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Abstract: An integrated energy system (IES) involving a large number of decision-makers causes
problems of bad coordination between energy sub-networks and the IES and it is not able to
fully consider the multi-energy complementarity among multiple decision-makers. In this context,
firstly, this paper constructs an energy optimal dispatching model of an IES based on uncertain
bilevel programming. The upper model takes the transformation matrix of energy hubs as the upper
decision-maker, taking the minimum operation cost of the IES in the form of confidence as the objective
function; the lower model takes each optimal operation plan of the electric power sub-network,
the thermal energy sub-network, and the gas energy sub-network as the lower decision-makers,
aiming at the operation economy of each sub-network and considering their operation as necessary
constraints. Secondly, a firefly algorithm with chaotic search and an improved light intensity coefficient
is designed to improve the proposed model. An empirical analysis was conducted on a pilot area
of an integrated energy system in Hebei Province. The results show the following: (1) The typical
daily operating cost of the integrated energy system in winter is lower than that in summer; (2) under
the same load level, the typical winter and summer running costs of the integrated energy system
are lower than that of the traditional microgrid; (3) compared with the particle swarm optimization
algorithm, the improved firefly algorithm proposed in the paper has obvious advantages both in
terms of running cost and solution time; and (4) when the confidence of the objective function and the
constraints increases, the operating cost of various schemes also increase. The above results validate
the effectiveness of the energy optimal dispatching model of the IES and the economy of the system
operation under the multiple decision-maker hierarchy.

Keywords: uncertain bilevel programming; integrated energy system; IES; operating cost; improved
firefly algorithm

1. Introduction

1.1. Motivation

With the rapid development of the national economy, the energy consumption system mainly
based on fossil energy has brought about increasingly serious environmental issues [1]. Traditional
energy systems subordinate to different departments for management and operation, such as cooling,
heat, and power, cannot play a role in multi-energy coordination and optimization, which reduce the
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overall efficiency of energy utilization and the consumption of renewable energy [2,3]. According to
the statistics of the State Energy Administration, the annual wind curtailment reached 27.7 billion
kWh in 2018, and the wind curtailment rate was 7% [4,5]. However, with a series of advantages of
improving energy efficiency, promoting renewable energy utilization, and improving energy supply
security, an integrated energy system (IES) can complement, coordinate, and optimize different energy
supply systems in the planning, design, construction, and operation stages of an energy system, so as
to realize energy cascade utilization and collaborative optimization [6,7]. Therefore, an in-depth study
of the IES energy optimal dispatching problem is critical.

1.2. Literature Review

Many scholars have studied the multi-energy cooperative and complementary optimization of
IESs from different perspectives, as can been shown in Table 1. Wang et al. [8] proposed a cooperative
and complementary operation scheme for distributed cooling, heating, and power supply systems in
multiple regions by analyzing the disadvantages of the distributed combined heat and power system
(distributed energy system (DES)/combined cooling heating and power system (CCHP)). Jiang et al. [9],
considering the IES of photovoltaic, wind, natural gas, and power coupling and complementarity,
and aiming at the lowest operating cost, constructed a mathematical model of energy equipment and
energy flow, and proposed a corresponding optimal dispatching strategy. Wang et al. [10] established
physical and mathematical models of a regional energy system including a photovoltaic energy storage
system with the aim of minimizing operating costs and proposed corresponding optimal dispatching
strategies. Gao et al. [11] studied the integrated modeling of a power system, a thermodynamic system,
and a natural gas system coupling, and proposed a control strategy for collaborative optimization.
Jiang et al. [12] believed that partial renewable power fluctuation on a power network is transferred
to a gas system and a cooling or heating system by the coordinated operation of multi-CCHP. Li et
al. [13] proposed a Chance-constrained programming CCP-based dispatching model, and its solution
approach was proposed for isolated microgrids (MGs). Li et al. [14] proposed a collaborative operation
optimization model of the bilateral cooperation of a system and its users in an integrated multi-energy
system (IMES) built by an IMES operator. Wang et al. [15]. proposed an original multi-objective
optimization model for IES operation formulated to minimize the operating cost, primary energy
consumption, and carbon dioxide emission of IESs and to optimally reduce the power loss and voltage
magnitude deviation of the utility grid. Wu et al. [16], on the basis of insufficient consideration
of coordination and the mutual benefit of multiple energy supply regions and multi-energy flow
dispatching, proposed a user-side energy Internet planning method based on bilevel programming.
Zhang et al. [17] proposed a bilevel optimal dispatching model for a power–natural gas IES considering
the optimal operation of a natural gas system. However, existing studies have considered only single
decisions, and the significance of using bilevel programming theory is only in capturing key decision
variables. However, with the orderly advancement of China’s electricity marketization reform, the IES
involves multiple operating entities and is a strongly coupled system that integrates energy flow,
information flow, and business flow.

For a multi-energy complementary collaborative optimization model of an IES, mathematical
programming methods and intelligent optimization algorithms are usually used to improve the
operation benefit of the whole system. Sun et al. [18], aiming at minimizing the daily operating
costs of operation and maintenance costs, power purchasing costs, fuel costs, and energy storage
depreciation costs, constructed a multi-energy collaborative optimization model considering various
working modes of ice storage air conditioning, and the model was solved by using mixed integer
linear programming (MILP). Zhao et al. [19] proposed a three-level collaborative optimization model
of cooling–heat–electric power supply with optimal equipment selection, capacity, and operation
parameters solved by a particle swarm optimization (PSO) algorithm. Xu et al. [20], aiming at the
lowest daily operating cost, proposed a collaborative optimization model of plant IESs considering
cascade utilization, which was independently modeled under the constraints of cooling, heating, power
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balance, and energy storage equipment and was solved by MILP. Bai et al. [21] constructed a day-ahead
optimal dispatching model of a regional IES based on interval linear programming and constructed
the model by using the method of enhanced interval linear programming. Yao et al. [22], considering
the distribution and electric vehicle charging system, constructed a multi-objective collaborative
programming model using a decomposition-based multi-objective evolutionary algorithm based on
decomposition (MOEA/D). Liu et al. [23] constructed a multi-energy collaborative optimization model
coupled with different subsystems in order to tap the potential of multi-energy complementarity
and maximize the use of renewable energy, combining the linear weighted sum and grasshopper
optimization algorithms to solve the energy management problem. Li et al. [24] proposed a bi-level
programming model for the optimal day-ahead dispatching of a microgrid, which was performed
by a combination of heuristic and analytical algorithms. Zhang et al. [25] combined wind power
generation, photovoltaic power generation, hydroelectric power generation, and pumped storage
energy to establish a multi-energy complementary system and constructed an optimization model of
multi-energy generation dispatching solved by using MILP. Guan et al. [26], considering the factors
of off-design performance and start-stop performance, constructed a multi-energy complementary
distributed optimization model by a genetic algorithm.

1.3. Our Contributions

Based on the orderly progress of China’s electricity market-oriented reform, an IES involves a
variety of operators, which comprise a strong coupling system of integrated energy flow, information
flow, and business flow. It is suitable for modeling research using uncertain bilevel programming
theory. Therefore, with the aid of uncertain bilevel programming theory, this paper establishes an
energy optimal dispatching model of an IES with the randomness of the system considered. The main
innovations are as follows.

(1) The structure of an IES is designed, and an optimal energy dispatching model of the IES based on
uncertain bilevel programming theory is proposed.

(2) The energy optimal dispatching model of the IES based on uncertain bilevel programming is
established. The upper model takes the transformation matrix of energy hubs as the upper
decision-maker, and takes the minimum operating cost of the IES in the form of confidence as
the objective function; the lower model takes the optimal operation plan of the power grid, heat
network, and gas network as the lower decision-maker, and takes the operation economy of each
subnet as the objective. Considering the necessary constraints of each energy subnet operation,
the interaction between the upper model and the lower model is determined.

(3) Based on chaotic search and adaptive light intensity coefficient, an improved firefly algorithm is
proposed to construct the optimal IES energy scheduling model for uncertain bilevel programming.

(4) A pilot area in Hebei Province is selected for the IES. Two operation schemes of the IES for typical
winter and summer days are set up, and the operation cost of the IES under different confidence
levels is analyzed, which helps to bring the economy of system operation into full play.
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Table 1. Existing research comparison.

Literature Research Objective Question Description Bilevel Model Objective Function Constraint

[8] Distributed cooling, heating, and power
supply systems

Regional multi-energy coordinated and
complementary operation method - - -

[9] Integrated energy system (IES) Model of a small-scale integrated
energy-based DHC system - Minimizing the operation cost Power balance of all energy units;

other constraints

[10] Regional energy system including a
photovoltaic energy storage system

An efficient modeling and optimization
method proposed for the cooling heating
and power (CHP)-based district heating
(DH) system.

- Minimizing the operation cost Power balance of all energy units;
other constraints

[11] Electric–thermal–gas system A combination of “centralized plus
distributed” strategies - Minimizing the IES cost of external energy Power balance of all energy units;

other constraints

[12] CCHP system
Nonlinear multi-energy coupling
characteristics modeling of a combined
cooling heating and power system (CCHP)

- Minimizing the operating cost of the IES Power balance of all energy units;
other constraints

[13] Microgrids Optimal scheduling model of microgrids
(MGs) - Minimizing the MG total operation cost System power balance constraint;

other constraints

[14] Integrated multi-energy system

The collaborative operation optimization
model of the bilateral cooperation of a
system and users in a built integrated
multi-energy system (IMES)

- Minimizing the operation cost System power balance constraint;
other constraints

[15] IES system A multi-objective optimization model for IES
operation - Minimizing the impacts of IESs on the utility

grid.
Electric demand balance constraint;
other constraints

[16] Joint multi-energy flow dispatching system User-side energy Internet planning method
√

Upper: Minimizing the annual cost
Lower: Minimizing the annual system
operation cost

Upper: The allowable installation
capacity limitation of all energy units
Lower: Power balance of electricity, heat,
and cooling in the system; output
constraints of all energy units;
other constraints

[17] A power–gas IES considering power-to-gas
for wind power consumption

Bilevel dispatching model for a power–gas
IES

√

Upper: Minimizing the gas sale cost of the
gas source
Lower: Minimizing the operation cost of the
system including wind power and
power-to-gas equipment

Upper: Natural gas network constraints
Lower: Power balance

This
paper

An IES including a power–heat–gas
sub-system

A bilevel dispatching model of uncertainty
for an IES

√

Upper: Minimizing the system operation
cost
Lower: Minimizing the operation cost of all
energy subsystems

Upper: Distribution factor balance
Lower: Power balance of electricity, heat,
and gas
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1.4. Organization of This Paper

This paper is organized as follows. In Section 2, the logical relationship among the subsystems of
integrated energy is described, and an optimal energy dispatching model of an IES with uncertain
bilevel programming is constructed. In Section 3, an algorithm for using the proposed model is
designed. In Section 4, a pilot area in Hebei Province is selected for the IES as an example. In Section 5,
some conclusions are discussed.

2. An Uncertain Bilevel Programming Model for Energy Optimal Dispatching of an IES

2.1. Analysis of Upper and Lower Logical Relationships

An IES is considered to be the main form of energy carrying for future societies. It can organically
coordinate multiple energy subnets, showing a high degree of strong coupling. The system mainly
includes an energy supply network (including an electric power subnet, a thermal energy subnet, and
a gas energy subnet), an energy exchange module (including CCHP units, generators, boilers, and heat
pumps), an energy storage module (including electric power storage, gas storage, heat storage, and
cooling storage devices), and a terminal integrated energy sharing unit (including a microgrid and a
large number of end users). The specific grid structure is shown in Figure 1.
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Figure 1. Basic component module and energy flow relation between energy subgrids in
micro-energy Internet.

It can be seen in Figure 1 that there is a clear energy flow relationship between different energy
subnets of the IES. A two-level planning model is a special case of a multi-level planning model. The
upper level is a decision-maker, and the lower level is a subordinate. There is an interactive relationship
between them, taking into account the reflection of the lower layers. At the same time, since the IES
contains multiple subnets, different individual interests with different goals and decision variables need
to be met during the energy scheduling process. Therefore, in the IES energy optimization scheduling
model based on uncertain two-level planning, the upper decision-maker is the center for formulating
the energy conversion plan of the IES, and the decision variable is the energy pivot conversion matrix
of the IES (i.e., the difference between different energy transformation plans for each time period); the
decision-makers at the lower levels are the energy subnets, namely the electric energy subnet, the
thermal energy subnet, and the gas energy subnet. Specifically, the information flow relationship of
the energy optimization scheduling model of the integrated energy system for the bilevel planning is
uncertain, as shown in Figure 2.
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As can be seen in Figure 2, in the energy optimal dispatching model of an IES based on uncertain
bilevel programming, the control variable of the upper model is the energy conversion matrix of the
IES. The lower decision-makers make their own decisions according to the decision of the upper model
(i.e., the optimal operation plans of each energy subnet), feed their operation costs back to the upper
model, and modify their own control variables according to the feedback.

2.2. The Upper Model

In the energy optimal dispatching model of an IES based on uncertain bilevel programming, the
upper decision-maker’s goal is to minimize the comprehensive operating cost, which is affected by
the objective function of the lower model, and its cost includes the loss of energy hub transformation.
Therefore, the objective function of the upper decision-maker is not directly determined by its own
decision variables, but by its own decision variables, so as to influence the decision-making of the
lower model, thus indirectly determining its own objective function.

The energy transfer equation in the form of an energy hub in the t-th dispatching period of the
IES is 

cee(t) ceh(t) ceg(t)
che(t) chh(t) chg(t)
cge(t) cgh(t) cgg(t)




Pe(t)
Ph(t)
Pg(t)

 =


Le(t)
Lh(t)
Lg(t)

 (1)

where ci j(t) is the energy coupling factor at time t, representing the proportion of energy from the
j-th kind of energy network converted and input into the i-th kind of energy network at time t, and
i, j ∈ E =

{
e, h, g

}
, E is the energy subnet set of the IES. The second equation is similar to the first.

Variable subscripts e, h, and g are, respectively, the electric power subnet, the thermal energy subnet,
and the gas energy subnet. Pi(t) is the input power of the i-th kind of energy network at time t. Li(t)
is the load power of the i-th kind of energy network at time t. We change Equation (1) into a matrix
equation form, as Equation (2).

C(t)P(t) = L(t) (2)

where C(t) is the energy coupling matrix at time t. P(t) is the energy input vector at time t. L(t) is the
energy load vector at time t.

Practically, there is some energy loss when each energy subnet of the IES performs energy
conversion and transmission, which can directly influence the economy of the energy interconnected
microgrid operation. Therefore, the upper decision-maker needs to consider the efficiency of energy
conversion. We decompose ci j(t) into
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ci j(t) = vi j(t)ηi j(t) i, j ∈ E (3)

where vi j(t) is the allocation factor at time t, representing the proportion of energy from the j-th kind of
energy network converted into the i-th kind of energy network at time t. ηi j(t) is the efficiency factor,
representing the efficiency of the j-th kind of energy being converted into the i-th kind of energy. When
ηi j(t) is known, the upper decision-maker’s decision variables are considered as vi j(t). However, ηi j(t)
changes as the operation conditions of the IES and time change, so this paper still considers the upper
decision variable as ci j(t), and takes the influence on ηi j(t) by the lower decision into account without
changing the essence of the model.

In the upper model, the total daily operating cost of the IES is shown in Equation (4). The first
item is the total daily operation cost of each energy subnet, and the second item is the loss cost of
energy conversion of the IES as an energy hub.

fup =
T∑

t=1

∑
i∈E

Ci(t) +
T∑

t=1

∑
i∈E,i, j

∑
j∈E

∆t[1− ηi j(t)]P j(t)q j(t) (4)

where T is the number of dispatching periods per day. In this paper, the dispatching time window
of the IES is one day, and ∆t is the length of the dispatching period. Ci(t) is the operation cost of the
i-th kind of energy network at time t, which is determined by the operation plan made by the lower
decision-maker. q j(t) is the marginal cost per unit power of the j-th kind of energy at time t, as shown
in Equation (5).

q j(t) =


pgrid(t), j ∈ {e}

CNGPhe(t)
QLHVηhe(t)(1−aMT)

, j ∈ {h}

CNG, j ∈
{
g
} (5)

where pgrid(t) is the time-of-use (TOU) price of the external network at time t. CNG is the unit price of
natural gas. QLHV is the low calorific value of natural gas. Phe(t) is the heating power of the micro gas
turbine at time t. ηhe(t) is the heating efficiency of micro gas turbine at time t. In this paper, micro gas
turbines are considered as heat network equipment. As a heat (cooling) source, micro gas turbines
mainly take on a gas-to-heat (cooling) role, while utilizing waste heat to generate electricity. Micro gas
turbines operate in a heat-to-electricity mode. q j(t) is also affected by the decision-making of the lower
model.

In the energy optimal dispatching model of the IES based on uncertain bilevel programming,
random chance constraints are used for the objective function of the upper model, because the smaller
the system operation cost, the better. Therefore, the objective function of the upper model can be
obtained in the form of min-min, as shown in Equation (6):

min min f up (6)

The upper objective function needs to meet the probabilistic constraints shown in Equation (7):

Pr
{

fup ≤ f up

}
≥ αup (7)

where αup is the confidence of the upper objective function, and f up is the optimistic value of the
objective function when the confidence of the upper model is αup.

The upper model needs to meet the constraints as shown in Equation (8).
∑
j∈E

vi j(t) = 1, i ∈ E∑
j∈E

vi j(t)ηi j(t)P j(t) = L j(t), i ∈ E
(8)
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The allocation factor balance and the power balance of each energy subnet are included in
this equation.

2.3. The Lower Model

The control variables of the lower decision-maker are the specific optimal operation plans of the
power electronic subnet, the thermal energy subnet, and the gas energy subnet. The plan is based
on the transformation equation of the energy hub formulated by the upper decision-maker, and its
objective is to minimize the operation cost of the lower decision-maker.

2.3.1. Objective Function

The objective function of the lower model is the comprehensive operation cost of the energy
subnet, as shown in Equation (9).

fdown = Ce + Ch + Cg (9)

where Ce, Ch, and Cg are the daily comprehensive operation cost of the electric power subnet, the
thermal energy subnet, and the gas energy subnet, respectively. The equation is

minCe =
T∑

t=1

∆t
[
[Pe(t) − Pe,h(t) − Pe,g(t)]pgrid(t) − FPPV(t) + uch(t)

∣∣∣PSB(t)
∣∣∣kch

+udis(t)
∣∣∣PSB(t)

∣∣∣kdis + kWTPWT(t) + kPVPPV(t) + λpgrid(t)Pcut(t)

]
(10)

where ∆t is the dispatching period. Ce is the comprehensive operation cost of the electric power
subnet. Pe(t) is the purchasing and sale power from the external power grid at time t. Pe,h(t) and
Pe,g(t) are the power of the electric power subnet converted into thermal energy subnet and gas
energy subnet, respectively. F is the government’s subsidized price for distributed photovoltaic power
generation. PPV(t) is the power of the photovoltaic output at time t. PWT(t) is the power of the wind
power output. kWT and kPV are the operation and maintenance cost coefficients of wind power and
photovoltaic power, respectively. PSB(t) is the charge and discharge power of energy storage. uch(t)
and udis(t) are the charge and discharge states of energy storage at time t: when it is charging at
time t, uch(t) = 1, udis(t) = 0; when discharging, uch(t) = 0, udis(t) = 1. kch is the cost coefficient of
energy storage life loss during charging. kdis is the cost coefficient of energy storage life loss during
discharging. The equations of kch and kdis are shown in Equations (11) and (12), in which λ is the
interruption compensation coefficient, and Pcut(t) is load interruption capacity at time t.

kch =
Cinit

N(x)
·

cch

−PSB(t)ESB,start
·

Emin
SB

ESB,end
(11)

kdis =
Cinit

N(x)
·

cdis

PSB(t)ESB,end
·

ESB,start

Emax
SB

(12)

where N(x) is the maximum number of cycles, which is determined by the depth x of charge and
discharge. These equations are in [25]. Cinit is the initial fixed investment cost of energy storage.
ESB,start is the initial charged states of the charge and discharge processes. ESB,end is the terminal
charged states of the charge and discharge processes. Emin

SB is the minimum discharging depth (taken
as 0.1 times the energy storage capacity). Emax

SB is the maximum allowed electric quantity of energy
storage (taken as 0.9 times the energy storage capacity). cch and cdis are the charging and discharging
influencing factors, respectively.

minCh =
T∑

t=1

 PMT(t)CNG

ηMT(t)QLHV
+

N∑
θ=1

λθMTcθ(
PMT(t)
ηMT(t)

− PMT(t))

 (13)
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where Ch is the comprehensive operation cost of the thermal energy subnet. PMT(t) is the CCHP
Micro-turbine(MT) heating power at time t, which is also the energy input into the dual-effect absorption
unit. ηMT(t) is the CCHP MT heating efficiency at time t. θ is the classification of pollutants (the total
is N). λθMT is the emission coefficient of the θ-th kind of pollutant of MT. cθ is the unit emission control
cost of the θ-th kind of pollutant.

minCg =
T∑

t=1

Qin(t)CNG +
N∑
θ=1

λθFCcθPFC(t)

 (14)

where Cg is the comprehensive operation cost of the gas energy subnet. λθFC is the intake volume of the
gas source point at time t. λθFC is the emission coefficient of the θ-th kind of pollutant of FC. PFC(t) is
the generation power of the fuel cell at time t.

The objective function of the lower model is in Equation (15).

min min f down (15)

The probabilistic constraints that the lower objective function needs to satisfy are shown in
Equation (16):

Pr
{

fdown ≤ f down

}
≥ αdown (16)

where αdown is the confidence of the lower objective function. f down is the optimistic value of the
objective function when the confidence of the lower model is αdown.

2.3.2. Constraints

(1) Electric Power Subnet Operation Constraints
The constraints that the electric power subnet decision-maker need to meet include the power

balance, as shown in Equations (17) and (18), the energy conversion constraints, as shown in Equation
(19), and the basic operation constraints of the electric power subnet, as shown in Equation (20).

Pr{−δ ≤ ∆P ≤ δ} ≥ βdown (17)

∆P = Pe(t) + PWT(t) + PPV(t) + PSB(t) + Pcut(t) − Pe,h(t) − Pe,g(t) + Ploss(t) + Ph,e(t) + Pg,e(t) (18)

where ∆P is the unbalanced power deviation of the electric power subnet. δ is the maximum operation
deviation of the power balance, which is considered as 25 kW. βdown is the confidence that power
balance is satisfied, usually considered as 0.9. The chance constraint formula is used for the power
balance in the lower model. In Equation (19), Pe,h(t) and Pe,g(t) are, respectively, the electric load power
for heating and the power-to-gas power at time t. Ph,e(t) and Pg,e(t) are, respectively, the generation
power of the CCHP unit and the fuel cell at time t. The equation of Ploss(t) is in [27].{

Pe,h(t) = Pe(t)Ce,h(t)
Pe,g(t) = Pe(t)Ce,g(t)

(19)

where Ce,h(t), Ce,g(t), and Ce,t(t) are, respectively, the power-to-heat and power-to-gas energy coupling
factors, which are determined by the upper decision-maker at time t.

Pmin
SB ≤ PSB(t) ≤ Pmax

SB ; Smin
SB ≤ SSB(t) ≤ Smax

SB

SSB(t + 1) =
{

SSB(t) − PSB(t)∆t/ηdis − ∆tDSBQSB, PSB(t) > 0
SSB(t) − PSB(t)∆tηch − ∆tDSBQSB, PSB(t) < 0

0 ≤ Pcut(t) ≤ Pmax
cut ; Pmin

grid ≤ Pe(t) ≤ Pmax
grid

(20)
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where SSB(t) and SSB(t + 1) are, respectively, the residual capacity at the end of time t and time t + 1.
ηdis is the discharging power of storage battery(SB). Smin

SB and Smax
SB are, respectively, the minimum and

maximum residual capacity of energy storage. DSB is the self-discharging coefficient of energy storage.
QSB is the capacity of energy storage. Pmin

SB and Pmax
SB are, respectively, the minimum and maximum of

energy storage output, respectively taken as −350 and 350 kW. Pmin
grid and Pmax

grid are, respectively, the
minimum and maximum power for external exchange, respectively, taken as −500 and 500 kW. Pmax

cut is
the interruptible load capacity signed by the microgrid and users, considered to be 100 in the model.

(2) Thermal Energy Subnet Constraints
Thermal energy subnet constraints include the thermal power balance, the cooling energy power

balance, the energy input constraint, and the operation constraints of the energy storage device.
PMT(t)Che + Pe,h(t) + Qx(t) = Lhe(t)
PMT(t)Cco + Pe,h(t) + Qx(t) = Lco(t)
αφe = Ce,h
X(t) = X(t− 1) + Qx(t) − λxQXU∆t

(21)

where Che and Cco are, respectively, the coefficients of the heating and cooling of the dual-effect
absorption unit at time t, respectively taken as 0.36 and 0.28. Lhe(t) and Lco(t) are, respectively,
the power of the heat load and the cooling load of the thermal energy subnet at time t. Qx(t) is the heat
(cooling) stored in the energy storage device at time t. A value greater than zero indicates storage;
otherwise, release is indicated. a is the residual heat coefficient of the micro gas turbine. X(t) and
X(t− 1) are, respectively, the residual heat (cooling) of the energy storage device at time t and t − 1.
λx is the self-loss coefficient of residual heat (cooling) in the energy storage device, considered as
0.1. QXU is the capacity of the energy storage device. When the energy storage device runs in the
heating mode, the first constraint is satisfied; when it runs in the cooling mode, the second constraint
is satisfied.

(3) Gas Energy Subnet
The gas energy subnet constraints include gas balance, the operation constraints of the gas storage

tank and the gas pipeline, and the energy conversion constraints.

Qin(t) + Gs(t) + Ge,s(t) =
PFC(t)

ηFC(t)QLHV
+ Lg(t)

Qs(t) = Qs(t− 1) + Gs(t)
Qmin

s ≤ Qs(t) ≤ Qmax
s

Gmin
s ≤ Gs(t) ≤ Gmax

s
Gmin

l ≤ Gl(t) ≤ Gmax
l

PFC(t) = Qin(t)Cg,e(t)
Ge,s(t) = Pe(t)Cg,e(t)

(22)

where Gs(t) is the gas emission from the gas storage tank at time t. Ge,s(t) is the gas volume produced
by power-to-gas conversion. Lg(t) is the heating load of the natural gas. Qs(t) and Qs(t − 1) are,
respectively, the residual gas of the gas storage tank at time t and t − 1, and Qmin

s and Qmax
s are the

minimum and the maximum. Gs(t) is the gas emission from the gas storage tank at time t, and Gmin
s

and Gmax
s are the minimum and the maximum. Gl(t) is the gas delivery capacity of the l-th pipeline at

time t, and Gmin
l and Gmax

l are the minimum and the maximum. Ce,g(t) is the energy coupling factor
of the gas-to-power conversion at time t. Cg,e(t) is the energy coupling factor of the power-to-gas
conversion at time t, which is determined by the upper decision-maker.
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2.4. Comprehensive Model

Combined with the upper model constructed in Section 2.2 and the lower model constructed in
Section 2.3, a comprehensive energy optimal dispatching model of an IES based on uncertain bilevel
programming was obtained, as shown in Equation (23).

min
C

min f up(C, ue, uh, ug)

s.t.

 Pr
{

fup ≤ f up

}
≥ αup

(8)
Where ue, uh, ug are the solutions o f f ollowing programming equations

min
ue,uh,ug

min f down(C, ue, uh, ug)

s.t.


r
{

fdown ≤ f down

}
≥ αdown

Pr{−δ ≤ ∆P ≤ δ} ≥ βdown
(17− 22)

(23)

where C is the energy coupling matrix of the upper decision variables. ue, uh, and ug are, respectively,
the decision variables of the lower decision-maker, that is, the optimal operation plan of the electric
power subnet, the thermal energy subnet, and the gas energy subnet. In this model, the energy
interconnection matrix formulated by the upper decision-maker directly affects a part of their own
objective function, namely the energy interconnection loss; on the other hand, it indirectly affects their
own objective function by influencing the decision made by the lower decision-maker. The lower
decision-maker’s decisions require the precondition and foundation of the upper.

3. An Optimization Model Solving Algorithm

The energy optimization dispatching model of the IES proposed in this paper is a typical mixed
integer nonlinear programming problem. Based on the features of this model, we used an improved
firefly algorithm (FA) to solve it.

3.1. The Firefly Algorithm

In 2008, by exploring the mutual attraction and movement process among fireflies, Cambridge
University scholars proposed a new group intelligence algorithm. It has been widely used in distribution
network problems and generator set problems. However, in the FA, the location information of each
individual firefly represents an optimization scheme within the space. Therefore, a traditional FA is
insufficient to find an optimal solution and easily becomes a local optimal solution. On this basis, we
constructed a new algorithm with which individuals can introduce a local-wide chaotic search, which
can fully explore the search ability of each individual, thus improving the performance of the algorithm.

The main modeling idea of the FA is that individual fireflies with high brightness can guide the
behavior of individuals with low brightness. The movement of the j firefly (weak brightness) to the i
firefly (the strongest brightness) is mathematically expressed as shown in Equations (24) and (25). r0 is
the range of perception of each firefly.

X j(t+1) = X j(t) + u j + β(0) × exp(−γrm) × (Xi(t) −X j(t)) (24)

u j = α(rand− 0.5) (25)

X j(t+1) and X j(t), respectively, represent the position vector of firefly j at the t and t + 1 time periods;
X j(t) represents the position vector of the brightest firefly in the sensing range of j in the t time period;
β(0) is the attraction force when the distance between two fireflies is zero, and attraction decreases
exponentially with distance when the distance is not zero; r is the distance between fireflies; γ is the light
intensity coefficient, which is a constant, and represents the degree of inertia of each firefly’s individual
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attraction; m is the number of fireflies. The parameter α in the formula is a random parameter between
0 and 1. uj is the random search volume adjusted by α. Therefore, the specific steps to improve the
firefly algorithm are as follows:

(1) Global Optimal Chaotic Search

For the current globally optimal individual firefly, a chaotic search is performed within its sensing
range. The search process is as shown in Equations (26) and (27). Logistic mapping is used as the
chaotic motion formula. Firstly, each dimension position variable corresponding to the current firefly
is mapped to [0,1]. Each iteration and the corresponding fitness of the firefly is recorded. When
the iteration is completed, the firefly position variable with the highest brightness in the process is
selected as the result of the chaotic search, which is finally mapped back to the original range of
position variables.

χu+1 = 4χu(1− χu) ,χu ∈ (0, 1) (26)

χ0 = rand(·) ,χ0 < {0.25, 0.5, 0.75} (27)

In the formula, χu+1 and χu are the values of the chaotic variables at the u + 1 and u iterations,
respectively; χ0 represents the initial values of the chaotic variables, and there are fixed points including
0.25, 0.5, and 0.75 in the equation, so the initial values of the chaotic variables should be avoided.

(2) Adaptive Light Intensity Coefficient

In the basic firefly algorithm, the light intensity coefficient is used as a constant value to characterize
the degree of inertia of the firefly’s individual attraction to the rest of the individual. In the optimization
process, if a self-adaptive adjustment process can be introduced to the coefficient, it can give the current
superior individual greater appeal. In order to further improve the efficiency of the firefly algorithm,
an adaptive strategy is introduced for the light intensity coefficient in the speed update formula as
shown in Equation (28) to form an adaptive light intensity coefficient firefly algorithm.

γs,i =

 γmin −
(γmax−γmin)∗( fs,i− fmin)

( favg,s− fmin)
, fs,i ≤ favg,s

γmax , fs,i > favg,s
(28)

γs,i is the inertia weight of firefly i for iteration s, γmax is the inertia weight’s upper limit, γmin is the
inertia weight’s lower limit. fs,i is the fitness value i for iteration s, and favg,s is the average of all firefly
fitness values at s. fmin is the minimum fitness and fmax the maximum fitness for all current fireflies.

3.2. The Solving Process

In this paper, the improved firefly algorithm is adopted to construct the energy optimization
scheduling model of the established comprehensive energy system. The specific calculation is divided
into two parts, namely creating the upper model and creating the lower model. The specific process is
as follows:

The process of the upper model is as follows:

(1) Set the firefly population size and population parameters of the upper model, including the firefly
number, the initial light intensity coefficient, the light intensity coefficient limit, the maximum
attraction, the algorithm iteration number, and the chaos search algebra.

(2) Randomly initialize the position of each firefly with the element value of the energy transformation
matrix as the position within the control variable. Each firefly’s location corresponds to a
pluripotent complementary coordination plan.

(3) Call the lower level solution model and calculate the comprehensive operating cost and the
multi-energy complementary coordination cost of the system corresponding to each firefly
according to the objective function and constraint conditions, and calculate the brightness
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corresponding to each firefly according to the cost. The lower the operating cost of the system,
the higher the brightness.

(4) For each individual firefly, select the individual firefly with the highest brightness in its perception
range, calculate the distance and attraction between them, and update the position of the
individual firefly. If the individual firefly is brightest within the range of perception, a chaotic
search is conducted.

(5) Determine whether the solution result of the algorithm converges to the set accuracy, indicating
that the comprehensive cost index under the multi-energy complementary coordination plan
corresponding to all fireflies is optimal, or whether the number of iterations has reached the
set number of iterations. If “yes,” then the current energy conversion matrix is output and the
algorithm ends. Otherwise, return to Step (3).

The process of the lower model is as follows:

(1) Set the firefly population size and population parameters, including the firefly number, the
initial light intensity coefficient, the light intensity coefficient limit, the maximum attraction,
the algorithm iteration number, and the chaos search algebra. At the same time, input the
multi-energy complementary coordination plan provided by the upper model.

(2) Within the scope of control variables, use the operation plan of each energy subnet equipment
under the multi-energy complementary coordination plan as the location to randomly initialize
the location of each firefly. Among them, the position information of each firefly corresponds to a
device output plan.

(3) Calculate the operating cost of the system corresponding to each firefly according to the objective
function and constraint conditions of the underlying model, and calculate the brightness
corresponding to each firefly according to the cost. The lower the operating cost of the system,
the higher the brightness.

(4) For each individual firefly, select the individual firefly with the highest brightness in its perception
range, calculate the distance and attraction between them, and update the position of the
individual firefly. If the individual firefly within the range of perception itself is the highest
brightness, the chaos search has been conducted.

(5) Determine whether the solution result of the algorithm converges to the set accuracy, that is the
operating cost index of the equipment output plan corresponding to all fireflies has reached the
optimal level, or whether the number of iterations has reached the set number of iterations. If so,
the optimal cost will be fed back to the upper level solution model, and the algorithm will be
finished. Otherwise, return to Step (3).

Based on this, the solving process of the energy optimal dispatching model for a comprehensive
energy system can be obtained, using this improved firefly algorithm to perform the uncertain bilevel
programming, as shown in Figure 3.
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4. Simulation Example

In order to verify the validity and feasibility of the model, a pilot base in Hebei Province was
selected as a research object for analysis of an IES example. The IES mainly consisted of a wind turbine,
a photovoltaic generator, a cogeneration unit, an energy storage device, a methane reflection unit, a
dual-effect absorption unit, and a fuel cell, and the system had obvious complementary characteristics.
Its topological structure is shown in Figure 1.

4.1. Basic Data

The energy optimal dispatching model of an IES established in this paper takes into account
the uncertainty of wind power generation, photovoltaic power generation, and load level, and the
power curve data are the benchmark data. Simultaneously, the optimal dispatching time span is 1 day,
divided into 24 runtime periods of 1 h. The system wind power output, photovoltaic power output,
power load, heat load, and cooling load curves within typical days in winter and summer are as shown
in Figures 4 and 5. The above energy power levels follow the uncertain distribution; that is the wind
power output adopts the Weill distribution [28], the photovoltaic output uses a distribution [29], and
the load level uses a positive distribution [30].
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Performance parameters of each piece of grid-connected equipment in the IES is shown in Table 2.
Environmental conversion costs for cooling–heat–electric co-generation micro gas turbines and fuel
cells are shown in Table 3. Whether purchasing or selling electricity to the outside network, the IES
follows the TOU price level of the outside network, as shown in Table 4.

Table 2. Performance parameters of micro-sources.

Micro Power Supply Type Unit Investment
Cost (¥/kW)

Lifetime
(Year)

Operation and
Maintenance
Cost (¥/kW)

Maximum Access
Capacity (kW)

Minimum Access
Capacity (kW)

Discount
Rate (%)

Micro gas turbine 10,000 25 0.04109 350 150 8
Fuel cell 12,000 25 0.0296 240 0 8

Photovoltaic power generation 20,000 25 0.0096 240 0 8
Wind power generation 50,000 20 0.0132 200 0 8
Battery energy storage 667 10 0.009 250 −250 8

Dual-effect absorption unit 5200 20 0.036 4000 200 8
Energy storage device 2600 20 0.022 1000 200 8
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Table 3. Conversion cost of pollutants and emission factors. Micro-turbine (MT): kg/kW; Full Cell(FC):
kg/kW.

Pollutant Type Converted Cost (¥/kg) MT Emission Factor (kg/kW) FC Emission Factor (kg/kW)

NOx 26.54 4.4 × 10−4 4.5 × 10−6

SO2 6.238 8.0 × 10−6 2.25 × 10−6

CO2 0.0868 1.6 × 10−3 4.27 × 10−3

Table 4. Time-of-use (TOU) power price.

Period Type Period Price (¥/kWh)

Peak period 10:00–15:00 and 18:00–21:00 0.83
Valley period 00:00–07:00 and 23:00–24:00 0.17

Flat period The rest 0.49

In the process of IES energy optical dispatching, the gas price CNG is 2.06 ¥/m3; the subsidy price of
distributed photovoltaic generation F is 0.42 ¥/kWh; load interruption compensation coefficient β is 3; SB
discharging efficiency ηdis and SB charging efficiency ηch are both 0.88; the self-discharge coefficient of
energy storage DSB is 0.1; the capacity of energy storage QSB is 1000 kWh; the self-loss coefficient of the
remaining heat (cooling) of energy storage device λx is 0.1; the capacity of gas storage tank Qmax

s is 400
m3. In addition, in the improved firefly algorithm, it was assumed that the quantity of the initial state is
100, the initial firefly number is 20, the maximum number of iterations is 200 generations, and D is 100.

4.2. Scenario Setting

For the simulation analysis of the model proposed in this paper, two main scenarios were set up
for discussion. One was the IES on a typical winter day taking into account the electrical and heat
loads of the system, where the dual-effect absorption unit is in the heating state; the other was the IES
on a typical summer day taking into account the electrical and cooling loads, where the dual-effect
absorption unit is in the refrigeration state. From the given confidence level, various confidence levels,
and different algorithms, the system operation schemes of typical days in winter and summer were
further analyzed.

4.3. Simulation Results in Different Scenarios

In the energy optimization dispatching model, the confidence degree of the objective function
was 0.9 in the upper model and the lower model, and the confidence degree was 0.95 in the constraint
condition. The comparison discussion is as follows.

4.3.1. Results for a Typical Winter Day

For a typical winter day’s operation, the IES energy optimization dispatching model established
in this paper obtained an optimal operation scheme as shown in Figure 6.

As can be seen in Figure 6, the operation scheme of the IES fully invokes various power generation
equipment and energy supply equipment, which satisfies the electric load and heat load demand of
the system. From the 1st to the 5th period of the day, the external network TOU power price level is
low, the energy storage is in the charging state, and the methane reaction unit is basically operating in
a power-to-gas state. However, due to the high wind power output in the system and the low level of
the electric load, the IES does not purchase electricity on a large scale from the external network. In the
energy storage device charging and methane units, the electricity for power to gas (P2G) is basically
from the distributed wind power output. From the 6th to the 8th period, the first peak of electric load
happens, and the distributed new energy output is unable to meet the needs of system operation.
As a result, the fuel cell is turned on, and the system purchases electricity from the external network.
However, since the heat load level is still low, the economics of the operation of the CCHP unit is not
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superior; thus, the MT output is not large. From the 9th to the 13th period, the system is still at the
peak of electric load, but also at the peak of heat load. The IES makes full use of the energy storage
device discharge, and the CCHP unit provides the heat and power with the fuel cell output, while fully
utilizing the methane reaction unit for gas-to-power activities. For the heat load, large-scale heat
purchased from the thermal energy external network is also carried out to meet the system operation
requirements. Since the external network TOU power price is relatively high, and the internal power
supply cost of the IES is lower, the system sells electricity to the external network to obtain revenue.
In the 14th period, the electric load enters a valley period. The methane reaction unit is transferred to
the power-to-gas mode due to the relatively high operating cost, and the natural gas produced through
P2G is input into the gas storage tank. From the 15th to the 23rd period, the system enters the second
electric load peak, while the heat load level is still high. The operating conditions of the system are
similar to those from the 9th to the 13th periods, but the difference is that, during the 20th period,
the electric load reaches a peak of one day. Therefore, the system needs to buy electricity from the
external network and even carry out a more expensive interruptible load to ensure the reliability of
system operation.
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Figure 6. An IES optimization operation scheme for a typical winter day (Micro-turbine: MT, FC: Fuel
Cell, SB: Storage Battery).

According to the above analysis, on a typical winter day, the IES adopts multiple power supply
and heating modes to perform a multi-energy complementary operation, which satisfies the user’s
demand and improves the social and economic benefits of IES operation. The comprehensive operating
cost of the system is ¥7890.25.

In fact, the operating cost curve of the IES can be obtained for each period of a typical winter day,
as shown in Figure 7.
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4.3.2. Results for a Typical Summer Day

For a typical summer day’s operation, the IES energy optimization dispatching model established
in this paper obtained an optimal operation scheme as shown in Figure 8.
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It can be seen in Figure 8 that the principle of the IES optimization operation scheme is basically
the same as that for a typical winter day. In each peak and valley period of the system, the energy
storage equipment of the power subnet, the storage device of the thermal energy subnet, and the
methane reaction unit of the gas energy subnet and the gas storage tank all play a role in the peak
shaving shift. Simultaneously, comparing the operation of a typical summer day and that of a typical
winter day, the main differences lie in the wind power output, the level and distribution characteristics
of the photovoltaic output, the load level, and the curve shape. Therefore, the minimum operating cost
of a typical summer day is ¥8658.77 at a given confidence degree.

In fact, the operating cost curve of the IES can be gained for each period of a typical summer day,
as shown in Figure 9. As we can see in the figure, compared with the environment conversion cost, the
IES has a larger proportion of expenditure in terms of economic cost. The operating cost curve of each
period is basically positively correlated with the comprehensive load level of the system.
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4.4. Result Analyses

4.4.1. Result Comparison

We can compare the operation results between the upper decision-maker and the lower,
sub-decision-maker under the two operation modes of typical winter and summer days, as shown in
Table 5. Obviously, subnet operation shows that the operating cost of the power subnet is the largest,
followed by that of the thermal subnet and subsequently that of the gas energy subnet. The cost of the
operation of the IES in each period of a day can be seen visually.

Table 5. The comprehensive operating costs under the two operation modes of typical winter and
summer days.

Typical Winter Day/¥ Typical Summer Day/¥

Upper model Energy conversion loss 312.07 273.11

Lower model
Power subnet 3656.48 3772.54

Thermal subnet 2205.36 2143.99
Gas energy subnet 1806.34 2469.13

Total operating cost 7890.25 8658.77

As can be seen in Table 5, under a given confidence level, the operating cost of the IES on a
typical winter day is lower than that on a typical summer day. This is mainly due to the adoption
of a multi-energy complementary and coordinated IES. In view of the heat load of the typical winter
day, the IES can fully formulate a coordination plan among the electric power subnet, the thermal
energy subnet, and the gas energy subnet, which further reduces the heating cost of the system.
In addition, in order to show the operational advantages of the IES, considering the same load level,
the operating cost of the traditional microgrid with only one form of energy supply is ¥8863.07 in
winter and ¥10,774.88 in summer. Compared with the operation mode proposed in this paper, the
operating cost of the IES in winter and summer is obviously reduced by 12.33% and 33.7%, respectively.

4.4.2. Multiple Algorithm Comparison

In order to verify the effectiveness of the improved firefly algorithm proposed in this paper,
the basic particle swarm optimization algorithm, the basic firefly algorithm, and the improved firefly
algorithm in this paper were used to solve the same IES optimization operation model, and the
performance indexes under various circumstances were compared, as shown in Table 6.

Table 6. Comparison of the performance indexes of the algorithms.

Operating Index Operating Cost in a
Typical Summer Day (¥)

Solution Time of
Typical Summer Day(s)

Operating Cost in a
Typical Winter Day (¥)

Solution Time of
Typical Winter Day(s)

Particle swarm
optimization 9254.63 34.63 8742.30 32.03

Firefly Algorithm (FA) 8949.21 19.03 8336.15 22.06
Improved Firefly
Algorithm (IFA) 8642.97 15.47 7884.64 18.17

Compared with the particle swarm optimization and the basic firefly algorithm, the algorithm
proposed in this paper has obvious advantages not only in running cost but also in solving time.

4.4.3. Sensitivity Analysis of Multi-Confidence

In order to compare the operating results under different confidence values, we selected other
confidence values to obtain the minimum operating cost of the IES under the corresponding conditions,
as described below.
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(1) For a typical winter day’s operation, we selected the optimal operating cost distribution under
different objective function confidence values and different constraint conditions, as shown in Figure 10.
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(2) For a typical summer day, we selected the optimal operating cost distribution under different
objective function confidence values and different constraint conditions, as shown in Figure 11.
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As can be seen in Figures 10 and 11, on typical winter and summer days, as the confidence of
the objective function and the confidence of the constraint increase, the optimal operating cost of
the system continuously increases. The results show that, with the increase in the confidence of the
objective function, the confidence degree of the minimum value of the objective function is greater, and
the operating plan developed by the system is more conservative, but the operating cost of the system
increases. When the confidence degree of the constraint condition increases, the confidence of the
system with respect to the power balance constraint requirement will also increase, which increases
the operating cost of the system.

Based on this, in the development of an energy optimization dispatching plan for an IES, main
decisions depend on the decision-maker’s own risk preferences and realistic requirements. With
increasing confidence, reliability requirements for the establishment of the objective functions and
constraints of IESs will become increasingly stringent, planned operating costs of the system will
increase, and reliability should be compensated by sacrificing economy. If the decision-maker is
risk-taking, or the actual operation requires less reliability, they will tend toward a lower objective
function confidence and fewer constraint conditions to achieve a lower cost; if the decision-maker is
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risk-averse, or the actual operation requires higher reliability, they will tend toward a higher target
function confidence and more constraint conditions, and they will compensate for the reliability with a
higher planned operating cost.

5. Conclusions

Combining the basic structure of an IES, an energy optimization model of an IES based on uncertain
bilevel programming was constructed in this paper. In order to verify the validity of our model, a pilot
area in Hebei Province was selected as an IES example. We have drawn the following conclusions.

(1) Under a given confidence level, the typical daily operating cost of an IES in winter (¥7890.25) is
lower than that in summer (¥8658.77).

(2) Under the same load level, the operating costs of an IES on typical days in winter and summer
are respectively 12.33% and 33.7% lower than those of a traditional microgrid.

(3) Under different solving algorithms, the running costs in winter and summer solved with the
improved firefly algorithm are respectively 10.8% and 7.1% lower than those determined with the
particle swarm optimization algorithm, and the solving time is reduced by 19.16 s and 13.86 s.
These costs are 5.73% and 3.54% lower than those determined by the basic firefly algorithm, and
the solution time is reduced by 3.89 s and 3.56 s.

(4) Under various confidence levels, the optimal operation cost of the system increases with the
increase in the confidence of the objective function and the constraints, regardless of what
operation scheme is adopted.

This paper focuses on the energy scheduling problem of the integrated energy system, and only
considers the logical relationship between the energy conversion formulation center and the various
energy subnets. However, in future research, it is necessary to consider the uncertainty caused by
the system operation uncertainty and to also consider a demand response mechanism to improve the
economy of the system as well as other issues.
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Nomenclature

e Power subnetwork λθFC FC θ-th pollutant emission coefficient
h Thermal subnetwork PFC(t) Fuel cell power generation in t period
g Gas energy subnetwork αdown Confidence of the underlying objective function

E Energy subnetwork collection for IESs f down

The optimistic value of the objective function
when the confidence of the lower model is
αdown

ci j(t) Energy coupling factor in t period ∆P Power subnet unbalanced power deviation
Pi(t) Input power of the i-th energy grid in t period δ Power balance maximum running deviation

Li(t) Load power of the i-th energy grid in t period βdown
Confidence in meeting power balance
conditions

C(t) Energy coupling matrix of IES in t period Pe,h(t) Heating load power in t period
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P(t) Energy input vector in t period Pe,g(t) Power to gas conversion power in t period
L(t) Energy load vector in t period Ph,e(t) Cogeneration unit power generation in t period
vi j(t) Allocation factor c in t period Pg,e(t) Fuel cell power generation in t period
ηi j(t) Efficiency factor in t period Ploss(t) Loss of power in t period

T Number of scheduling days per day Ce,h(t)
Energy coupling factor of power to heat in t
period

∆t Length of scheduling time Ce,g(t)
Energy coupling factor of power to gas in t
period

Ci(t)
Operating cost of the i-th energy network in t
period

SSB(t) SB remaining power at the end of t period

q j(t)
The marginal cost per unit power of the j-th
energy source in t period

SSB(t + 1) SB remaining power at the end of t + 1 period

pgrid(t) External network TOU price level in t period ηdis SB discharge efficiency
CNG Natural gas unit price ηch SB charging efficiency

QLHV Low calorific value of natural gas Smin
SB

The minimum amount of residual energy
stored

Phe(t)
Heating power of the micro gas turbine in the
t-th period

Smax
SB

The maximum amount of residual energy
stored

ηMT,he(t)
Heating efficiency of the micro gas turbine in
the t-th period

DSB Energy storage self-discharge coefficient

αup Confidence of the upper objective function QSB Energy storage capacity

f up
The optimistic value of the objective function
when the upper model confidence is αup

Pmin
SB Minimum energy storage output

Ce
One-day comprehensive operating cost of the
power subnetwork

Pmax
SB Maximum energy storage output

Ch
One-day comprehensive operating cost of the
heat subnetwork

Pmin
grid

Exchange power minimum with external
network

Cg
One-day comprehensive operating cost of the
gas subnetwork

Pmax
grid

Exchange power maximum with external
network

Pe(t)
The power of power subnetwork to buy and
sell power to network in t period

Pmax
cut

Interruptible load capacity signed by the
microgrid and the user

Pe,h(t)
the power of power subnetwork convert to heat
subnetwork in t period

Che
Heating coefficient of double-effect absorption
unit

Pe,g(t)
The power of power subnetwork convert to gas
subnetwork in t period

Cco
Refrigeration coefficient of double-effect
absorption unit

F
Government subsidized price for distributed
photovoltaic power generation

Lhe(t)
Heat load power of thermal energy subnetwork
in t period

PPV(t) Photovoltaic output power in t period Lco(t)
Cooling load power of thermal energy
subnetwork in t period

PWT(t) Wind power output in t period Qx(t)
Heat stored in the energy storage device
(cooling capacity) in t period

kWT
Wind power operation and maintenance cost
coefficient

a Residual heat coefficient of micro gas turbine

kPV
Photovoltaic operation and maintenance cost
coefficient

X(t)
Residual heat (cooling capacity) of the energy
storage device during the t period

PSB(t)
Charge and discharge power of stored energy
in t period

X(t− 1)
Residual heat (cooling capacity) of the energy
storage device during the t− 1 period

uch(t)
The state of being charged with stored energy
in t period

λx
Self-loss coefficient of residual heat (cooling
capacity) of energy storage device

udis(t) The discharge state of stored energy in t periodQXU Capacity of energy storage device

kch
Energy storage life loss cost factor during
charging

Gs(t)
The amount of gas released from the gas
storage tank in t period

kdis
Energy storage life loss cost coefficient during
discharge

Ge,s(t)
The amount of gas produced by power to gas
in t period

λ Interruption compensation coefficient Lg(t) Natural gas heating load
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Pcut(t) Load interruption capacity in t period Qs(t) Gas tank gas remaining amount in t period
N(x) Maximum number of cycles Qs(t− 1) Gas tank gas remaining amount in t− 1 period
Cinit Energy storage initial fixed investment cost Qmin

s Gas tank gas residual minimum

ESB,start
Initial state of charge during charge and
discharge

Qmax
s Gas tank gas residual maximum

ESB,end
End state of charge during charge and
discharge

Gmin
s Gas tank gas release minimum

Emin
SB Energy storage minimum discharge depth Gmax

s Gas tank gas release maximum

Emax
SB Energy storage maximum allowable power Gl(t)

The amount of gas that is transported by an air
network l-th pipeline in t period

cch/cdis Charge and discharge influence factor Gmin
l

The minimum amount of gas to be transported
in the l-th conveying pipeline

PMT(t) CCHP type MT heating power in t period Gmax
l

The maximum amount of gas transported in
line l

ηMT(t) CCHP type MT heating efficiency in t period Fi Colonial i’s power

θ Contaminant category, a total of n pollutants Cg,e(t)
Gas-to-electric energy coupling factor in t
period

λθMT Emission coefficient of MT θth pollutant Jimp Empire collection
cθ Unit emission control cost of the θth pollutant ξ Colonial power composition coefficient

Cg
Gas energy subnetwork operation combined
cost

Qin(t) Air source point intake in t period
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