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Abstract: This research paper presents a look-ahead optimal control strategy for a Hydro-static
Drive Wind Turbine when look ahead wind speed information is available. The proposed
predictive controller is a direct numerical optimizer based on the well established principles of
Hamilton-Jacobi-Bellman (Dynamic Programming). Hydro-static transmission based, non-linear
model of wind turbine is used in this optimization work. The optimal behavior of the turbine used
the non-linearity of aerodynamic maps and hydro-static drive train by a convex combination of state
space controller with measurable generator speed and hydraulic motor displacement as scheduling
parameters. A comparative analysis between a optimal controller based on Maximum Power Point
Tracking (MPPT) algorithm as published in literature and the proposed look ahead based predictive
controller is presented. The simulation results show that proposed look ahead strategy offered
optimal operation of the wind turbine by closely tracking the optimal tip-speed ratio to maximize
capacity factor while also maintaining the hydraulic motor speed close to the desired value to ensure
that the frequency of electrical output is constant. It is observed from the simulation results that the
proposed predictive controller provided around 3.5% better performance in terms of improving total
system losses and harvesting energy as compared to the MPPT algorithm.

Keywords: dynamic program; non-linear optimization; hydro-static turbine; wind energy

1. Introduction

Wind energy harvesting is a key contributor to sustainable energy production in recent years.
There is a number of different turbine configurations available with a variety of control methods for
each. In this paper an innovative study is carried out to assess the global optimality of a hydro-static
drive wind turbine performance using predictive techniques. It is assumed in this work that a reliable
prediction of wind speed can be made over a time horizon looking well ahead in time. In this study a
window of 35 H is used for simulation complexity. The wind profile is taken from National Renewable
Energy Lab (NREL). With the knowledge of look ahead wind speed, a direct numerical method based
optimizer is used to solve the problem as a trajectory optimization problem. Dynamic programming
is used as the chosen numerical optimizer in this work since it guarantees global optimality based
on the direct numerical approach. It is to be noted here that dynamic programming like many other
numerical optimizer will not give the reasons for the improvement but rather will indicate that there is
possibility of rule based or other controls methods that can be implemented to extract the benefits in
embeddable solution. There are three major sections in this paper:

1. Implementation and validation of the control oriented model of the hydro-static drive wind
turbine based on published literature [1–4]. This control oriented model will be the baseline for
comparison of benefits with the proposed controller. The baseline control oriented model also
runs the traditional Pontryagins’s Minimum Principle based Maximum Power Point Tracking
algorithm as the control strategy;
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2. The second section discusses the background of dynamic programming and the detailed problem
formulation method for the proposed controller;

3. Finally the last section analyzes and discusses the optimal behavior of the controls and
the benefits.

To compare the benefits of the proposed predictive controller the results are analyzed
against the traditional optimal controller based on Maximum Power Point Tracking algorithm as
proposed in literature [3,4]. Comparing directly to the published results will help understand the
benefits of the predictive optimal controller as against the traditional indirect method of trajectory
optimization problems (PMP) [5]. The global optimization algorithm used in the paper is based
on Hamilton-Jacobi-Bellman principle which dynamically optimizes the control effort to lower the
operating cost over the entire duty cycle (time horizon over which the wind speed information is
available). So dynamic programming is a powerful optimizer when it comes to finding the global
optimality. Though it comes with a high price of computational complexity.

1.1. Modelling the Dynamical Plant

A Hydro-static Drive Wind Turbine is a modern approach to overcome some of the shortcomings
of the prevalent conventional drive-train concept. Over the general operating power range the existing
turbines are 25% heavier and 30% more expensive [2,6]. A less mechanically coupled operation along
a wide wind speed range, less components usage and generator with less poles are some of the benefits
of a Hydro-static Drive. A conventional wind turbine is shown in Figure 1. It consist of a gearbox,
generator, power electronics and transmission all clubbed together in the nacelle next to the rotor
blades. This causes numerous challenges to the maintenance and operation of the system which is
more expensive. In contrast to the conventional structure, a variable displacement pump and motor is
used in place of the mechanically coupled components found in traditional turbines. A slow turning
rotor is connected to a shaft which is used to transfer power via the hydraulic oil pressure, to a high
speed motor which is used to produce power at a particular frequency. Variable displacement pumps
and motors can efficiently adjust for an infinite traditional gear ratios thereby maintaining a smooth
power generator operation. Later in the problem formulation section it will be shown that the variable
displacements for the slow speed rotor and the high speed motor will be the two control parameters in
the problem.

The slow turning rotor is modelled to capture the wind energy. A lot of which is dependent on
the pump coefficient and the displacement selected. The variable displacement for the high speed
motor also has a constraint to maintain the motor speed at a given speed in order to generate electricity
at a particular frequency. The conventional gear mechanism is handled by the hydraulic connection
between the rotor and the motor in this case which acts as an infinite geared system. The details of the
dynamics are described in the next section.

1.2. Description and Operating Principle

Static oil pressure and flow rate in the connected transmission lines between the rotor and the
motor is used to transfer the wind power captured by the turbine blades. The Low Speed Shaft (LSS),
High Speed Shaft (HSS), Transmission lines using the variable displacement can control the seamless
transfer of power providing all gear ratios.

A configuration with both a variable pump and a motor is illustrated in Figure 2. Other
configurations are investigated with a variable displacement pump and fixed motors and with a
fixed pump and a variable displacement motor in [7,8]. The wind energy captured by the large
blades are used to rotate the rotor and transfer power to the oil in terms of pressurized flow Qp.
The pressurized flow Qm on the output shaft is converted back into mechanical torque and speed by
the hydraulic motor.
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Figure 1. Schematic of a Conventional Geared Wind Turbine System Design.

Figure 2. Generic structure of hydro-static wind turbine [1].

1.3. Wind Turbine Aerodynamics

The free wind energy captured by the large blades is modelled by the Equation (1).

Pwind =
1
2

ρair Aν3 (1)

where, ν is the wind speed and A is the blade swept area & ρair is the air density. The power available
at the rotor is determined by its efficiency,

Protor = PwindCp(λ, β) (2)

Protor is the power available at the low speed shaft. Cp(λ, β) is the characteristic power coefficient or
the capacity factor of the wind turbine, whose value depends on the tip-speed ratio λ & blade pitch
angle β. The Tip Speed Ratio (TSR) is modelled as,

λ =
ωrR

ν
(3)
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where, ωr is rotor rotational speed & “R” is blade length.
The aerodynamic torque of the wind turbine at the low speed shaft is modelled as [3,4]

τrotor =
ρair
2

πR3Cq(λ, β)ν2 (4)

where, Cq is the characteristic coefficient and is defined as:

Cq(λ, β) =
Cp(λ, β)

λ
(5)

The generic equation used to model Cp(λ, β), is taken from Sim Power Systems (Mathworks
Model) and is defined as [9–12]

Cp(λ, β) = c1(
c2

λi
− c3β − c4)e

− c5
λi + c6λ (6)

with,

1
λi(λ, β)

=
1

λ + 0.08β
− 0.035

β3 + 1
(λ > 0). (7)

The coefficients c1 to c6 are: c1 = 0.5176, c2 = 116, c3 = 0.4, c4 = 5, c5 = 21 and
c6 = 0.0068. The cp, λ characteristics, for different values of the pitch angle β, are illustrated in
Figure 3. The maximum value of cp (cpmax = 0.48) is achieved for β = 0 degree and for λ = 8.1.
This particular value of λ is defined as the nominal value (λnom).

Figure 3. Nominal Characteristic Power Coefficients as a function of Tip-Speed-Ratio (λ) for a selected
range of Blade Pitch Angle (β).

1.4. Variable Displacement Hydraulic Pump

A pressurized fluid flow is generated by the hydraulic Variable Displacement Pump. Newton’s
2nd law provides, the first-order dynamic equation as [1,2].

τrotor − τpump = Jrω̇r (8)
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where, Jr is the Moment of Inertia of the rotor & τpump is the torque due to resistance in the rotor,
which is modelled as [1,2]

τpump =
Ṽp∆Pp

ηmech,p
(9)

∆Pp is the differential pressure in the transmission line which is also the two pump inlets. ηmech,p
is the Pump Mechanical Efficiency. Ṽp is the Pump Displacement which in our study is a dynamic
control parameter.

ωr =
1
Jr
(τrotor −

Vp∆Pp

ηmech,p
) (10)

The Fluid Flow Rate at the pump is modelled as [1–3]

Qp = Vpωr − kleak,p∆Pp (11)

where, Qp is the Flow Rate in the high pressure side, kleak,p is the Leak Coefficient for the rotor and is
modelled as [1–3]

kleak,p =
kHP,p

ν f luidρ f luid
(12)

kHP,p =
Vp,maxωp,nom(1 − ην,pump)νp,nomρp,nom

∆Pp,pnom
(13)

ν f luid is Fluid Kinematic Viscosity. ρ f luid is Fluid Density. kHP,p is the Hagen-Poiseuille Coefficient for
the pump, which depends on Maximum Pump Volumetric Displacement Vp,max, Nominal Angular
Speed of Pump ωp,nom, Pump Volumetric Efficiency ην,pump, Nominal Fluid Kinematic Viscosity
of Pump νp,nom, Nominal Fluid Density of Pump ρp,nom, and Nominal Differential Pressure of
Pump ∆Pp,nom.

1.5. Hydraulic Transmission Line

Transmission line Differential Pressure and Flow Rates are calculated based on Equation (14), [1–3]

∆̇px =
β f luid

Vf luid
(Qp − Qm) (14)

∆px is the pressure difference between the high & low pressure side at the center of the
transmission line. β f luid is Fluid Bulk Modulus. Vf luid is the Volume of Fluid in Transmission Line.
Qp and Qm are the Flow Rate at the Pump and Motor side, respectively. Pressure losses in the
Transmission Line is modelled by Darcy equation and Haaland approximation which is modelled as
Equation (15), [4]

δp = f
Lpipe

Dpipe

ρ f luid

2A2
pipe

Q2 (15)

δp is the pressure loss in pipe due to friction. Lpipe is the length of the pipe. Dpipe is the cross-sectional
diameter of the pipe. Apipe is the cross-sectional area of the pipe. Q is the flow rate in the pipe. f is the
friction factor, which is modeled as in Equation (16), [4].

f ≡ f (Re) =


64
Re

f (2000) + f (4000)− fL(2000)
4000−2000 (Re − 2000)
1

(−1.8 log10(
6.9
Re +(

rPipe/DPipe
3.7 )1.11))2

(16)

In Equation (16), the 3 cases of friction factor are for Re ≤ 2000, 2000 < Re < 4000 and Re ≥ 4000.
where, Re is Reynolds Number.
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1.6. Variable Displacement Hydraulic Motor

Transmission line output fluid pressure is converted back to rotational torque and speed by a
variable displacement motor. A first order dynamical Equation (18) [1–3] is used to modelled the
motor dynamics.

ηmech,mVm∆Pm = Jmω̇w + τload (17)

ωm =
1
Jm

(ηmech,mVm∆Pm − τload) (18)

ηmech,m is the motor mechanical efficiency. Vm is the motor volumetric displacement. ∆Pm is the
difference in pressure between the high and low side at the motor side. Jm is the moment of inertia
of the high-speed shaft and that of the generator rotor. ωm is the motor rotational speed. τload is the
torque produced by the load (i.e., synchronous generator). Fluid flow rate at the motor can be modeled
as Equation (19), [1–3].

Qm = Vmωm + kleak,m∆Pm (19)

Qm is the fluid flow rate at the motor side. kleak,m is the leakage coefficient of the motor, which can
be expressed by the following equations as [3,4].

kleak,m =
kHP,m

ν f luidρ f luid
(20)

kHP,m =
Vm,maxωm,nom(1 − ην,motor)νm,nomρm,nom

∆Pm,pnom
(21)

kHP,m is the Hagen-Poiseuille Coefficient for the pump, which depends on maximum pump volumetric
displacement Vm,max, Nominal Pump Angular Speed ωm,nom, Pump Volumetric Efficiency ην,motor,
Nominal Pump Fluid Kinematic Viscosity νm,nom, Nominal Pump Fluid Density ρm,nom, and Nominal
Pump Differential Pressure ∆Pm,nom.

1.7. Permanent Magnet Synchronous Generator

A simple second order synchronous generator is modelled to operate at a constant speed ωsync,
as shown in Figure 4 and Equation (24). εangle is the phase angle difference between the phase of
the grid voltage and the synchronous generator’s electrical angle. Synchronizing torque coefficient
(Ks) and damping torque coefficient (Kd) are chosen so that the generator model has a fast and stable
response [1].

Tload = sin(δ)
3V1Vp(ωm)

ωsyncX1
, δ =

∫ t

0
(ωsync − ωm)dt (22)

with ωsync =
2π f1

p as frequency of the rotating stator field (the synchronous frequency) and p as the
number of pole pairs. δ denotes the torque angle, V1 denotes the stator voltage (line-to-neutral), and X1

as stator reactance. The rotor voltage (line-to-neutral) VP(ωm) = κPMωm of PMSG is proportional
to the generator speed. The above formulation is a complex analytical model of the generator load
characteristics. In order to adapt to our work a simple reduced order model is used by rearranging the
above equations as shown below,

εangle = θgrid − θm (23)

where, εangle is the motor angular difference between the grid speed and motor speed. Figure 4 shows
the design of the Permanent Magnet Synchronous Generator along with the simple PI gains.

τload = Ksεangle + Kd ε̇angle (24)
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where, Ks and Kd are simple gains for the PI controller on the angle and angular velocity (ε̇angle)
respectively. Output power (Pout) generated by the synchronous generator is given by Equation (25)
neglecting generator losses.

Pload = τloadωm (25)

Figure 4. Permanent Magnet Synchronous Generator.

2. Baseline Simulation Results—Maximum Power Point Tracking

In this section, we present MPPT baseline simulation results. The dynamics of the Wind Turbine is
designed in Matlab 2016b student version and is simulated for a 35 H NREL wind profile. The simulink
block diagram of the wind turbine is shown in Figure 5.

Figure 5. Top Level Simulink Block Diagram.

The block Interpolate Optimal Values is not used in baseline simulation. It is only used for
optimal reference generation for the control inputs in the proposed predictive controller.

Table 1 shows the nominal values of all the design parameters used in the design for simulation.
The wind data is not linearized and hence it has step change from wind speed to another and the

dynamics see high speed switching in the synchronous generator. This causes a little spike in motor
speed and hence with other signals within operational tolerance limits.

NREL Wind Data has a speed profile as shown in Figure 6. Baseline results which indicates the
simulation performance of the dynamical system are shown in Figures 7–10. These are the result from
the system dynamics of the MATLAB simulink model as designed from the stated equations in the
previous sections. The control action which is the pump and the motor displacements are based on the
Pontryagin’s Minimum Principle based MPPT algorithm [3,4].
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Figure 6. NREL Wind Speed Profile for 35 h.

Table 1. Wind Turbine Parameters.

Parameters Symbols Units Value

Blade Radius R m 63

Blade Frontal Area πR2 m2 1.2469 × 104

Air Density ρ kg/m3 1.225

Nominal Lambda λi none 8.1

Nominal Rotor Efficiency Cp none 4.8

Power Coeff 1 C1 - 0.5175

Power Coeff 2 C2 - 116

Power Coeff 3 C3 - 0.4

Power Coeff 4 C4 - 5

Power Coeff 5 C5 - 21

Power Coeff 6 C6 - 0.0068

Max Efficiency CpMax - 0.48

Bulk Modulus Pa m 1.40403 × 109

Pipe Diameter DPipe m 0.15

Pipe Length LPipe m 100

Pipe Volume ChPipe m3 1.7671

Cross-sectional Area APipe m2 0.0177

Pipe Roughness RPipe m 1.5 × 10−5

Fluid Density ρ f luid Kg/m3 852.8

Fluid Kinematic Viscocity ν f luid m2/2 18.786 × 10−6

Pump Inertia Jp Kg-m 2 38,759,228
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Table 1. Cont.

Parameters Symbols Units Value

Pump Mechanical Efficiency ηmechp - 0.95

Pump Volumetric Efficiency ηvolp - 0.95

Maximum Pump Volumetric Dispacement Vpmax m3/rad 0.3

Nominal Pump Speed ωp−nom rad/s 1

Nominal Kinematic Viscosity νp−nom m2/s 18.876 × 10−6

Nominal Pump Pressure Pp−nom Pa 2 × 107

Motor Inertia Jm Kg-m2 534.116

Motor Mechanical Efficiency ηmechm - 0.95

Motor Volumetric Efficiency ηvolp - 0.95

Maximum Motor Volumetric Disp Vmmax m3/rad 88

Nominal Motor Speed ωmnom rad/s 125.6637

Motor Fluid Kinematic Viscocity νmnom m2/s 18.786 × 10−6

Genset Sync Speed ωmsync rad/s 125.6637

Sync Torque Coefficient KS N-m/rad 500 ∗ Jm

Damping Torque Coefficient KD N-m/(rad/s) 20 ∗ Jm

Figure 7 in particular shows the wind turbines performance in terms of its efficiency in capturing
the wind power by the low moving blades and the final power capture by the high speed turbine to be
supplied to the grids. The plot in GREEN is the actual power of the wind which is a direct function of
the wind speed and the blade surface(swept) area. Now due to the pump capacity factor (Cp), which is
maxed at a nominal value of 4.8 the power at the rotor is almost halved, which is shown by the RED
plot in Figure 7. The final power captured by the high speed motor is almost 80% of the power captured
by the rotor which is shown by the BLUE plot in Figure 7. The two dashed rectangular boxes are the
high wind speed regions where the maximum energy is harvested. Figure 8 shows the controlled
high speed motor speed along with the optimal motor displacement as obtained by the Pontryagin’s
Minimum Principle based Maximum Power Point Tracking (MPPT) algorithm. This optimal control
is used for the baseline simulations as is published in literature [3,4]. The motor speed shows very
good steady state behavior holding almost constant speed so as to generate electricity at the specified
frequency. The load on the generator is adjusted by a simple Proportional/Derivative controller to
maintain the generator speed at a constant RPM (125.63 rad/s) so that electricity is generated at rated
frequency. The gains are applied to the motor speed and motor angle based on trial and error method
which is shown in Figure 4.

Figure 9 shows the Pump Speed and Displacement plots. The optimal pump displacement is able
to achieve quite a high degree of capacity factor. This will help to compare and understand the benefits
when we look at the predictive controller results.

It is also observed and noted that a nominal value of 25 MPa for the transmission line pressure
delta is achieved in baseline simulations. This pressure values are used as a constraint while solving
for the predictive optimal problem. Figure 10 shows the base values of pump and turbine efficiency.
Cp is the Pump side efficiency or the capacity factor and Ct is the efficiency on the high speed motor.
The baseline optimal controller achieved a normalized capacity factor of close to 97% and the efficiency
of the motor operation is around 88.5%. It is noted that the baseline non-predictive optimal controller
performs quite well.
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Figure 7. MPPT Power Profile for Wind, Rotor and Final Load.

Figure 8. Baseline Motor Speed & Displacement.

Figure 9. Baseline Rotor Speed & Pump Displacement.
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Figure 10. Baseline Efficiencies of the Hydro-static Drive Wind Turbine.

Later in the section Dynamic Programming based predictive controller will be evaluated and
compared against these results to understand the benefits. Figure 11 shows the nominal values of the
optimal pressure coefficients. The pressure coefficient states are initialized from a random initial value.

The optimal non-predictive controller which is based on the theory of Maximum Power Point
Tracking using the Pontryagin’s Minimum Principle shows good performance under all wind speed
regions. The motor speed tracking controller also indicates robust performance in maintaining steady
state speed. Overall the baseline system as modelled based on published optimal control paper shows
good metrics to compare against the proposed predictive controller results. In the next few sections
the predictive controller structure will be discussed and the simulation results will be compared.
All system constraints for the predictive optimal control problem is derived from the results obtained
in the baseline optimal control.

Figure 11. Pressure Coefficients for the Baseline (MPPT) Controller.

3. Problem Formulation

The problem is formulated as a minimization problem to optimize the total system loss in the
process. Minimizing total loss can be characterized as a maximization problem to increase efficiencies
of Pump & Motor. Pump efficiency can attain a maximum value of 0.48 which is the nominal maximum
capacity factor, for a nominal λi of 8.1, which is a function, characterized by a polynomial fit between
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wind speed and blade pitch angle (β). Maximum value of Pump efficiency is obtained when the pitch
angle (β) is 0.

The given optimal problem is formulated as a 5 states-2 controls problem with time being the
other independent variable. The 5 states used in the admissible grid points are,

• Rotor Speed
• Differential Pressure
• Motor Speed
• Pump Flow Rae
• Motor Flow Rate

The objective cost is to maximize the pump and motor efficiencies together for a given set of
control inputs at a given combination of state points. This is similar to discretizing the continuous
time plant dynamics and then solving numerically for each discretized points to obtain the control
parameters which maximises the cost function.

The inputs or the control factors are pump displacement and motor displacement in [m3/rad].
To maximize the efficiency we try to identify the losses in the system and how they can be

minimized. There are two major loss components in the system, Aerodynamic loss & Hydro-static loss.
Aerodynamic efficiency which is directly co-related to the Aerodynamic loss is a direct measure

of the Rotor Efficiency which indicates how much wind energy can be harvested by the rotor to be
directly applied to the motor generator. The Aerodynamic loss can be defined as the difference between
the actual tip-speed-ratio and the optimum tip-speed-ratio.

Tsropt − Tsract = Tsropt −
Rωp

Vwind
(26)

The next big loss in the system is the hydro-static loss which is also known as the volumetric
loss and is dependant on the pressure which is system state. Since viscous drag, coulomb friction and
rotor/motor speed are functions of pressure the hydro-static loss can be formulated as:

ηtot−pump =
1 −

KSp
A

1 + ACvP + C f P
, (27)

CvP is viscous drag and C f P is Coulomb friction. KS p is pump slippage constant. A is a dimensionless
factor which depends on the ratio of rotor speed and transmission line differential pressure: A =

µωp
Prs

where µ is a system constant. Similarly for the motor, the loss can be termed as:

ηtot−mot =
1 + C1

Prs
+ C2

1 + C3Prs
, (28)

Hence using both the losses the the final efficiency can be attributed the below loss component:

hloss =
C3P2 − C2Prs − C1

C3P2 + Prs
(29)

Therefore combining the Aerodynamic loss and the the hydro-static loss component a final
detailed performance index can be derived as [3,4,13]:

J∗(t) =
∫ T

t0

[α1(Tsropt −
Rωp

Vwind
)2

+ α2(
C3P2

rs − C2Prs − C1

C3P2
rs + Prs

)]dt
(30)
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where, C1, C2 & C3 are pressure dependent constants, J∗(t) is the accumulated cost-to-go for the entire
prediction window starting from the end of the window.

The above equations states the two major contributors of losses in the system, one at the rotor
and the other at the motor. Effectively reducing the losses means increasing the efficiencies of the rotor
and the motor. Hence a reduced order cost function can be thought of in terms of the efficiencies. Since
it is challenging to increase both the efficiencies in the same magnitude and tunable parameter (α) is
designed in order to adjust between the low speed rotor efficiency and the high speed motor efficiency.
Hence the final computational ready performance index is reduced in terms of efficiencies, such as:

J∗(t) =
∫ T

t0

−[α1crotor + (1 − α1)cmotor]dt (31)

where, cpump & cmotor are the respective rotor & motor efficiencies, J∗(t) is the accumulated cost-to-go
for the entire prediction window starting from the end of the window.

The negative sign before the integrand is due to the fact that minimizing losses is similar to
maximizing efficiency.

Finally the individual constraints are applied on the states and controls to keep the dynamics
within physical possible limits of operation. Constraints are applied in the form of high penalty to
the cost function when they are violated.Typical constraints for this formulation are on Differential
pressure (Prs) less than 0 or going negative, motor speed (ωm)too transient and rotor speed (ωp) within
certain tolerable zone.

4. Dynamic Programming Background

Once the performance measure of the system or the cost function is determined the next major
task is to define a control function that would minimize the performance criteria.

Two widespread methodology to accomplish this task are minimum principle of Pontryagin and
the method of Dynamic Programming. Pontryagin’s minimum principle is a variational approach that
lead to a non-linear two point boundary value problem which is solved to get the optimal control.

Dynamic Programming (DP) is both a controls methodology and a computer programming
method to numerically solve an optimization problem given a set of admissible controls and state
space grid vectors. It always satisfies global optimality as it finds the minimum value of the
cost/objective function from all admissible search space. Since it has to traverse a full factorial
design of experiment (DOE) of search space for all the controls & states it is often challenged by the
curse of dimensionality [14]. The next two sections discusses the principle of optimality and describes
the step wise procedure for dynamic programming algorithm.

4.1. Principal of Optimality

In controls literature a general control law is defined by Equation (32),

u∗
i (t) = f (xi(t), t) (32)

where, u∗
i is the optimal control effort, xi(t) are the states of the system. which is a closed loop or

feedback optimal control. The functional relationship f is called the optimal control law or optimal
policy. The control law specifies how to generate the control law from the states at a given time,
since this is a time varying control formulation. Dynamic programming specifically solve the controls
problem applying the principle of optimality.

Bellman’s original Optimality Principle, states:
An optimal policy has the property that whatever the initial state and initial decisions are, the remaining

decision must constitute an optimal policy with regard to the state resulting from the first decision. In Figure 12,
if Jabe is the minimum cost to go from a-e, then from b-e the minimum cost has to be Jbe and Jbce cannot
be the optimal path.
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That is Jbce > Jbe.
Dynamic programming is based on the same principle to find the optimum cost at each time step

traversing backwards and then figuring out the optimal cost to go in the forward simulation which by
the principle of optimality is claimed to the global optimal result.

Figure 12. Illustration of the Principle of Optimality.

Figure 13 depicts such a condition of admissible control selection. An alternative notation for the
computational formulation of the dynamic program algorithm is shown in Equation (33)

J∗K(x(N − K)) = min
u(N-K)

[gD(x(N − K), u(N − K))

+ J∗K−1(aDx(N − K), u(N − K))]
(33)

with, K being each stage during the search process and J∗ is calculated for each stage K, which is
known as stage cost. N is the total number of discretized stages. gD & aD comes from the definition
of the system model dynamics which can be ignored in this section. This in general illustrates that
each stage the stage cost is calculated and is added on to the over all cost which is known as the
cost-to-go and this cost-to-go is used for the forward simulation. This is a general design of objective
cost function used by dynamic programming. This is not the cost function which is solved for the
proposed controller in this paper.

Since a direct search is used to solve the functional recurrence equation, the solution obtained
is absolute (or global) minimum. Dynamic programming makes the direct search feasible because
instead of searching among the set of all admissible that cause admissible trajectories, we consider
only those controls that satisfy additional necessary condition—principle of optimality.

Figure 13. Illustration of the Principle of Optimality.
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4.2. Dynamic Program Algorithm

Dynamic programming algorithm involves a complex and computationally challenging process
which is described below.

• Baseline Run: Simulate the baseline plant to store results for comparison and gather data for
dynamic program initialization

• Feasible Grid Search: This step is the most time consuming and computation heavy process.
It loops through all the combinations of feasible grid points for states & controls, then store the
next iterated value for each state & cost/performance metric parameters.

• Optimal Control Selection: This step is heart of dynamic programming where the minimum
stage cost is calculated and the optimal cost-to-go is selected from the minimum stage cost.
The corresponding minimum controls value for each optimal stage cost is also selected.

• Simulate Optimal Controls: The final step is to apply the optimal controls generated in the
previous step to see the final outcome of the dynamical plant. The optimal controls is selected
based on interpolated n-D look up tables since it is a function of the number of states and the
independent time vector. Figure 14 shows the interpolation method used to select the optimal
pump/motor displacements and the cost-to-go at each step.

Interpolation of the n-dimensional search space is done to select the optimal control values and
the cost-to-go. It is required to do the interpolation since while going forward in simulation it is not
necessary that the states coincide exactly with the grid points.

Figure 14 shows the propagation of state variables in every time step. The green paths at each
time instant shows the possible path that the state can take but the red paths are the one which are the
interpolated optimal path.

Table 2 shows the discretized grid setup for the states and control variables. The grids are chosen
such that the dynamics are still captured between the step size and the grid is not too large to challenge
the computational cost. The grid size is decided based on the observed dynamics from the baseline
optimal controller.

Figure 14. Interpolation for control action & cost-to-go.
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Table 2. Dynamic Programming Grid Setup.

Parameters States Controls Units Grid Points

Rotor Speed Yes No rad/s 17

Differential Pressure Yes No Pa 10

Motor Speed Yes No rad/s 5

Pump Flow Rate Yes No m3/s 5

Motor Flow Rate Yes No m3/s 5

Pump Displacement No Yes m3/rad 10

Motor Displacement No Yes m3/rad 10

5. Optimal Control Strategy

The proposed dynamics of the wind turbine is modelled to be optimized with Dynamic
Programming as described in the previous sections. In Figure 15, it is noted that the high level
power profiles look very similar to the baseline optimal control results. It may be noted here that the
wind power is same as the baseline wind power wind power since the wind power cannot change.
The regions where the benefits come in the proposed predictive controller is during the high wind
speed regions which is highlighted by the red dashed rectangles. It is also observed that the Rotor
Speed & hence the efficiency is reduced during a sudden decrease in wind speed level at certain section
of the wind profile. . This is also sometimes the reason why there is a cut off limit for wind speed both
on the high and low side to operate the turbine. We also see that the high speed switching spikes is
there but with negligible effect to the optimization study.

Figures 16 and 17 shows the optimal control levers along with the respective rotor speed and
motor speed. The results shows that the control actuation obeys constraints and there is not much
oscillations in the control action. It is important to note that motor speed (ωm) is very close to the
operating synchronous generator speed for power generation at 60 Hz. We do see very minor spikes in
the motor speed and that is because of high speed switching during a step change in the wind speed.
The results indicate that it is hard to optimally capture the wind energy at low speeds and the optimal
wind speed zone is close 12–14 m/s.

Figure 15. Optimal Power Capture.
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Figure 16. Optimal Pump Speed & Corresponding Pump Displacement [m3/rad].

It is also worthwhile to note in Figure 17, that with the optimal control entitlement using Dynamic
Programming the synchronous generator proportional plus derivative control does a good job of
adjusting the load controller to maintain the motor speed within required specification for power
generation at fixed supply line frequency.

Figure 17. Optimal Motor Speed [rad/s] & Displacement [m3/rad].

Figure 18 shows the individual efficiencies of the low speed pump and high speed turbine.
It shows that knowing the wind profile in advance can better help to optimize the pump and motor
displacements in m3/rad so that less actuation energy is utilized while capturing maximum power
possible. Definitely the control rule has to be created which is a function of the wind speed as shown by
the entitlement using dynamic programming. Since Dynamic programming is a global optimal solver
within the admissible control/state space we conclude that this shall be the best optimal control. It is
observed that a reduction in Pump Capacity factor took place with the predictive controller. The pump
capacity factor is 93%. There is an increase in the high speed motor efficiency which went up to 91.2%.
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Figure 18. Optimal Pump & Motor Efficiency.

It also shows that at certain section of the wind speed it is very difficult to capture the maximum
available power which is also very obvious for transients in wind speed. We also saw some high
speed switching glitches in motor speed but the Proportional-Derivative control permanent magnet
synchronous generator (PMSG) control designed is well handling the situation and thereby keeping
the variation in motor speed well within specifications.

Figure 19 shows the energy differences between the baseline optimal controller which is the
Maximum Power Point Tracking algorithm and the Look Ahead based optimal strategy as discussed
in this paper. It shows that the look ahead knowledge of the wind speed helps to achieve a 4 MWh of
more energy harvest. This is a 3.5% increase over the baseline optimal controller. Looking at the power
profile we notice that the maximum benefit of the look ahead based controller is achieved during
the high wind speed zones. Figure 20 illustrates the benefits of the proposed predictive controller in
terms of the energy captured in the form of a bar chart. It is observed that the proposed controller
can achieve a 3.6% better energy capture over a time period of 35 h. This is solely based on the look
ahead knowledge of the wind speed over the entire duration of the cycle. It is also noted that the
major benefits occurred during the high speed wind regions. It is also worth pointing out that the
performance of the proposed controller is worse than the baseline optimal controller. It is observed
that the new controller efficiency is almost half as the baseline controller during the low wind speed
regions. This did not affect the results since at low wind speeds the power capture is extremely low and
so overall there is no substantial gain in energy harvest. Hence the new proposed controller optimized
the control effort knowing that it will have better wind speed regions to harvest more energy over the
entire wind profile.
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Figure 19. (a) Baseline vs. (b) Look Ahead Based Energy Compare.

Figure 21 shows the optimized differential pressure in the hydraulic lines. It is observed that
there are some high frequency noise within tolerable band due to the high speed switching in wind
speed. The optimal problem also has a constrained setup for this state which is to restrict the pressure
between 5 & 30 MPa and the plot shows that the constraint is well followed and also within system
limits. A high value of around 24 MPa is achieved during a very high wind speed. These are the
regions where maximum energy conversion is achieved.

Figure 20. Total Energy Captured—Baseline vs. Optimal.
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Figure 21. Optimal Differential Pressure.

Figure 22 shows the optimal pressure coefficients. As a last step, we analyzed the optimal
controller performance when we do not have accurate prediction of the wind speed. To do this we
introduced 2%, 5% and 20% inaccuracies in the prediction of the wind speed both on the positive and
negative side. The inaccuracy is introduced as a constant offset to the actual wind speed. Figure 23,
shows the performance of the controller for different inaccuracy levels. It is observed that a 2%
inaccurate wind speed prediction does not change the result significantly. When we introduced
inaccuracies of the order of 5% we see that if the prediction is inaccurate by positive offset (which
means the predicted wind speed is 5% more than the actual wind speed), there is a loss in energy
capture. However when we introduced the inaccuracy in the negative side we see an increase in the
energy capture. This indicates that if we predicted the wind speed by 5% less than the actual value
it provides better benefits. 20% inaccuracy is not at all suitable for predictive control, which in other
words means if the prediction is not very accurate then it will not bring in true benefit.

Figure 22. Optimal Pressure Coefficients.
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Figure 23. Total Energy Captured—Baseline, Optimal & Optimal with prediction error.

6. Conclusions and Future Work

We presented a predictive look ahead knowledge based control methodology for a hydro-static
drive wind turbine that optimizes the overall efficiencies under varying wind speed. The proposed
control strategy optimally selects the control variables (Pump & Motor Displacements) more efficiently
with less control actuation effort. Dynamic programming which is based on the well established
principles of Hamilton-Jacobi-Bellman, chose global optimal values for the control parameters with
the objective of minimizing the overall losses. The results of the proposed controller is compared
against published literature based on Pontryagin’s Minimum Principle optimization algorithm for
maximum power point tracking. It is observed that having a predictive controller can provide around
3.5% better performance in terms of improving total system losses and harvesting energy over MPPT.
It is not always feasible to implement a complex numerical method such as dynamic programming,
in embedded systems, so a rule based control often needs to be designed based on the analysis of
the outcome of the dynamic programming results. The simulation results show that the proposed
look-ahead strategy offered optimal operation of the wind turbine by closely tracking the optimal
tip-speed ratio to maximize capacity factor while maintaining the hydraulic motor speed close to the
desired value to ensure that the frequency of electrical output is nearly constant. This study indicates
that there is potential in including look ahead information in optimal control design for a hydro-static
drive wind turbine.
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