/L in 2019 and is assumed to increase at an average annual
inflation rate of 3.8% in the country. With a 24.91 PHP/kWh (~0.50 USD/kWh) true cost of generation
rate (TCGR) in Sabtang Island as of 2019 [37], the future generation cost of the diesel-only system
was determined using the relationship between the diesel price and diesel electrification cost [38] as
shown in Figure 6, together with the LCOE of the optimum and 100% RE energy systems from 2020 to
2025. The optimum energy system, which utilizes solar PV, wind, Li-ion NMC, and a diesel generator,
yielded a LCOE lower than that of the diesel-only system as early as 2020. A LCOE reduction of
more than 50% is expected when RE technologies and Li-ion NMC are integrated into the existing
diesel systems. This is more than the 20% average cost reduction when only solar PV and batteries are
utilized [38]. In the 100% RE scenario, only solar PV, wind, and Li-ion NMC are utilized. The LCOE of
this system will fall below that of the diesel-only system in 2023 at 0.43 USD/kWh. In either case, the
decreasing LCOE up to 2025 can be attributed to the decreasing Li-ion NMC battery price.

Energies 2020, 13, x FOR PEER REVIEW 8 of 18 

 

As discussed earlier, the BNEF report predicted that the price of Li-ion battery packs would fall 
below the 100 USD/kWh benchmark price by 2024 at 94 USD/kWh. The results of the two-factor 
learning curve are comparable with this projection among tested models. Note that battery prices 
may still fall lower than the projected prices [20]. The forecasts of the two-factor learning curve model 
would be more plausible, especially if the demand for Li-ion NMC batteries continues to accelerate. 
If the demand for Li-ion NMC batteries were to increase by 33% each year, then its price would be 
less than 100 USD/kWh by 2023. 

3.2. Case Studies 

3.2.1. Off-Grid Electrification of Sabtang Island 

This case study applies the results of the two-factor learning curve model to determine the future 
LCOE of the two different off-grid energy systems—optimum and 100% RE. The calculated future 
LCOE are then compared with the future generation cost of a diesel-only system to determine the 
year in which investing in the optimum or 100% RE system would be economically competitive. The 
generation cost of the diesel-only system is highly dependent on volatile diesel fuel prices. The 
average price of diesel in the Philippines is 0.9 USD/L in 2019 and is assumed to increase at an average 
annual inflation rate of 3.8% in the country. With a 24.91 PHP/kWh (~0.50 USD/kWh) true cost of 
generation rate (TCGR) in Sabtang Island as of 2019 [37], the future generation cost of the diesel-only 
system was determined using the relationship between the diesel price and diesel electrification cost 
[38] as shown in Figure 6, together with the LCOE of the optimum and 100% RE energy systems from 
2020 to 2025. The optimum energy system, which utilizes solar PV, wind, Li-ion NMC, and a diesel 
generator, yielded a LCOE lower than that of the diesel-only system as early as 2020. A LCOE 
reduction of more than 50% is expected when RE technologies and Li-ion NMC are integrated into 
the existing diesel systems. This is more than the 20% average cost reduction when only solar PV and 
batteries are utilized [38]. In the 100% RE scenario, only solar PV, wind, and Li-ion NMC are utilized. 
The LCOE of this system will fall below that of the diesel-only system in 2023 at 0.43 USD/kWh. In 
either case, the decreasing LCOE up to 2025 can be attributed to the decreasing Li-ion NMC battery 
price. 

 
Figure 6. Calculated future LCOE of the optimum system and 100% RE system in comparison with 
the TCGR within the analysis period of 2020 to 2025. The LCOE of the optimum system is already 
lower than the diesel-only system in 2020, while the 100% RE system yields a lower LCOE than the 
diesel-only system in 2023. 

Figure 6. Calculated future LCOE of the optimum system and 100% RE system in comparison with
the TCGR within the analysis period of 2020 to 2025. The LCOE of the optimum system is already
lower than the diesel-only system in 2020, while the 100% RE system yields a lower LCOE than the
diesel-only system in 2023.



Energies 2020, 13, 5276 9 of 18

The results suggest that integrating the optimum system can be achieved in 2020, while investing
in the 100% RE system can be achieved by 2023. Both scenarios also suggest investing in the succeeding
years to lower the required investment. The results of both scenarios agree with previous work, stating
that integrating solar PV, wind, and battery storage into the current diesel-powered energy system
would reduce the investment, maintenance, and diesel consumption costs [39]. LCOE reduction in
the following years is attributed to the decreasing prices of Li-ion NMC batteries and solar PV, which
improve the economic competitiveness [38] and rapid adoption of RE resources.

3.2.2. Grid-Tied Electrification of a Commercial Mall in the City of Manila

This case study applies the predicted prices of Li-ion NMC battery packs based on the two-factor
learning curve model. The future LCOE of the different scenarios presented in Table 1 were compared
with the average cost of electricity from the grid (0.20 USD/kWh). Figure 7 shows the LCOE of each
grid-tied scenario throughout the analysis period (2020 to 2025). The results show that the NM-100
kW and NM-Open scenarios do not require batteries, in agreement with market reports from solar PV
producers [40,41] for a grid-tied and net-metered solar PV system. The net-metered, open capacity
(NM-Open) scenario resulted in the lowest LCOE throughout the analysis period. However, this
scenario is not possible with the current policies in the Philippines. Thus, the only possible scenario
for the mall is the NoNM-Open solar PV-battery (hybrid grid-tied) system. It would require the
establishment to install 262 kW of solar PV and 25 kWh of Li-ion NMC, which would save 12% on
electricity costs in the year 2020. Using this system, the annual energy generation of the PV-battery
system would be 2.40 GWh, which is 95.7% of the annual grid purchases of the mall. The scenario is
feasible because the roof area of the mall can hold a maximum solar PV capacity of 1745 kW.
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4. Discussion

Econometric models such as the learning curves used in this work are very useful tools for
short-term price projection due to their simplicity and wide data availability. Learning by doing and
economies of scale are considered to be among the most applicable learning curve models in predicting
future prices of new and emerging technologies [26]. Learning by doing performs slightly better than
economies of scale because of the inherent learning effect from the exponential increase in cumulative
production with respect to time [42]. Learning by innovation is represented by patent data due to its
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correlation with R&D investment and financial output. PCT count is a more appropriate indicator
because it accounts for high quality R&D outputs [43]. Data availability is less of an issue for patents
because of the wide range of market reports and patent databases. In contrast, using R&D expenditure
as a metric does not directly provide insights on the technological and economic quality of R&D
outputs. One of the main limitations of the single-factor learning curve is that it aggregates the price
reduction effects of different independent factors [26]. Previous work indicates that providing more
historical data and including additional factors, such as R&D and patent applications, improve the
forecasting power of a conventional learning curve model [44]. However, collinearity emerges among
the independent variables of a multi-factor learning curve model, mimicking the said limitation of
the single-factor learning curve and resulting in imprecise coefficient values in the model [45]. This
issue was addressed in the two-factor learning curve model by introducing a residual variable [46],
decreasing the VIF, and removing the correlation between the two factors. The four-factor learning
curve model performed the worst as it was too complex for the given historical data and resulted
in overfitting. The model fails to generalize the available dataset and yields misleading predicted
values [47,48].

The two-factor learning curve model suggests that the price of Li-ion NMC battery packs will
fall below the 100 USD/kWh benchmark by 2024, following the average annual 11% demand growth
for Li-ion NMC. The economic feasibility and competitiveness of new energy storage technologies
in the EV market and energy systems, among other applications, can be determined at this price
point [49,50]. In 2016, only pumped heat electrical storage and compressed-air energy storage fell
below 100 USD/kWh while flooded and valve regulated lead-acid batteries nearly reached the price
point [51]. These energy storage technologies have limited applicability, which is why Li-ion batteries
are gaining market demand despite the elevated prices. The market share of Li-ion NMC is expected
to continue increasing in the following years due to its versatility and high learning rate.

The projection given by the two-factor learning curve model is expected to occur as demand from
the EV and power industries continue to increase. Based on a McKinsey and Co. study, the global
EV market is growing at 60% per year as competition among manufacturers is increasing and the
relevant policies and regulations are becoming more stringent [52]. In the power industry, RE capacity
continues to increase and currently accounts for a third of the total global energy capacity wherein
hydropower, wind energy, and solar energy are the top contributors. Solar energy utilization increased
globally by 94 GW (+24%) from 2018 to 2019, with 70% coming from Asia while capacity increase of 49
GW was realized for wind energy [53]. As of 2018, solar and wind energy account for 3% of the global
energy capacity, but the rate of deployment has been around ten-fold since the past decade. In the
next five years, a 50% increase in the total RE capacity is expected due to the falling prices of solar
PV and technological advancements in wind energy. Sixty percent of the expected capacity growth is
attributed to the increasing solar PV installations in Europe and Asia, and 30% is due to onshore and
offshore wind energy [54]. Both solar and wind energy will continue to expand their global energy
share at increasing rates.

Market reports show that recent developments on Li-ion batteries have focused on improving
NMC characteristics. Composite electrodes of NMC-based cathodes are believed to have a major role
in the performance of Li-ion batteries in EV and energy storage applications [55]. Tesla was recently
granted a patent for dioxazolones and nitrile sulfites as electrolyte additives [56]. Manufacturers are
also keen on reducing Co content by commercializing Ni-rich NMC 811, which LG Chem claimed to
have already successfully manufactured [57]. Some market leaders such as Contemporary Amperex
Technology Co. Limited (CATL) have even claimed to reach the 100 USD/kWh Li-ion NMC battery
pack price point already [33], which is far from the results of the model in this work. This discrepancy
can be attributed to the use of a weighted average battery price in the model and/or non-transparent
pricing information from battery manufacturers. This is the main limitation of learning curve models
as prices greatly vary among manufacturers. Price reduction will support the market growth of Li-ion
NMC batteries in power systems where the increasing solar PV and wind energy deployment is



Energies 2020, 13, 5276 11 of 18

observed [58]. Li-ion NMC will continue being the top choice for energy storage applications for nearly
another decade with a 35% market share, followed by LFP and NCA with a 40% combined market
share [11,58].

The case studies presented in this work introduced an application of battery price predictions,
which is to determine the most economical year to invest in an energy system integrated with RE. In the
off-grid electrification study, results showed that the future LCOE of the optimum (solar PV + wind +

diesel generator + Li-ion NMC) and 100% RE (solar PV + wind + Li-ion NMC) systems would be lower
than the generation cost of the diesel-only system within the analysis period. The best year to start
investing in either system is then determined. This agrees with a previous study on off-grid islands
that integrating RE into diesel-only systems would result in reduced generation costs [38,59]. Due to
the similarities between the techno-economic characteristics of neighboring islands in the Philippines,
clustering can be performed in future off-grid studies [60,61]. The application of the model-based
simulations presented in this work may also be extended in studying interconnected microgrid systems.
Furthermore, this model can be used to analyze energy-intensive technologies such as desalination for
water generation in off-grid islands [62]. The economic viability of integrating solar PV to grid-tied
energy systems was also presented in this work. Given the net metering policy limitations in the
Philippines, the results showed that hybrid grid-tied (solar PV + Li-ion NMC) systems without net
metering would be the best system to invest in, and the best year to start investing falls within the
analysis period. Lower generation costs are realized with a high-capacity solar PV system with net
metering, but this would require amendments on the current net metering policy [32].

5. Conclusions

This work investigated the different learning curve models considering the demand for Li-ion
NMC battery, R&D, and Li and Co metal prices as cost reduction factors. Among the generated models,
the two-factor learning curve model has the most statistically sound and realistic results. Using this
model, the future prices of Li-ion NMC battery packs are comparable to the projected in Li-ion battery
prices as reported by market experts. Results also suggest that the prices of Li and Co metals have
little effect on the price movement of the battery pack within the analysis period. It was found that
other econometric factors, such as RE investment and related policies, could also contribute to the
price reduction of this Li-ion battery chemistry. The techno-economic analysis on an off-grid island
showed that investing in an optimum system (solar PV + wind + diesel generator + Li-ion NMC) and
100% RE system (solar PV + wind + Li-ion NMC) would be economically competitive with the existing
diesel-only systems in off-grid islands within the analysis period. In a grid-tied system, integrating a
non-net metered solar PV + Li-ion NMC system would be economically competitive by 2020, which
would result in reduced electricity costs for grid-tied systems. Future work will focus on investigating
other econometric factors and combinations thereof, interaction models, and learning curve model
modifications, to further improve the forecasting accuracy. Other use-case applications can be also
explored as they could yield different results.
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Appendix A.

The historical and projected data used in the study are presented in Table A1, while the basis of
the data and projections are discussed in Table A2.

Table A1. Historical and forecasted values of the different factors in the learning curve models.

Year Price
[USD2018/kWh]

NMC Cumulative
Demand [GWh]

Cumulative
PCT Count

Li Metal Price
[USD/t]

Co Metal Price
[USD/t]

2007 1824.41 2 142 4321.91 74,832.08
2008 1087.22 4 258 5237.05 109,980.50
2009 1294.06 6 363 5364.66 96,238.51
2010 834.42 11 506 5070.37 54,760.50
2011 661.17 16 730 4371.01 43,291.51
2012 680.23 26 1046 4668.29 34,552.50
2013 514.50 41 1450 4784.58 26,618.75
2014 464.92 61 1931 5417.22 29,072.89
2015 407.95 96 2418 6965.70 36,290.42
2016 314.99 141 2900 7830.45 24,996.06
2017 234.05 211 3323 9318.40 38,243.72
2018 192.49 311 3770 16,500.00 80,490.68
2019 170.62 441 4240 10,492.27 35,993.58

2020 585 4757 11,060.97 34,089.25
2021 745 5233 11,629.67 32,184.92
2022 923 5756 12,198.37 30,280.58
2023 1121 6332 12,767.07 28,376.25
2024 1340 6965 13,335.77 26,471.92
2025 1583 7661 13,904.47 24,567.59

Table A2. Sources of the historical and forecasted data.

Data Methodology

Historical Li-ion NMC Price Converted prices from journals and market reports [20,50] to
USD2018 using the consumer price index (CPI), then averaged.

Historical Cumulative Demand From [63].

Historical
PCT Count

Data from 2007 to 2016 was obtained from [64]. Data from 2017 to
2019 was extrapolated using simple regression analysis.

Historical Raw Material Cost From [65].

Projected
Cumulative Demand

Based on the compound annual growth rate of 11% in demand of
Li-ion battery in the EV market [63].

Projected
PCT Count

Based on the average growth rate (10%) of PCT applications form
2007–2017 [64].

Projected
Material Cost Based on regression analysis.

Appendix B.

The techno-economic parameters are shown in Table A3. Variable parameters are shown in
Table A4.
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Table A3. Techno-economic parameters used in the case studies.

Component Parameter Unit Value

Solar PV CapEx USD/kW Variable
OpEx USD/kW-y 140
Derating % 80
Lifetime y 25

Wind CapEx USD/kW Variable
OpEx USD/kW-y 140
Lifetime y 20

Li-ion CapEx USD/kW Variable
OpEx USD/kW-y 0.10
Min. SOC % 20
C-rate kW/kWh 1
Lifetime y 15

Diesel CapEx USD/kW 0
(Island only) OpEx USD/kWh 0.11

RepEx USD/kW 600
Fuel Cost USD/L 0.9
Lifetime h 15,000

Project CapEx USD Footnote 1

Inflation % 3.19
Lifetime y 25

1 +50% of total component capital cost.

Table A4. Sources of the historical and forecasted data.

Year Solar PV 1

[USD/kW]
Wind 2

[USD/kW]

2020 2000 3051
2021 1810 3147
2022 1620 3462
2023 1430 3635
2024 1240 3817
2025 1050 4007

1 The 2020 price is based on a local supplier of solar PV panels. This should decrease to 1430 USD/kW in four years
with a learning rate of 28.5 [66]. 2 The 2019 price is 3000 USD/kW [59] and this is expected to increase by 5% after 2
years due to increasing costs for wind turbine manufacture [67].

Appendix C.

Appendix C.1. Sabtang Island

The global horizontal irradiance (GHI) and wind speed in the island are shown in Figure A1.
These were downloaded via HOMER Pro® from the National Renewable Energy Laboratory (NREL)
and the National Aeronautics and Space Administration (NASA), respectively. The hourly and monthly
average energy consumption is shown in Figure A2. These were obtained from the Batanes Electric
Cooperative, Inc.
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