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Abstract: In this paper, an improved method for estimating the state of charge (SOC) of lithium-ion
batteries is proposed, which is developed from the particle filter (PF). An improved genetic particle
filter (GPF), owing to the advantages of the PF and genetic algorithm, is proposed to overcome the
disadvantage of the traditional particle filter: lacking the diversity of particles. Firstly, the relationship
between SOC and open-circuit voltage (OCV) is identified on the low-current OCV test. Secondly, a
first-order resistor and capacitance (RC) model is established, then, the least-squares algorithm is used
to identify the model parameters via the incremental current test. Thirdly, GPF and the improved
GPF (IGPF) are proposed to solve the problems of the PF. The method based on the IGPF is proposed
to estimate the state of power (SOP). Finally, IGPF, GPF, and PF are employed to estimate the SOC
on the federal urban driving schedule (FUDS). The results show that compared with traditional PF,
the errors of the IGPF are 20% lower, and compared with GPF, the maximum error of the IGPF has
declined 1.6% SOC. The SOC that is estimated by the IGPF is applied to estimate the SOP for battery,
considering the restrictions from the peak SOC, the voltage, and the instruction manual. The result
shows that the method based on the IGPF can successfully estimate SOP.

Keywords: lithium-ion battery; state estimation; state of charge; genetic particle filter; state of power

1. Introduction

Owing to the advantages of high-energy density, long cycle life, and no memory effect, lithium-ion
batteries have drawn increasing attention from industry and academia [1]. As the primary power
resource of electric vehicles (EVs), the lithium-ion battery has been studied for many years [2]. The
state of charge (SOC) is one of the most significant parameters for the lithium-ion battery because
the SOC of the cell represents the fuel gauge in an EV application. It is not only a crucial parameter
for drivers but also an index in the battery management system (BMS) [3]. Without an accurate SOC
knowledge, EVs would not meet the requirements for a safe and reliable operation, as the BMS would
not manage to predict the driving range accurately nor to balance the battery cells [4]. On the other
hand, the state of power (SOP) represents the available charging and discharging power for batteries.
Estimating the SOP can help to confirm whether cells have sufficient energy to meet the demands of
starting and acceleration for EVs and avoid overcharging or over-discharging [5]. More importantly,
for EVs, the SOP can optimize the matching relationship between the battery and EVs, maximizing
the energy recovery performance of EVs regenerative braking. At the same time, there is a close
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relationship between SOC and SOP because the current and voltage are related to SOC. Therefore, it is
necessary to obtain an accurate SOC before estimating the SOP.

To get an accurate SOC estimation, it is vital to reduce the influences of the system noise from
the complex working environment of the EVs [6]. The noise, especially the nonlinear noise, would
create huge errors when estimating the SOC. For this reason, there are various methods and improved
methods to accurately estimate SOC at present. They can be divided into four categories: characteristic
parameters-based methods, coulomb counting methods, data-driven methods, and model-based
methods [7]. The first two types of methods are easy to implement; however, the first type of method
can only be used in the laboratory environment, while the results from the second type of method
cannot meet the requirement of modern EVs because of the effect of noise. The third type of method
could achieve highly accurate results but needs lots of data to train before estimating the SOC. The
steps of the fourth type of SOC estimating method consists of two parts. Firstly, battery models are
built to imitate the dynamic characteristic of the battery. Secondly, algorithm filtering is applied to
reduce the effect of noise. These methods can estimate SOC more accurately than the first two types of
methods. Moreover, compared with the third type of methods, these methods do not need lots of data
to train before estimating the battery SOC. Hence, these methods have attracted a lot of attention from
academia. In this aspect, many researchers pay their attention to improve the algorithm’s accuracy or
simplify the calculation process of the algorithm. From the perspective of the algorithm, the Kalman
filter and particle filter (PF) are studied a lot [6–16].

However, the traditional Kalman filter is only suitable for a linear system, but most noise in the
environment of EVs is nonlinear. Therefore, it is necessary to improve the Kalman filter in order to get
an accurate estimate of the SOC. In Reference [7], the cubature Kalman filter was proposed to overcome
the effect of noise to estimate the SOC; then, a fuzzy controller was constructed to modify the gain
coefficient of the filter. Compared with the cubature Kalman filter without the fuzzy controller, the
new cubature Kalman filter had better accuracy. In Reference [8], Sun et al. improved the Kalman
filter, combining the adaptive Kalman filter and the unscented Kalman filter to form the adaptive
unscented Kalman filter, which can achieve accurate results and adaptively adjust the noise covariance.
In Reference [9], SOC was estimated by the neural network and unscented Kalman filter. Firstly, SOC
was estimated by a neural network, and the unscented Kalman filter was used to reduce the errors
from the neural network. However, the calculation process was complicated.

Compared with the improved Kalman filter that applies Kalman gain to overcome the disadvantage
of the Kalman filter, PF has been widely used to process the non-Gaussian random systems because
of its ability to deal with nonlinear problems [10]. However, some particles would degenerate when
the calculation is continuing, leading to a loss of diversity for the particles. Too much time will be
spent on particles whose weight is low, causing the errors of the estimation if this problem is not
solved. Therefore, how to increase the diversity of particles has become a hot research point. Xiong
et al., in Reference [11], employed remaining available energy prediction and the SOC to test the
uncertainties of temperature, then developed a double-scale PF to estimate the state and parameters of
systems. For improving PF, a method using an extended Kalman filter to produce the importance of
probability density function was proposed in Reference [12]. This method significantly improves the
accuracy of PF. In Reference [13], Liu et al. proposed a dual-particle filter to obtain the SOC and the
drift current based on a model keeping temperature and current as inputs to overcome the drifting
noise and the effect of temperature. Combined with the PF and cubature Kalman filter, Xia et al., in
Reference [14], proposed a new algorithm. The cubature Kalman filter generates the suggested density
function for PF to obtain accurate estimations. Exploiting the two-dimensional model, an improved PF
was developed in Reference [15] by independently sweeping in time and spatial coordinates. This
improved PF can avoid repetitive solutions. In Reference [16], Shao et al. applied the recursive least
square with forgetting factors to identify the parameters in the model. Then, the PF was employed to
estimate the SOC in the experimental data from EVs in Beijing.
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Estimating SOC accurately is the basis of reckoning SOP. The accurate SOP is beneficial for the
vehicle by optimizing battery capacity and size [5]. SOP means how much power can batteries release
or receive in a period. At present, there are two kinds of methods to estimate SOP: based on batteries
experiment and based on models. The methods based on the batteries experiment are not widely used
because sampling time is very short in the real situation. In this case, SOC and polarization voltage are
usually neglected, which makes the result obtained from this method be enormously influenced [17].
So, researchers typically employ methods based on models to estimate SOP. In References [18,19], Wang
et al. built a first-order equivalent circuit model to estimate the SOC and SOP, but the methods they
used to estimate SOC were characteristic parameters-based methods and coulomb counting methods.
These methods cannot reduce the effect of noise when calculating SOC in the real situation, affecting
the accuracy of SOC a lot, which influences the accuracy of SOP directly. In Reference [20], the double
Kalman filter was built to estimate SOP and identify the parameters of the model. This algorithm
could estimate SOP accurately when the working situation was not very complicated. Waag et al. [21]
considered the effect of resistance relying on current when estimating SOP, improving the accuracy.
In Reference [22], a method based on the adapted Kalman filter with multiple restrictions was proposed
to estimate the SOP. The estimations achieved from this method were exact. An improved method
considering the effect of the state of health (SOH) to the SOP was presented in Reference [23]. The SOP
was calculated with the SOC in the paper, which could reduce the errors that come from ignoring SOH.

Based on the research that has been listed, some algorithms which can accurately estimate SOC
have the disadvantage of complicated steps, and some algorithms with simple steps cannot accurately
estimate SOC. These algorithms not only decrease the working efficiency of BMS but also affect the
estimation of SOP and the performance of EVs. In this paper, an improved algorithm, which can
accurately estimate SOC with simple steps, is proposed. A genetic particle filter (GPF), combined with
the features of a genetic algorithm, can overcome the disadvantage of the traditional PF by usefully
increasing the diversity of particles. Moreover, in order to further improve the results, some changes
are employed to the GPF for selecting the particles that own good weights. The improved GPF (IGPF)
engages choosing, crossing, and variation instead of the traditional resample of PF, for increasing
the diversity of particles. By comparing with the PF, the IGPF does not become very complicated
while the results are improved considerably. The KF and the improved KF are only suitable in the
environment of Gaussian noise. However, the IGPF is suitable in any noise environment. The KF
and the improved KF must need the mean and variance of the process noise and measurement noise,
which are difficult to obtain in a practical situation. But the IGPF only needs the variance of the
measurement noise. These advantages increase the efficiency and practicality of the IGPF in the real
situation. The SOP is divided into the discharging SOP and the charging SOP in this paper. The SOC
estimated by the IGPF is used as parameters to calculate the SOP. Owing to the advantages of this new
algorithm, SOP could be estimated successfully and efficiently. The outline of the paper is as follows:
The introduction was presented in Section 1. Section 2 describes the battery model and identifies
the parameters via the incremental current test. The relationship between the SOC and open-circuit
voltage (OCV) is expressed through the low-current OCV test. The introduction about GPF and the
IGPF and the detailed steps about the IGPF estimating SOC are shown in Section 3. The method of
estimating SOP based on IGPF is shown in Section 4. Section 5 verifies the reliability and accuracy of
IGPF for estimating the SOC and the methods based on IGPF for estimating SOP. The conclusions are
given in Section 6.

2. Modeling and Parameters Identification

2.1. The Equivalent Circuit Model

In this paper, the test samples are 18,650 LiNiMnCoO2/Graphite lithium-ion cells, and the
environment temperature is held at 25 ◦C. Their basic specifications are given in Table 1. The equivalent
circuit models, which are composed of simple circuit elements, whose accuracy can be improved by
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increasing the number of resistors and capacitances, have received much attention from academia [24].
This kind of model has been widely employed, built by a circuit network with a voltage source,
capacitances, and resistances to simulate the external transient and characteristics of the batteries [25].
Compared with the other complex circuits, the first-order resistor and capacitance (RC) equivalent
circuit model have the advantages of simple configuration, high accuracy, and easy parameterization.
Based on these advantages, in this paper, a first-order RC equivalent circuit model is considered. The
battery model is given in Figure 1. According to Figure 1, the discrete space equations of the first-order
RC equivalent circuit model for estimating SOC can be expressed as follows [26–28]:[

SOCk+1
Vp,k+1

]
=

[
1 0
0 e(−∆t/RpCp)

]
∗

[
SOCk
Vp,k

]
+

[
−η∆t/Q

Rp(1− e−∆t/RPCp)

]
+ wk (1)

Vk = OCV(SOC)k − ik ∗R0 −Vp,k + vk (2)

where ik is the current at time step k. In this paper, when the battery is charging, the current value is
positive, and the current value is negative while the battery is discharging. Q is the nominal capacity
of the cell. Vp,k is the polarization voltage at time step k and η is the Coulomb efficiency. Vk is the load
voltage at time step k. wk is the noise of status, and vk is the noise of measurement at time step k.

Table 1. Basic specifications of the battery.

Type Nominal Voltage Nominal Capacity Lower/Upper
cut-off Voltage

Maximum Continuous
Discharging Current

18,650 3.6 V 2.0 Ah 2.5 V/4.2 V 20 A (at 25 ◦C)

Energies 2019, 12, x FOR PEER REVIEW 4 of 17 

 

(RC) equivalent circuit model have the advantages of simple configuration, high accuracy, and easy 
parameterization. Based on these advantages, in this paper, a first-order RC equivalent circuit model 
is considered. The battery model is given in Figure 1. According to Figure 1, the discrete space 
equations of the first-order RC equivalent circuit model for estimating SOC can be expressed as 
follows [26–28]: 

+
−

+

     
     
        




P pp p

1
t/R C(- t/R C )

, 1 , p

      -η t/Q1 0
= * + +

   R (1-e )0 e
k k

k
p k p k

SOC SOC
w

V V
 (1) 

− −0 ,= ( ) *R +k kk k p kOCV SOC i V vV  (2) 

where ki  is the current at time step k. In this paper, when the battery is charging, the current value 
is positive, and the current value is negative while the battery is discharging. Q is the nominal 
capacity of the cell. ,p kV  is the polarization voltage at time step k and η  is the Coulomb efficiency. 

kV  is the load voltage at time step k. kw  is the noise of status, and kv  is the noise of measurement 
at time step k. 

Table 1. Basic specifications of the battery. 

Type Nominal Voltage 
Nominal 
Capacity 

Lower/Upper 
cut-off voltage 

Maximum 
continuous 
discharging 

current 
18,650 3.6V 2.0Ah 2.5V/4.2V 20A (at 25 ℃) 

 

Figure 1. Resistor and capacitance equivalent circuit model. 

2.2. Parameters’ Identification 

After building the model, it is necessary to identify the parameters of the equation before 
estimating SOC and SOP. The parameters’ identification is divided into two parts: status equation 
parameters identification and measurement equation parameters’ identification. Firstly, the 
parameters on the measurement equation are determined on the low-current OCV test by fitting the 
curve of SOC and OCV. Secondly, the parameters on the status equation are identified via the 
incremental current test by the least-square algorithm. 
  

Figure 1. Resistor and capacitance equivalent circuit model.

2.2. Parameters’ Identification

After building the model, it is necessary to identify the parameters of the equation before estimating
SOC and SOP. The parameters’ identification is divided into two parts: status equation parameters
identification and measurement equation parameters’ identification. Firstly, the parameters on the
measurement equation are determined on the low-current OCV test by fitting the curve of SOC and
OCV. Secondly, the parameters on the status equation are identified via the incremental current test by
the least-square algorithm.

2.2.1. OCV-SOC Mapping Test

In this paper, the low-current OCV test is applied to get the OCV-SOC curve. This test employs a
small current (i.e., C/20) to charge and discharge the battery that makes the corresponding terminal
voltage approximate to the OCV [29–32]. In this test, firstly, the cell is charged to the upper cut-off

voltage by that constant current. Secondly, the cell is fully discharged until the voltage reaches the
lower cut-off voltage. Then, the cell is charged again to the upper cut-off voltage. Finally, to reduce
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the effects of hysteresis and resistance, the average voltage of the discharging and charging process is
recorded as the OCV. The corresponding profile of current and voltage on the low-current OCV test is
shown in Figure 2, and the curve of SOC and OCV is shown in Figure 3. The relationship between SOC
and OCV is expressed by Equation (3). The errors between the real OCV and the measured OCV are
given in Figure 4, and the values of ai are shown in Table 2. The fitness of the curve is shown in Table 3.

OCV(SOC)k = a1SOCk
7 + a2SOCk

6 + a3SOCk
5 + a4SOCk

4 + a5SOCk
3 + a6SOCk

2 + a7SOCk + a8 (3)
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Table 2. Data of the open-circuit voltage and State of Charge curve.

a1 a2 a3 a4 a5 a6 a7 a8

−57.54 227.1 −356.2 280.5 −114.4 22.62 −1.364 3.486

Table 3. The fitness of the curve.

SSE R-Square Adjusted RMSE

4.347 ∗ 10−5 0.9998 0.9987 0.006593

The equation of the sum of squared errors (SSE) and root mean square error (RMSE) are expressed
as follows:

SSE =
n∑

k=1

( fk − yk)
2 (4)

RMSE =

√√ n∑
k=1

( fk − yk)
2/n (5)

where yk is the real value at time step k, and fk is the estimated value at time step k.
Owing to the feathers of the low-current OCV test, the relationship between the OCV and SOC

can be obtained easily, which will be used in Equation (2) for the estimation of SOC. Moreover, from
Table 3 and Figure 4, the errors between the real OCV and the calculated OCV are within 1% most of
the time, and can meet the requirement of SOC estimation accuracy.

2.2.2. Model Parameters’ Identification

The parameters of the model are identified via the incremental current test. The incremental
current test is made up of numbers of SOC intervals and rest periods, after which the OCV and the
results of SOC corresponding are obtained. In this test, firstly, the battery is charged to 100% SOC.
Secondly, the cell is discharged at a constant current of 1/2C duration at every 10% SOC until the
voltage drops to the lower cut-off voltage. Finally, the battery is charged by following the same routine
but with a charging current until the voltage reaches the upper cut-off voltage. The profile of current
and voltage in incremental current tests is shown in Figure 5. One set of model parameters is estimated
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using the least-square algorithm on the incremental current test. The parameters’ identification results
are shown in Table 4.
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Table 4. Model parameters and statistics.

Temperature R0 Rp Cp RMSE

25 ◦C 0.0710Ω 0.0342Ω 1135.2F 5.98 ∗ 10−4

Compared with the methods of online identification, the methods of offline identification have
the advantages of less calculation, simple steps, and high efficiency. According to Table 4, on the
incremental current test, the RMSE of the identification is within the allowable range, which means the
results could be used further.

3. The IGPF Algorithm for SOC Estimation

3.1. The Steps of the IGPF

The genetic algorithm, which is from natural selection and genetic inheritance, can search the
optimal solutions by simulating the process of natural evolution. Nowadays, this algorithm has been
widely employed to search for the best solution from a sizeable multidimensional solution space [33].
The main steps of the genetic algorithm consist of choosing, which is used to select excellent offspring,
and crossing, variation, which are employed to maintain the diversity of the population. The traditional
resampling of the PF does not resolve the problem of lacking particle diversity and excellent particles,
which could directly affect the accuracy of SOC estimating. Considering the disadvantages of PF, the
genetic algorithm is suitable to displace the resampling of the traditional PF.

Usually, the sequence of the genetic algorithm is choosing, crossing, and variation. GPF’s sequence
of resampling is the same as the genetic algorithm. In the GPF, choosing is used to select particles with
high weight, crossing and variation are employed to produce new particles, maintaining the diversity
of the particles. The sequence of choosing, crossing, and variation are vital because the probability of
getting excellent descendants is different. Compared to selecting particles with high weight before
maintaining the diversity, choosing excellent particles after maintaining the diversity has a higher
probability to obtain excellent particles. Hence, it is necessary to adjust the sequence of choosing,
crossing, and variation. Compared with crossing, variation has a higher probability of getting particles
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with poor quality, though it could still obtain particles with high weight and maintain the diversity of
particles. Therefore, in this paper, the sequence of the GPF’s resampling becomes crossing, variation,
and choosing. Residual variation is employed to displace traditional variation for decreasing the
negative effect of variation. The IGPF consists of the next steps.

1. Particles’ initialization.

Setting the number of the particles as N and the number of the cycle as M, the initial value of
x series is x0

k . The particle sequence can be described as
{
x0

k

∣∣∣k = 1, 2 . . . . . .N
}

based on x0
k , and the

particles have the same weight 1/N.

2. Status and measurement variables estimation.

xi
k is the ith particle at time step k and yi

k is the measurement variables of xi
k. They are calculated

by Equation (1), Equation (2), and Equation (3).

3. Calculating and updating the weight.

Equation (6) is used to calculate the weight of the particle at time step k. σ is the standard deviation
of the measurement of noise.

qi
k = (

1
√

2πσ
)e

(yk−yi
k)

2

−2σ2 (6)

Then, the weight of the particle is normalized by Equation (6):

qi
k =

qi
k∑
qi

k

(7)

where qi
k represents the weight of the ith particle at time step k.

4. Crossing.

A constant from zero to one is set as the crossing probability. At every cycle, a number subjected
to the random distribution is produced. When the number is less than the crossing probability, the
crossing is executed. Two particles, which are represented by xi

k and x j
k, are selected randomly. Equation

(8) and Equation (9) are employed to cross the particles selected. In the following equations, z subjects
the random distribution:

xi
k = zxi

k + (1− z)xi
k (8)

x j
k = zx j

k + (1− z)x j
k (9)

5. Variation.

A different constant is set as the variation probability. At every cycle, a number subjected to the
random distribution is produced. If the number is less than the variation probability, the variation
is executed. One particle, which is represented by xb

k, is selected randomly. Equation (10) is used to
execute the variation. In the following equation, c subjects the given Gaussian distribution:

xb
k = xb

k + c (10)

c ∼ N(0, yi
k − xi

k)

6. Choosing.

A number from zero to one is selected randomly, and the weight of particles is accumulated at
every cycle. When the sum of the weight is more than the number that is selected, the process of
accumulating is stopped. These accumulated particles are chosen to copy.
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7. Variables output.

The variables are calculated by Equation (11). The cycle is finished when the values of k are equal
to the M. Otherwise, Step 2 will be carried out again.

xk =
∑

qi
kxi

k (11)

3.2. Estimating SOC Based on the IGPF

To estimate SOC, the initial x is the value of initial SOC and xk is the value of SOC at time step k.
yk is the value of the terminal voltage at time step k.

The workflow of estimating SOC by the IGPF is shown in Figure 6.
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4. SOP Estimation Based on IGPF

4.1. The Considered Factors for Estimating SOP

In this paper, SOC, voltage, and the allowed current that comes from the instruction manual are
considered when estimating SOP. It is necessary to take SOC into consideration. On the one hand, SOC
has a close relationship with current and voltage, which are used to directly calculate SOP. On the other
hand, the peak SOC could restrict the current, avoiding overcharging or over-discharging. However,
the current limited by the peak SOC is too large to be used to directly calculate SOP. Therefore, it is
necessary to take account of the influence of the voltage. The limits from the instruction manual are
significant because the battery would be harmed, even explode when the actual current exceeds the
allowed current. Thus, in this paper, the voltage, the SOC, and the limit from the instruction manual
are considered to estimate SOP.

4.2. SOP Estimation by the Restricted Current

In this paper, the current is limited by three parts: the limit based on the peak of SOC, the limit
based on voltage, and the allowed maximum charging current and discharging current that comes
from the instruction manual of the battery. The values of SOC that are used to calculate the limited
current are obtained by the IGPF.
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4.2.1. Limit Based on the Peak SOC

In order to avoid overcharging and over-discharging, especially at the end of charging and
discharging, the limit based on the peak of SOC is used. Otherwise, the life of the battery would be
affected directly. When the value of SOC is near the peak SOC, the current must be limited to prevent
overcharging or over-discharging from the aspect of capacity. The equations of current are expressed
as follows:

idis,s
k,L =

(SOCk − SOCmin) ∗CN

TLh
(12)

icha,s
k,L =

(SOCk − SOCmax) ∗CN

TLh
(13)

where idis,s
k,L is the discharging current restricted by the peak SOC at time step k. T represents the period

of sampling and L is the number of sampling. icha,s
k,L is the charging current restricted by SOC at time

step k. SOCmin is the lowest of SOC and SOCmax is the highest of SOC. CN is the nominal capacity of
the battery and η is the Coulomb efficiency.

4.2.2. Limit Based on the Voltage

The limit that is only based on the peak SOC cannot meet the requirements. Not only is the current
restricted by the peak SOC too large, but also the terminal voltage influenced by the polarization
voltage reaches the protection condition before the effect of SOC. Therefore, restriction based on the
voltage is employed.

According to Equation (2), the relationship between OCV and SOC is nonlinear. SOCk is the
function of the current. Thus, OCV(SOCk) cannot be used to directly calculate the peak current. Based
on these reasons, the Taylor formula is employed. The new equation is expressed as follows:

OCV(SOCk+1) = OCV(SOCk) −
ikη∆t
CN

d(OCV)

d(SOC)
|sock + R

[
SOCk,

ikη∆t
CN

]
(14)

Because the R[.] is the remainder of the first-order expansion, and its variety is very tiny, therefore,
in this paper, the value of R[.] is neglected. The equation of polarization voltage during the period of
continuous time is given as follows:

Vpk,L = Vp,k(e
−∆t

RpCp )
L
+ ikRp(1− e

−∆t
RpCp )

L−1∑
j=0

(e
−∆t

RpCp )L−1− j (15)

where Vpk,L is the polarization voltage during the period of continuous time.
Based on Equation (14) and Equation (15), the current restricted by voltage is given as Equation (16)

and Equation (17):

idis,v
k,L =

OCV(SOCk) −Vp,k(e
−∆t

RPCp )
L
−Umin

ηL∆t
CN

d(OCV)
d(SOC)

|SOCk + Rp(1− e
−∆t

RpCp )
L−1∑
j=0

(e
−∆t

RpCp )
L−1− j

+ R0

(16)

icha,v
k,L =

OCV(SOCk) −Vp,k(e
−∆t

RPCp )
L
−Umax

ηL∆t
CN

d(OCV)
d(SOC)

|SOCk + Rp(1− e
−∆t

RpCp )
L−1∑
j=0

(e
−∆t

RpCp )
L−1− j

+ R0

(17)

where Umin is the lower cut-off voltage and Umax is the upper cut-off voltage. idis,v
k,L is the discharging

current restricted based on voltage and icha,v
k,L is the charging current restricted based on voltage.
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4.2.3. Limit Based on the Instruction Manual of the Battery

According to the instruction manual of 18,650 LiNiMnCoO2/Graphite lithium-ion cells, the
maximum continuous discharging current is 20 A, which is represented as idis

max, and the maximum
continuous charging current is 4 A, which is described as icha

max [34].

4.2.4. SOP Estimation

The absolute minimum values are selected as the discharging current and the charging current
when discharging and charging. Otherwise, the battery would be harmed. The equations of the current
are given as follows:

idis
k,L = min

{
idis,s
k,L , idis,v

k,L , idis
max

}
(18)

icha
k,L = max

{
icha,s
k,L , icha,v

k,L , icha
max

}
(19)

where idis
k,L is the discharging current during the period of continuous time and icha

k,L is the charging
current during the period of continuous time.

Equation (2) is the equation of voltage per second, which cannot be used to directly calculate the
SOP. According to Equation (14) and Equation (15), the equation of terminal voltage during the period
of continuous time can be calculated by Equation (20). However, the values of voltage and current
that are calculated by the above Equations are changing all the time, causing the SOP to be changing
at all times, which contradicts the definition of the SOP. The amount of calculations to estimate SOP
whose values are almost unchanged at every period of continuous time is enormous. The values of
the terminal voltage calculated by Equation (20) do not change too much at all times. Therefore, the
terminal voltage at the time step k + 1 is employed to replace the voltage at the time step k to predict
the voltage in the next period of continuous time. To reduce the amount of calculation and simplify the
steps, the equations about discharging SOP and charging SOP could be calculated approximately by
Equation (21) and Equation (22):

Vk,L = OCV(SOC)k − ikR0 −
ikηTL

CN

d(OCV)

d(SOC)

∣∣∣∣∣∣
SOC=SOCk

−

(e −∆t
RpCp )

L
Vp,k + ikRp(1− e

−∆t
RpCp )

L−1∑
j=0

(e
−∆t

RpCp )
L−1− j

 (20)

Pdis
k,L ≈ idis

k,L ∗Vk+1,L (21)

Pcha
k,L ≈ icha

k,L ∗Vk+1,L (22)

where Pdis
k,L is the discharging SOP, and Pcha

k,L is the charging SOP.

5. Results and Analysis

The values of crossing probability are usually from 0.6 to 0.8, and the values of variation probability
are generally from 0.001 to 0.005. In these experiments, the probability of crossing is set as 0.7, and the
probability of variation is set as 0.003. The number of particles is 200. The noise of the status equation
and noise of the measurement equation are subjected to Gaussian distribution. The time interval is 10 s.

5.1. SOC Estimation Results

Estimation Results from IGPF, GPF, and PF

The federal urban driving schedule (FUDS), which is one of the most widely employed driving
cycle tests in battery experiments, is performed to estimate the SOC of battery by the IGPF. The current
of whole FUDS and the voltage of FUDS are shown in Figure 7. The results of the PF, GPF, and IGPF
are given in Figure 8, and the errors between the real values and the estimation values are in Figure 9.
In the actual situation, it is rare for batteries of EVs to release all-electric energy, 100% SOC, in one
driving cycle. Therefore, in this paper, the range of SOC is set from 0.8 to 0.1.
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The equation of mean absolute error (MAE) is expressed as follows:

MAE =

n∑
k=1

∣∣∣ fk − yk
∣∣∣

n
(23)

where yk is the real value at time step k, and fk is the estimated value at time step k.
The RMAE, MAE, and the maximum error of PF and IGPF are shown in Table 5. The computational

time of these algorithms is in Table 6.

Table 5. Avenue errors and the maximum errors of three algorithms.

Algorithm RMSE MAE The Maximum Error

PF 0.01254921 0.00930901 0.051

IGPF 0.00997832 0.00810877 0.030

GPF 0.01338364 0.01058916 0.046

Table 6. Comparison of the computational time.

Algorithm The Computational Time

PF 4 s
IGPF 6 s
GPF 10 s

As can be seen from the figures and the table above, the accuracy of the IGPF is better than the
traditional PF and the GPF. The accuracy of the IGPF is 20% higher than the PF, and 15% higher than
the GPF. At the same time, the maximum error of the IGPF declines 2% SOC more than the PF and
1.6% SOC more than the GPF. Owing to the advantages of crossing and variation, the diversity of
particles has increased compared with the traditional PF. The probability of particles with high quantity
increases, resulting from the application of residual variation and the sequence change of the choosing,
crossing, and variation, which makes the results more accurate than the GPF.

According to Table 6, the computational time of the PF is shorter than the IGPF and the GPF;
however, compared with the PF, the time of the IGPF is just 2 s longer. This means the calculation of
the IGPF does not increase too much. Therefore, it is very suitable to be employed in a real situation.
Since the calculation of crossing and variation become huge after choosing, the computational time of
the GPF is longer than the IGPF. Thus, not only from the aspect of accuracy but also from the length of
computational time, the IGPF is more effective and practical than the GPF.

5.2. SOP Estimation Results

In this paper, SOP is defined as the power that the battery can release or receive during the period
of continuous time when discharging or charging without harming the battery. Thus, it is meaningless
to estimate SOP per second. The sampling time is set as 10 seconds in this paper because the range of
SOC above is from 0.8 to 0.1 approximately in order to reflect the real situation in this paper. Therefore,
the values of SOCmin is set as 0.1, and the value of SOCmax is set as 0.8. The SOC, estimated by the IGPF,
comes from Section 4. The estimated discharging SOP and charging SOP are presented in Figure 10.
The SOP which is calculated by different limitations is plotted in Figure 11. The discharging SOP is
defined as positive numbers, while the charging SOP is defined as negative numbers in this paper.
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From these curves, the changing trend of SOP is roughly similar to the voltage, which reflects the
accuracy of the results. At the beginning of FUDS, the values of the discharging SOP are tremendous
results from the high SOC. On the contrary, the values of the charging SOP are lower than the
discharging SOP. With the continuing of FUDS, the battery releases more energy than it receives,
declining the SOC and the terminal voltage, which leads the values of discharging SOP to gradually
become small. The values of charging SOP become more significant than before, because of the loss of
numerous electricity.

From these figures, the SOP restricted by the peak SOC does not affect the charging and discharging
SOP too much because the values of current which are only limited by the peak SOC are larger than
the current that is allowed by the instruction manual most of the time.

For the discharging SOP, in the beginning, the SOP restricted by voltage dominates the values
because the SOP restricted by peak SOC is too large. With the continuing of discharging, the values
limited by voltage reduce because the voltage becomes small. In the end, the change of SOC affects the
discharging SOP more than the effects that come from the change of terminal voltage at some moments,
causing the limitation restricted by the peak SOC to dominate the discharging SOP.

The charging SOP restricted by voltage dominates the charging SOP due to the fact that the value
of current restricted based on peak SOC is larger than the allowed values in the beginning. Gradually,
the values of the charging SOP become more significant than before. In the end, the values of the
charging SOP are near the allowed values, which correspond to the real situation.
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6. Conclusions

In order to estimate SOC accurately and simply, a first-order equivalent circuit model was built
to imitate the dynamic characteristics of the battery. The relationship between SOC and OCV was
identified by the data of the low-current OCV test, and the parameters of the model were identified via
the data of the incremental current test. Based on the circuit model and the parameters, the IGPF is
proposed to estimate the SOC. As the results of the experiment showed, compared with the GPF and
PF, the IGPF has higher accuracy because crossing and residual variation could increase the diversity
of particles significantly with simple steps and less calculation, and choosing could obtain particles
with high weights, which overcome the drawbacks of the PF. Therefore, the IGPF has more practicality
and efficiency than other algorithms with complex and huge calculations.

In this paper, the SOP is estimated based on the estimated SOC. The limitations which take the
influences of the SOC, voltage, and instruction manual into consideration are employed to estimate
the discharging SOP and charging SOP. The values of discharging SOP decrease gradually from a
tremendous value. The values of charging SOP increase gradually to a stable value. These changing
trends correspond with the actual situation, reflecting the reliability of the estimations.
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