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Abstract: The effect of the number of waves and the width of the ridge and valley in chord direction
for a wavy airfoil was investigated at the angle of attack of 0◦ and Reynolds number of 103 through
using the two-dimensional direct numerical simulation for four kinds of wavy airfoil shapes. A new
method for parameterizing a wavy airfoil was proposed. In comparison with the original corrugated
airfoil profile, the wavy airfoils that have more distinct waves show a lower aerodynamic efficiency
and the wavy airfoils that have less distinct waves show higher aerodynamic performance. For the
breakdown of the lift and drag concerning the pressure stress and friction stress contributions,
the pressure stress component is significantly dominant for all wavy airfoil shapes concerning the lift.
Concerning the drag, the pressure stress component is about 75% for the wavy airfoils that have more
distinct waves, while the frictional stress component is about 70% for the wavy airfoils that have
less distinct waves. From the distribution of pressure isoline and streamlines around wavy airfoils,
it is confirmed that the pressure contributions of the drag are dominant due to high pressure on the
upstream side and low pressure on the downside; the frictional contribution of the drag is dominant
due to large surface areas of the airfoil facing the external flow. The effect of the angle of attack on
the aerodynamic efficiency for various wavy airfoil geometries was studied as well. Aerodynamic
shape optimization based on the continuous adjoint approach was applied to obtain as much as
possible the highest global aerodynamic efficiency wavy airfoil shape. The optimal airfoil shape
corresponds to an increase of 60% and 62% over the aerodynamic efficiency and the lift from the initial
geometry, respectively, when optimal airfoil has an approximate drag coefficient compared to the
initial geometry. Concerning an fixed angle of attack, the optimal airfoil is statically unstable in the
range of the angle of attack from −1◦ to 6◦, statically quasi-stable from −6◦ to −2◦, where the vortex
is shedding at the optimal airfoil leading edge. Concerning an angle of attack passively varied due to
the fluid force, the optimal airfoil keeps the initial angle of attack value with an initial disturbance,
then quickly increases the angle of attack and diverges in the positive direction.
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1. Introduction

Recently, micro-air vehicles (MAVs) [1], nano-air vehicles (NAVs) [2], and pico-air vehicles
(PAVs) [3] have been widely used by researchers, security and law enforcement agencies, search and
rescue operators, firefighters, farmers, filmmakers, photographers, and delivery companies. Motivated
by the enormous global appetite for applying MAVs, NAVs, and PAVs, the design of high aerodynamic
performance airfoils for these applications has received considerable attention in recent years. Micro-,
nano-, and pico-air vehicles are working at low Reynolds number (Re) [4,5]. In particular, it is worth
mentioning Defense Advanced Research Projects Agency (DARPA) specifications for NAVs with an
extremely small wingspan <7.5 cm and working at Re < 15,000, and PAVs working at Re < 3000 [6].
Thus, the study of aerodynamics and shape optimization for airfoils at ultra-low Reynolds numbers
becomes pertinent for engineered flying objects. For the Reynolds number region from 20,000 to 5× 105,
various investigations of aerodynamic phenomena have appeared [5,7–9]. However, the databases of
airfoils at Reynolds number less than this range airfoil data below this range are very limited [10–13].
Of particular interest in this study is the level of Reynold number at 103. Here, this Reynolds number
regime is called ultra-low. Although many MAVs, NAVs, and PAVs have been designed over the last
few years, the typically applied airfoil platform is still the contractible version of that applied for the
giant aircraft at high Reynolds number. Due to the difference between the high Reynold number regime
and the ultra-low Reynolds number regime, such as the dominant inertial force for the high Reynold
number regime but dominant viscous force for the ultra-low Reynold number regime, the optimal
airfoil design for the giant aircraft might be distinguished momentously from that for MAVs, NAVs,
and PAVs. Therefore, there is an important requirement to readjust the typical streamlines airfoil
platform for ultra-low Reynolds numbers regime.

One way of designing effective airfoils at ultra-low Reynolds number is by biomimetics [5,14–16].
The dragonfly is considered as a high-performance flyer. The typical range of the Reynolds number
for dragonflies is from 100 to 10,000 [17], which can be categorized as the ultra-low Reynolds number
flow regime. Dragonflies have both gliding and flapping flight modes. When flapping, they can
suddenly accelerate and stop, hover, and turn [18]. In gliding flight, the dragonfly elevates into the
air using powered (flapping) flight and makes use of potential energy to move horizontally above
the ground [19,20]. It is generally known that the dragonfly has highly corrugated wings where
the wing’s cross-section varies along the chordwise direction, as seen in Figure 1, unlike that of
a typical engineered airfoil which is streamlined and smooth cambered. Extensive biological and
aerodynamic studies of corrugated airfoils have been carried out by many researchers [18,21–26].
Visualization of the two-dimensional flow field around the blade cross section using a bent airfoil
has been made by Komine [27]. Our previous study has conducted numerical analysis of the two-
and three-dimensional flow fields around the corrugated airfoil and quantitative evaluation of the
aerodynamic characteristics [28]. It has been found that the corrugated airfoil performs significantly
better than the streamlined airfoil at ultra-low Reynolds number with the low angle of attacks,
and performs as well at the high angle of attacks.

Figure 1. A corrugated airfoil.

There are several attempts to explain the reason of the unexpected improvement in the
aerodynamic performance for the corrugated airfoil at ultra-low Reynolds number. One explanation
is that air flow over the airfoil corrugations is trapped between the valleys and essentially forms a
virtual streamlined airfoil [20,23]. Another explanation is that the delay of the flow separation or the
earlier reattachment of the flow separation for the corrugated airfoil corresponds to the improved
performance [18,25]. In spite of different explanations for the improved aerodynamic performance,
these studies unanimously agree that the corrugated airfoil performs well in ultra-low Reynolds
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number regimes. Thus, such corrugated airfoils could be candidates for MAVs, NAVs, and PAVs.
Since the dragonfly’s flight forms include flapping and glide, the corrugated airfoil shape can be
considered to have been optimized for multiple purposes. Research on flapping using corrugated wing
has been conducted by experiments and numerical calculations from the viewpoint of developing
MAVs, NAVs, and PAVs [29–31]. Flapping wings are said to be able to obtain higher thrust than gliding
wings, but application issues such as complicated mechanisms results in increased weight and less
flight time. For fixed wing MAV, NAVs, and PAVs, wings that simultaneously provide a superior
aerodynamic performance and structural robustness are critical. However, there is no guarantee that
wing sections like dragonflies are optimized for aerodynamic characteristics during gliding. Therefore,
in order to obtain an airfoil shape that exhibits higher aerodynamic performance in gliding at ultra-low
Reynolds number, aerodynamic shape optimization for a corrugated airfoil of dragonflies is necessary.

Over the past several decades, aerodynamic shape optimization has been successfully applied
for two-dimensional and simple three-dimensional configurations. General aerodynamic shape
optimization includes a global method based on a heuristic algorithm and gradient method. The global
optimization method is a probabilistic method that simulates biological phenomena and physical
phenomena, as represented by genetic algorithms [32], artificial neural networks [33], and response
surface method [34]. This method can search for solutions without convergence to local solutions even
when the objective function has multimodality. However, it takes up huge amounts of computational
resources and is time-consuming to obtain an optimal solution. On the other hand, researchers [35]
found efficient global optimization of expensive black-box functions by using response surfaces for
global optimization lies in balancing the need to exploit the approximating surface with the need
to improve the approximation. For the gradient-based aerodynamic shape optimization, through
simplifying the description of real-life problems, the optimal solution is searched by analytically
finding the gradient vector and Hessian matrix related to the design variables concerning the objective
function. In particular, adjoint-based methods [36–40] seem to be an attractive alternative, since the
sensitivity analysis is independent of the number of design variables and proportional to the number
of aerodynamic cost functions. In addition, the cost function gradient concerning the design variables
is calculated indirectly by solving the flow governing equations and the adjoint equation, in which the
cost of calculating the adjoint equation is almost the same as that of solving the flow equations. Based
on the order of discretization and derivation of the adjoint equations, the adjoint-based method can
be further classified as continuous and discrete. The advantage of the continuous adjoint method is
that it is independent of the method used to solve the flow equations. Adjoint-based methods have
been utilized in diverse areas such as aerospace [41,42], marine [43], and biomedical engineering [44].
In addition, they have been used to design optimal airfoil [6,39,43,45–47]. In this study, an aerodynamic
shape optimization procedure for a corrugated airfoil of dragonflies using a continuous adjoint method
is implemented. A time marching finite difference method is utilized to solve the flow and adjoint
equations. The properties of the adjoint equations are very similar to the flow equations, thus many
numerical schemes for flow solvers can be applied to the adjoint solvers as well. The simple steepest
descent algorithm is employed to minimize the objective function.

By the way, many of these studies treat wings as rigid bodies. Naka and Hashimoto have
conducted experiments using a wing model of an elastic film and a rigid rod that reproduces the
deformation of a dragonfly wing when flapping and gliding flight [48,49]. Numerical calculations
using this wing model are also performed for glide, and the flow is left by deforming the wing so that
it twists around the span direction axis. It is clear that the drag coefficient reduction rate is increased
more than that of the lift coefficient, resulting in a higher lift-drag ratio than the rigid wing. Numerical
calculation of the corrugated airfoil considering deformation is also important for evaluating the
strength of wing for receiving force from fluid. In particular, when handling a rigid three-dimensional
corrugated wing, it is predicted that the moment of force around the root of the wing will be larger
than that of an elastic wing. At present, few studies have been conducted to evaluate and compare the
hydrodynamic force and moment of force acting in each case where the corrugated wing during flight
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is an elastic body and a rigid body. Therefore, in this study, the hydrodynamic moment of force and
the attitude stability of the optimal airfoil for ultra-low Reynolds number regime in gliding flight is
investigated as well.

One objective of this study is to conduct a systematic investigation to study the improvement in
aerodynamic performance for a series of wavy airfoil profiles generated by modifying the number of
waves and the width of the ridge and valley in the chord direction. A novel scheme is proposed to
represent corrugations, that is, the width of the ridge and valley of a wavy airfoil in the chord direction
is expressed by the wavenumber of the sine wave. The height of the wave in the chord direction is
limited by the envelope of the aircraft airfoil NACA20408. First, the effect of the number of waves and
the width of the ridge and valley on the lift coefficient, drag coefficient, and the aerodynamic efficiency
are investigated through intentionally changing waves for the airfoil. Various cases are considered.
The number, width, and height of waves are varied on the whole airfoil, while the thickness of the
wavy airfoil is fixed at 1% of the chord length. The effect of the angle of attack on the aerodynamic
efficiency for various wavy airfoil geometries is studied as well.

Another objective of this study is to optimize the waves for high aerodynamic performance
(in terms of lift-to-drag ratio) using a continuous adjoint method. The aerodynamic shape optimization
is conducted on a high aerodynamic efficiency wavy airfoil, in which the NACA2408 airfoil is
used as the envelope for the height of corrugations. Performance of the optimized wavy airfoil,
the original corrugated airfoil, and NACA2408 airfoil are compared. Due to our application pointing to
ultra-low Reynolds number regime in gliding flight, the Reynolds number and angle of attack for the
optimization is Re = 1× 103 and α = 0◦, respectively. The flow governing equations and the adjoint
equations are calculated through a time-marching finite difference method. The minimizations of the
objective function are carried out by using the steepest descent algorithm.

The third objective of the present paper is to evaluate the hydrodynamic moment of force and
the attitude stability of the optimal airfoil for ultra-low Reynolds number regime in gliding flight
is investigated as well. There are two applied problem settings. One is that the angle of attack of
the optimal wavy airfoil, the original corrugated airfoil, and NACA2408 airfoil are fixed to discuss
the hydrodynamic moment of force and statically stability. Another is that the angle of attack of the
optimal wavy airfoil is passively changed by the fluid force to study the attitude stability.

2. Computational Methodology

In this study, there are two applied problem settings. One is that the angle of attack of the airfoil
is fixed to investigated the improvement in aerodynamic performance for a series of wavy airfoil
profiles generated by modifying the number of waves and the width of the ridge and valley in the
chord direction and optimize the waves for high aerodynamic efficiency using a continuous adjoint
method. The computational theory for the first problem setting is introduced in Sections 2.1–2.3.
Another is that the angle of attack of the airfoil is passively changed by the fluid force to analyze the
attitude stability. For the latter, a moving grid technical adapted to the moving airfoil surface is applied.
The computational theory for the second problem setting is introduced in Section 2.4. More details of
computation of the attitude stability of airfoil are described in our previous studies [28].

2.1. Flow Equations

This section presents the flow governing equations for numerically calculating the flow field over
the airfoil. Consider a domain Λ, with boundary Θ that is spatial and temporal and occupied by a fluid
of density ρ and dynamic viscosity µ. The spatial and temporal coordinates are denoted by x and t.
For the incompressible Newtonian fluid, the continuity equation and the Navier–Stokes equations can
be represented as

∇ · u = 0 on Λ× (0, T), (1)

ρ

(
∂u
∂t

+ u · ∇u
)
−∇ ·

[
−pE + µ

(
∇u + (∇u)T

)]
= 0 on Λ× (0, T), (2)



Energies 2020, 13, 467 5 of 27

where u means the velocity, p denotes the pressure, and E is identity tensor. The boundary conditions
are either on the flow velocity or stress. Both Dirichlet and Neumann-type boundary conditions are
considered:

u = g on Θg, (3)

n ·
[
−pE + µ

(
∇u + (∇u)T

)]
= h on Θh. (4)

Here, n is the unit normal vector on the boundary Θ. Θg and Θh are the subsets of the boundary
Θ. The boundary Θ can be further split, such as ΘU , ΘD, and ΘS are the upstream, downstream,
and lateral boundaries, respectively, and ΘB is the body surface. The initial velocity condition can be
written as

u(x, 0) = u0 on Λ. (5)

Here, u0 indicates divergence free. The drag and lift force coefficient, (Cd, Cl ), on the body are
calculated using the following expression:

(Cd, Cl) =
2

ρU2S

∫
ΛB

[
−pE + µ

(
∇u + (∇uT)

)]
ndΛ. (6)

The time-averaged drag and lift coefficients can be computed from:

CD =
1
T

∫ t0+T

t0

Cd(t)dt, (7)

CL =
1
T

∫ t0+T

t0

Cl(t)dt. (8)

Note that the time should start at t0 until the flow is fully developed and the time interval for
averaging T should be large enough so that the mean value is stationary.

2.2. The Continuous Adjoint-Based Aerodynamic Optimization Method

The continuous adjoint-based aerodynamic optimization method is presented in this section.
Let ΘB be the segment of the boundary Θ, whose shape is to be determined by the set of parameters
ω = (ω1, . . . , ωm). Let Ic(Ω, ω) be the objective, in which the independent variables includes the
flow variables Ω = (u, p) and shape parameters ω. Thus, minimizing the objective function Ic(Ω, ω),
the shape parameters ω are determined in the optimization procedure. When ω makes a small change,
a corresponding small change of Ic appears. Namely,

δIc =

[
∂IT

c
∂Ω

]
δΩ +

[
∂IT

c
∂ω

]
δω. (9)

The flow Equations (1) and (2) can be written as = = (=u,=p) = 0, which expresses the
dependence on Ω and ω and seems to exist as the constraint conditions for the objective function
Ic = Ic(Ω, ω). Then, =(Ω, ω) = 0 can be written. Thus, δΩ can be determined from

δ= =

[
∂=
∂Ω

]
δΩ +

[
∂=
∂ω

]
δω = 0. (10)

An augmented objective function is constructed to convert the constrained problem into an
unconstrained one. The flow equations are augmented to the original objective function by introducing
a set of Lagrange multipliers or adjoint variables ψ = (ψu, ψp):

I = Ic +
1
T

∫ T

0

∫
Λ

ψ ·=dΛdt. (11)
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If the flow variables, Ω, exactly satisfy the flow Equations (1) and (2), the augmented objective
function (11) degenerates to the objective function Ic. Then, the first variation of the augmented
objective function (9) can be written as follows:

δI =
∂I
∂Ω

δΩ +
∂I
∂ω

δω +
∂I
∂ψ

δψ, (12)

where
∂I
∂Ω

=

([
∂IT

c
∂Ω

]
+

1
T

∫ T

0

∫
Λ

ψT ∂=
∂Ω

dΛdt

)
, (13)

∂I
∂ω

=

([
∂IT

c
∂ω

]
+

1
T

∫ T

0

∫
Λ

ψT ∂=
∂ω

dΛdt

)
, (14)

∂I
∂ψ

=
1
T

∫ T

0

∫
Λ
=(Ω, ω)dΛdt. (15)

Moreover, since the variation in δ= is zero, it can be multiplied by ψ and subtracted from the
variation δI without changing the result. Thus, Equation (12) can be written as

δI =

([
∂IT

c
∂Ω

]
+

1
T

∫ T

0

∫
Λ

ψT ∂=
∂Ω

dΛdt

)
δΩ +

([
∂IT

c
∂ω

]
+

1
T

∫ T

0

∫
Λ

ψT ∂=
∂ω

dΛdt

)
δω

−
([

∂=
∂Ω

]
δΩ +

[
∂=
∂ω

]
δω

)
1
T

∫ T

0

∫
Λ
=(Ω, ω)dΛdt

=

([
∂IT

c
∂Ω

]
+

1
T

∫ T

0

∫
Λ

ψT ∂=
∂Ω

dΛdt−
[

∂=
∂Ω

]
1
T

∫ T

0

∫
Λ
=(Ω, ω)dΛdt

)
δΩ

+

([
∂IT

c
∂ω

]
+

1
T

∫ T

0

∫
Λ

ψT ∂=
∂ω

dΛdt−
[

∂=
∂ω

]
1
T

∫ T

0

∫
Λ
=(Ω, ω)dΛdt

)
δω. (16)

Here, ψ should be carefully selected and satisfy the adjoint equations:[
∂IT

c
∂Ω

]
+

1
T

∫ T

0

∫
Λ

ψT ∂=
∂Ω

dΛdt−
[

∂=
∂Ω

]
1
T

∫ T

0

∫
Λ
=(Ω, ω)dΛdt = 0. (17)

Substitution of the adjoint Equation (17) into Equation (16) results in the following equation for I
and ω.

δI = Gδω, (18)

where

G =

[
∂IT

c
∂ω

]
+

1
T

∫ T

0

∫
Λ

ψT ∂=
∂ω

dΛdt−
[

∂=
∂ω

]
1
T

∫ T

0

∫
Λ
=(Ω, ω)dΛdt. (19)

From the above equation, an optimal solution of shape parameters can be obtained as the gradient
of the augmented objective function reaches 0, i.e., δI = 0. Thus, the gradient G given by Equation (19)
is utilized to find the optimal shape parameters. Since the gradient G is independent of δΩ, the gradient
of I with respect to an arbitrary number of design variable can be determined with the need for
additional flow field evaluations. The main cost is in solving the adjoint Equation (17). In general,
the adjoint problem is about as complex as a flow solution. Once Equation (19) is obtained, the gradient
G can be fed into any numerical optimization algorithm to obtain an improved design.
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2.3. The Adjoint Equations

The equation and the boundary conditions for adjoint variables can be carried out when the
representation written in Equation (17) is set up. Thus, the adjoint equations can be written as:

∇ ·ψu = 0 on Λ× (0, T), (20)

ρ

(
∂ψu
∂t

+ (∇u)ψu − (u · ∇)ψu

)
−∇ ·

[
−ψpE + µ

(
∇ψu + (∇ψu)

T
)]

= 0 on Λ× (0, T). (21)

The adjoint Equations (20) and (21) are a set of coupled linear partial differential equations. Unlike
the flow Equations (1) and (2), the equations for the adjoint variables are posed backward in time.
The boundary conditions on the adjoint variables are

− 1
T

∫ T

0

∫
ΛB

δ(δ · n) ·ψudΛdt +
∂Ic

∂u
δu +

∂Ic

∂p
δp = 0 on ΘB, (22)

ψu = 0 on ΘU , (23)

s = 0 on ΘD, (24)

S1 = 0 ψu2 = 0 on ΘS, (25)

where s = {uψu − Eψp + µ[∇ψu + (∇ψu)T ]} · n, ΘU means the upstream boundary, ΘD means the
downstream boundary, ΘS means the lateral boundaries, and ΘB is the body surface. The terminal
condition on the adjoint velocity is given by:

ψu(u, T) = 0 on Λ. (26)

2.4. Attitude Stability

The basic equations are the continuity and Navier–Stokes equations for an incompressible
Newtonian fluid. A non-dimensionalization is applied to all variables by means of the streamwise
velocity Uuni and chord length L. Since the boundary-fitted-grid is employed in our computation,
a general curvilinear coordinates has to be applied and is represented as ξ, η, ς. Based on the
references [50,51],

1
J

∂

∂ξk

(
JUk

)
= 0, (27)

∂ (ui)

∂t
+

1
J

∂

∂ξk

[
ui

(
JUk − JVk

)]
= −1

J
∂

∂ξk

(
J

∂ξk

∂xi
p

)
+

1
ReJ

∂

∂ξk

(
J

∂ξk

∂xm

∂ξ l

∂xm

∂ui

∂ξ l

)
, (28)

where J represents the Jacobian of the coordinate transformation, Uk means the contravariant velocity,
Re means the Reynolds number, as in ρUuniL/ν, Vk denotes the moving speed component of the grid
point in the general coordinate. In the pitching direction, the angle of attack variation because of the
fluid force can be written as:

− Im
d2α

dt2 =
1
2

u2
uniS (CM − CM0) . (29)

Here, Im means the inertia moment, CM and CM0 are the moment coefficient of the fluid force and
the support moment coefficient in the pitching direction, where the support point of the airfoil is at the
25% chord length from the airfoil leading edge, S denotes the effective area, and α means the angle
of attack, which is opposite to the direction of the fluid moment. There is therefore a negative sign is
applied on the left-hand side of Equation (29).
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3. Implementation Details

3.1. Shape Parameterization

The original corrugated airfoil used in this study is the same as our previous study used in
numerical simulation [28]; see Figure 1. The position xc treated in this study is a coordinate system
along the chord direction, and the position of the leading edge is defined as the origin xc = 0, and the
position of the trailing edge is standardized as xc = 1. In order to try to explore a new form of the
corrugated airfoil for gliding at ultra-low Reynolds number, as well as reduce the design variables for
shape optimization, the width of the ridge or valley in the chord direction for the corrugated airfoil is
expressed by the wavenumber of the sine wave. This kind of corrugated airfoil (i.e., a wavy airfoil) has
different ridge and valley widths on the leading and trailing edge regions; see an example in Figure 2.
Therefore, the wavenumber n(xc) of the wavy airfoil is a model with the position xc (0 ≤ xc ≤ 1 ) in
the chord direction as the independent variable. In this study, the wavenumber of the wavy wing is
expressed by a quadratic function:

n(xc) = A(xc − C)2 + B. (30)

Here, A, B, and C are constants and are determined to satisfy the following conditions:

n(0) = a, n(1) = b, n′(c) = 0. (31)

a is the wave number at the leading edge, b is the wave number at the trailing edge, and c is the
position of the quadratic function axis. From the above, the wavenumber of the corrugated wing can
be expressed using the parameters a, b, and c as follows:

n(xc) =
a− b

2c− 1
(xc − c)2 + a− c2(a− b)

2c− 1
, c 6= 1

2
. (32)

Next, the height of the wave for the wavy airfoil remains to be decided. Since the original
corrugated airfoil has a shape with the envelope of NACA2408 airfoil as shown in Figure 3, the height
of the wave is also determined by using NACA2408 airfoil as the envelope, see Figure 2. Let ye be the
thickness of NACA2408 airfoil at the position of xc in the chord direction. The thickness of the wavy
airfoil is fixed at 1% of the chord length in this study. Finally, the height of the wavy airfoil yw can be
expressed as:

yw = ye sin[2πn(xc) · xc]. (33)

When yw has an inflection point, the wavy airfoil will not use the NACA2408 airfoil as the
envelope, as shown in Figure 4. Thus, this case of existing inflection point has to be rejected. Substitute
Equation (32) into Equation (33) and take the first derivative of yw/ye identically equalling to zero,
leading to the condition expression for the parameters a, b, and c that must satisfy as follows:

0 <
4bc2

3− 6c + 4c2 < a < b, 0 < c <
1
2

, (34)

0 < b < a <
4bc2

3− 6c + 4c2 ,
1
2
< c < 1. (35)

As a result, based on the above discussion, the shape of the wavy airfoil handed in this study
is determined.

Figure 2. A wavy airfoil.
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Figure 3. A corrugated airfoil and its envelope of NACA2408 airfoil.

Figure 4. The shape of a wavy airfoil that has an inflection point in the chord direction.

3.2. The Objective Function

When a relatively large lift coefficient and low drag coefficient are both achieved, we term this
airfoil as high performance airfoil. Thus, the time-averaged aerodynamic efficiency is employed as the
objective function for our optimization:

I =
CD
CL

. (36)

3.3. Computational Domain, Mesh, and Boundary Conditions

The computational domain and boundary conditions for corrugated airfoil and NACA2408
airfoil are shown in Figure 5, where L is the chord length of the airfoil. A Cartesian coordinate
system is used to define x in the mainstream direction and y in the vertical direction. Due to the
H-type boundary-fitted grid employed, a general curvilinear coordinate system has to be applied and
represented as ξ and η for all computations, in which the direction following the mainstream direction
is denoted as ξ, and the direction away from the surface of airfoil is defined as η. The computational
mesh near the airfoil surface is shown in Figure 6. Through using the mesh moving scheme on the
initial grid points, the different geometries meshes are created. In this scheme, the mesh in the flow
domain is modeled as a linear elastic solid and is deformed to accommodate the new geometry of the
airfoil [52–54]. When the angle of attack of the airfoil is passively changed by the fluid force, transfinite
interpolation method is used to regenerate the grids on the moving airfoil surface [55]. The validation
of the mesh convergence for evaluating the adequacy of the spatial resolution was carried out in our
previous studies [28].

Figure 5. Computational domain and boundary conditions.
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(a)
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Figure 6. Computational grid: (a) corrugated airfoil; and (b) around leading edge.

The computational domain and boundary condition are showed in Figure 5. More details are
introduced in our previous article [28]. The computational parameters are summarized in Table 1.
Firstly, in order to to conduct a systematic investigation to study the improvement in aerodynamic
performance for a series of wavy airfoil profiles generated by modifying the number of waves and
the width of the ridge and valley in the chord direction, the direct numerical simulations of the flow
around different wavy airfoils are conducted with the computational parameters of Case_1 in Table 1.
Next, for optimizing the corrugations for high aerodynamic efficiency using a continuous adjoint
method, the computational parameters of Case_2 in Table 1 are used. Finally, to evaluate the attitude
stability of the optimal wavy airfoil generated by using our shape optimization procedure, we perform
the simulations with the computational parameters of Case_3 given in Table 1.

Table 1. Computational parameters. The superscript + means the wall unit.

Case Re Angle of Attack Lx× Ly Nx× Ny [∆+
x , ∆+

y ]min

Case_1 1000 −2◦–5◦ 17L× 14L 1626× 255 9.8, 0.44
Case_2 1000 0◦ 17L× 14L 1626× 255 9.8, 0.44
Case_3 4000 −6◦–6◦ 17L× 14L 1626× 255 9.8, 0.44

3.4. Implementation of the Numerical Method and Optimization Procedure

A finite difference method is utilized to solve the flow and adjoint equations. Since the properties
of the adjoint equations are very similar to the flow equations, numerical schemes for flow solvers can
be applied to the adjoint solvers as well. In this study, applying a cell-centered, collocated arrangement
the flow equations and adjoint equations are discretized, in which all physical variables and the
corresponding contravariant components are located at the cell center and cell-face center, respectively.
A 2-order spatial central finite difference discretization technique is employed. For coupling the
pressure field and the continuity equation, the fractional method is applied [56]. For the time marching
of the flow and adjoint equations, the 2-order Adams–Bashforth method is applied to the convective
terms, the 2-order Crank–Nicolson method is used to the viscous terms in order to eliminate the
viscous stability constraint, and the backward Euler method is utilized for the pressure term. For the
calculation, the Poisson equation is the most time-consuming procedure and calculated through
the residual cutting method [57]. This numerical technique used in this study has been validated
extensively in several turbulent flows [28,58–61]. For the problem setting where the angle of attack of
airfoil is passively changed by the fluid force, the 2-order Runge–Kutta method is utilized for the time
marching of Equation (29).

The cycle of the aerodynamic optimization starts with an initial geometry. Then, the structured
meshes for the initial geometry is produced. The numerical calculation of the flow field is conducted
enough times until the flow fields were fully developed and the aerodynamic coefficients exhibit
adequate convergence. The adjoint variables are calculated using the date from the last 1000 steps
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solution of the flow field. Then, the gradients G in Equation (19) for the objective function (36) can
be obtained using the solutions of the flow governing equations and adjoint equations. Through a
numerical optimization algorithm, the gradient G is employed to obtain an improved design. In order
to accommodate a new airfoil profile, the structured mesh is adjusted through a mesh moving scheme.
In Figures 7 and 8, the details of an aerodynamic optimization procedure and an example of the
iteration history of the present objective function are showed, where the angle of attack is α = 0◦ and
the values of the design variables for the initial geometry are ω∗ = (0.60, 3.0, 0.25). Table 2 shows the
change in the value of CL/CD before and after the shape optimization procedure. An improvement in
the lift-to-drag ratio of approximately 18% is confirmed after a shape optimization procedure.

Figure 7. Optimization procedure.

 1.35

 1.4

 1.45

 1.5
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Figure 8. Iteration history of time-averaged lift-to-drag ratio CL/CD.

Table 2. Change in time-averaged lift-to-drag ratio value by shape optimization procedure.

Number of Iterations Step Time-Averaged Lift-to-Drag Ratio Value

0 1.38
13 1.63

4. Results and Discussion

All calculations were computed on an NEC SX-8R supercomputer of Cybermedia Center,
Osaka University. The validations of our numerical solvers for the flow-through two-dimensional
corrugated airfoil at a fixed angle of attack or the angle of attack passively changed by the fluid
force were conducted in our previous article [28]. All numerical calculations are conducted enough
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times until the flow fields were fully developed and the aerodynamic coefficients exhibit adequate
convergence. All results are collected by time-averaging.

4.1. Effect of Waves

The improvement in aerodynamic performance for a series of wavy airfoil profiles generated by
modifying the number of waves and the width of the ridge and valley in the chord direction is explored
in this section. The Reynolds number and the angle of attack applied for this investigation is 1000
and ranges from −2◦ to 5◦ with the increments of 1◦, respectively. The details of the computational
parameters are shown in Case_1 of Table 1.

Performances and flow characteristics of various wavy airfoil profiles are showed. For comparison,
the performances and flow characteristics for the original corrugated and NACA2408 airfoil profiles
are listed as well. The aerodynamic performance and profile of the various airfoil geometries are
summarized in Table 3 for the angle of attack of 0◦. Figures 9–14 correspondingly show the flow
characteristics such as distribution of mean pressure isolines around the various geometries at the
angle of attack of 0◦. Cases are labeled as Wavy_x for the explored wavy airfoil profiles, where x varies
from 1 to 4. Waves are mainly placed on the different regions of the airfoil, such as on the front part
with respect to the case Wavy_1, on the rear part with respect to the case Wavy_2. The width of the
ridge and valley in the chord direction and the number of waves are varied, such as the small ridge
and valley and many waves for the case Wavy_3, the large ridge and valley and few waves for the case
Wavy_4. All of the wavy airfoil shapes and the original corrugated airfoil profile not only have a higher
lift but also lower drag compared to the NACA2408 airfoil profile, which is the same as conclusions
of several investigations of the corrugated dragonfly wings [18,21–26]. Interestingly, in comparison
with the original corrugated airfoil profile, Wavy_1 and Wavy_3 have more distinct waves and show
a lower aerodynamic performance (in terms of lift-to-drag ratio) and Wavy_2 and Wavy_4 have less
distinct waves and show higher aerodynamic performance. In particular, Wavy_3 has the maximum
waves and shows the lowest aerodynamic performance, Wavy_4 has the minimum waves and shows
the highest aerodynamic performance. For the drag, from the original corrugated airfoil profile to the
all wavy airfoil shapes, even if the corrugations and waves on the airfoil are different and changed,
there is almost nothing changed, i.e., the value at about 0.109 except Wavy_4. Thus, the lift coefficient
greatly affects the aerodynamic performance compared to the drag coefficient for wavy airfoil shapes.

Table 3. The time-averaged aerodynamic coefficients and its breakdown for the pressure and friction
stress contributions of the various geometries at Re = 103 and α = 0◦. The superscripts p and f denote
the pressure and friction stress components, respectively.

Case CL/CD CL CD Cp
L (%) C f

L (%) Cp
D (%) C f

D (%) Shape

NACA2408 0.51 0.0575 0.111 95 5 20 80

Corrugated 1.10 0.122 0.109 94 6 75 25

Wavy_1 0.78 0.0850 0.109 94 6 72 28

Wavy_2 1.50 0.160 0.109 98 2 26 74

Wavy_3 0.71 0.078 0.109 95 5 78 22

Wavy_4 1.60 0.166 0.104 96 4 28 72

Table 3 also shows the breakdown of lift and drag coefficients for the contributions of the
pressure and friction stress in various geometries. The superscripts p and f denote pressure and
friction stress contributions, respectively. For instance, the pressure stress contribution of the lift is
represented as Cp

L. It can be seen that the breakdown components of the lift coefficient with the different
wavy airfoil shapes are almost the same, while the breakdown components of the drag coefficient
concerning the different wavy airfoil shapes is different. The first, for the lift coefficient, the pressure
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stress component concerning all wavy airfoil shapes, the original corrugated and NACA2408 airfoil
profiles are significantly dominant, whereas the frictional components are extremely minor. Through
investigations of the pressure distribution of the wavy airfoils in Figures 11a, 12a, 13a, and 14a, It can
be confirmed that the negative pressure generated at the valleys of the corrugated airfoil contributes to
the increased lift. This also corresponds to the large flow acceleration on the blade upper surface in
the streamline distribution, as can be seen in Figures 11b, 12b, 13b, and 14b. Secondly, for the drag
coefficient, the pressure stress component accounts for about 75% for Wavy_1, Wavy_3, and the original
corrugated airfoil, while the frictional component accounts for about 70% for Wavy_2, and Wavy_4,
and the NACA2408 airfoil. That is, Wavy_1 and Wavy_3 have more distinct waves and are akin to
appear as a corrugated airfoil for the drag, see Figures 9, 11 and 13. However, Wavy_2 and Wavy_4
have less distinct waves and are akin to appear as a smoothed surface NACA2408 airfoil for the
drag, see Figures 10, 12 and 14. From Figures 11a and 13a, we seem to confirm that the reason why
the pressure stress component of the drag coefficient for the wavy airfoils (Wavy_1 and Wavy_3)
is dominant is that the downstream side and upstream side are low pressure and high pressure,
respectively. On the other hand, the reason why the frictional stress component of drag for the wavy
airfoils (Wavy_2 and Wavy_4) is large is that large airfoil surface areas face the external flow, see
Figures 12a and 14b. In Figures 11b and 13b, it can be seen that there is a distinct trapped vortex in
each cavity of the wavy airfoil which causes the main external flow to pass the airfoils without facing
the surface area of the airfoil. However, compared to the streamlines around Wavy_1 and Wavy_3
airfoils, the large surface area faces the external flow for Wavy_2 and Wavy_4 airfoil

In order to discuss the effect of the angle of attack significantly on the aerodynamic performance
(in terms of lift-to-drag ratio) with respect to various airfoil geometries, Figure 15 shows the
aerodynamic performance of various wavy airfoil shapes, the original corrugated and NACA2408
airfoil profiles at Re = 1000 as the angle of attack is varied from −2◦ to 5◦. Above all, we could
confirm that the angle of attacks has almost no effect on the aerodynamic performance of various
geometries, apart from a small region of negative angle of attacks for Wavy_3 and Wavy_4. Therefore,
it is completely acceptable that antecedent computations are performed at an angle of attack α = 0◦

to evaluate the influence of airfoil geometries on the aerodynamic performance. From the results
of Figure 15 and Table 3, we can confirm that the geometry shape of Wavy_4 exhibits the highest
aerodynamic performance. Thus, in order to obtain as much as possible the highest global aerodynamic
performance wavy airfoil shape, the subsequent aerodynamic optimization procedure begins with the
highest aerodynamic performance airfoil shape Wavy_4 as the initial geometry.
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Figure 9. Flow past the NACA2408 airfoil (Table 3) at Re = 103 and α = 0◦: (a) time-averaged pressure
isolines; and (b) time-averaged streamlines.
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(b)
Figure 10. Flow past the based corrugated airfoil (Table 3) at Re = 103 and α = 0◦: (a) time-averaged
pressure isolines; and (b) time-averaged streamlines.
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(b)
Figure 11. Flow past the shape Wavy_1 (Table 3) at Re = 103 and α = 0◦: (a) time-averaged pressure
isolines; and (b) time-averaged streamlines.
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(b)
Figure 12. Flow past the shape Wavy_2 (Table 3) at Re = 103 and α = 0◦: (a) time-averaged pressure
isolines; and (b) time-averaged streamlines.
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(b)
Figure 13. Flow past the shape Wavy_3 (Table 3) at Re = 103 and α = 0◦: (a) time-averaged pressure
isolines; and (b) time-averaged streamlines.
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(b)
Figure 14. Flow past the shape Wavy_4 (Table 3) at Re = 103 and α = 0◦: (a) time-averaged pressure
isolines; and (b) time-averaged streamlines.
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Figure 15. Flow past various geometries at Re = 103: variation with angle of attack of time-averaged
lift-to-drag ratio.

4.2. Shape Optimization

After an investigation of the effect of waves on an airfoil with the envelope of NACA2408 airfoil,
we carry out shape optimization for high aerodynamic performance (in terms of time-averaged
lift-to-drag ratio) using a continuous adjoint method. The Wavy_4 airfoil is selected as the initial profile
guess for aerodynamic shape optimization in order to obtain as much as possible the highest global
aerodynamic efficiency wavy airfoil shape. The Reynolds number is 103 and the angle of attack is 0◦.
Table 4 presents the aerodynamic performance and profile of the optimal airfoil obtained applying our
optimization procedure for the aerodynamic efficiency maximization. For comparison, the data for
the initial geometry Wavy_4 and the original corrugated airfoil are also listed. It can be found that,
from Table 4, the shape of the optimal airfoil is similar to a curved plate wing without waves on the
airfoil even though the initial guess has waves on the airfoil. Compared to the initial geometry and the
corrugated airfoil, the optimal airfoil is associated with higher aerodynamic efficiency, as well as higher
lift coefficient. The optimal airfoil shape corresponds to an increase of 60% over the aerodynamic
efficiency (lift-to-drag ratio) from the initial geometry, an increase of 132% concerning the corrugated
airfoil. The corresponding increase in lift is 62% with respect to the initial geometry and 120% with
respect to the corrugated airfoil. However, in comparison with the initial airfoil geometry, only a very
little improvement of the drag for the optimal airfoil appears.

Figure 16 shows the distribution of pressure isolines and streamlines for the flow past the optimal
airfoil shape. Here, for each color of the streamline and pressure isolines, the threshold values are
the same as those in Figures 9–14 for the color bar. From the results in Table 4, the breakdown of the
lift coefficient for the optimal airfoil is dominated by the pressure component, while the breakdown
of the drag coefficient is dominated by the frictional contribution. These reasons can be found from
the distribution of pressure isolines and streamlines in Figure 16. The optimal airfoil is similar to a
curved plate and represents the upward convex. The acceleration of the flow near the upper surface
of the optimal airfoil is therefore remarkable, it is considered that the pressure distribution on the
upper surface of the blade is reduced and the lift coefficient is greatly earned. Since the optimal airfoil
does not have distinct corrugations on the airfoil, there is no trapped vortex in each cavity of the
corrugations which limits the surface of the airfoil directly facing the external flow. From this point of
view, it can be seen that the shape of the airfoil obtained by optimizing the wavy airfoil model does not
have the aerodynamic characteristics of a corrugated airfoil but have the aerodynamic characteristics
of a smoothed-face airfoil.
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(b)
Figure 16. Flow past the optimal airfoil (Table 4) at Re = 103 and α = 0◦: (a) time-averaged pressure
isolines; and (b) time-averaged streamlines.
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Table 4. Mean aerodynamic coefficients and its breakdown for the pressure and friction stress
components of the initial airfoil geometry and optimal airfoil for aerodynamic efficiency maximization
at Re = 103 and α = 0◦.

Case CL/CD CL CD Cp
L (%) C f

L (%) Cp
D (%) C f

D (%) Shape

NACA2408 0.51 0.0575 0.111 95 5 20 80

Corrugated 1.10 0.122 0.109 94 6 75 25

Wavy_4 1.60 0.166 0.104 96 4 28 72

Optimal 2.56 0.269 0.105 98 2 24 76

4.3. Hydrodynamic Moment and Attitude Stability

Using the airfoil shape obtained by the shape optimization for the aerodynamic efficiency
maximization performed above, numerical calculations related to hydrodynamic moment of force
and attitude stability are conducted. The details of this computation are described in our previous
article [28].

4.3.1. For the Problem Setting of Fixed Angle of Attack

First, for the problem setting of a fixed angle of attack, the moment coefficient CM because of
the fluid force for the optimal airfoil is evaluated, in which the support point is at 25% chord length
from the airfoil leading edge. The time-averaged data of the static moment coefficient are collected
after the value exhibits adequate convergence. The mean static moment coefficient of the optimal
airfoil at Re = 4000 with varying angle of attack is showed in Figure 17, where −6◦ ≤ α ≤ 6◦ with
increment of 1◦. We know that, if an airfoil is stable in the range of α, as α increases the hydrodynamic
moment of force for the airfoil should increase as well, moreover, the direction of the increase of the
hydrodynamic moment of force should be the opposite to the direction of increase of α. In Figure 17,
it can be seen that the slope of the moment coefficient CM of the fluid force concerning the angle of
attack α is negative in the range of −1◦ ≤ α ≤ 6◦, i.e., the angle of attack in this region is statically
unstable for the optimal airfoil.

Figure 17. The mean static moment coefficient of the optimal airfoil at Re = 4000 with varying angle
of attack.

Figure 18 shows the distribution of the lift coefficient with respect to dimensionless time at
Reynolds number 4000, the angle of attack −2◦. After the dimensionless time t∗ = 20, the evolution of
the lift coefficient becomes quasi-stationary, but it can be seen that it oscillates periodically. In Figure 19,
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the distribution of vorticity around the optimal airfoil at Re = 4000 and α = −2◦, and dimensionless
time t∗ = 28 is showed. From Figure 19, it can be seen that vortices are periodically discharged
from the leading edge of the optimal airfoil, which may indicate the reason why the lift coefficient
oscillates greatly and periodically. After further computation, it has been confirmed that the vortex
shedding at the optimal airfoil leading edge is in the range of the angle of attack −6◦ ≤ α ≤ −2◦.
Actually, the range of α having the vortex shedding exactly corresponds with the range of the angle of
attack with the hydrodynamic moment fluctuating. Based on the above discussion, as a conclusion,
the optimal airfoil is either statically unstable or statically quasi-stable.

Figure 18. Time evolution of lift coefficient for the optimal airfoil at Re = 4000 and α = −2◦.

50-50 -25 25 5025-25-50

Figure 19. Distribution of vorticity around the optimal airfoil at Re = 4000, α = −2◦, and dimensionless
time t∗ = 28.
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4.3.2. For the Problem Setting of Angle of Attack Passively Changed by the Fluid Force

In order to balance the initial hydrodynamic moment of force because of the fluid force acting on
the airfoil at an initial α, a constant moment of force M0 is used, where the rotating support point is
at 25% chord length from the leading edge and the initial α is at 0◦. We observe the time evolution
of the objective airfoil’s α after an initial disturbance, i.e., ∆α = +0.001◦, is imposed. More details
of the computational setup are introduced in our previous article [28]. Figure 20 shows the time
evolution of α for the optimal airfoil, the original corrugated and NACA2408 airfoil at Re = 4000 with
the initial α = 0◦. From this figure, the time evolution of the angle of attack for the corrugated and
NACA2408 airfoil is relatively stable and its amplitude is increasingly large. For the optimal airfoil,
the angle of attack keeps the initial angle of attack with an initial disturbance, which indicates it is
neutral with respect to the moment of fluid force. However, as the dimensionless time pass, the angle
of attack increases quickly and diverges in a positive direction. From the above results, coupled with
the distribution of the moment coefficient CM of the fluid force concerning the fixed angle of attack in
Figure 17, it can be confirmed that the optimal airfoil is destabilized.

Figure 20. Time evolution of angle of attack at Re = 4000 with the initial α = 0◦.

5. Conclusions

In this study, the effect of the number of waves and the width of the ridge and valley in chord
direction for a wavy airfoil was investigated at the angle of attack of 0◦ and Reynolds number of 103.
All these wavy airfoil geometries have a higher lift, as well as, lower drag in comparison with that of
NACA2408 airfoil profile. Interestingly, compared to the original corrugated airfoil profile, the wavy
airfoils that have more distinct waves show a lower aerodynamic performance (in terms of lift-to-drag
ratio) and the wavy airfoils that have less distinct waves show higher aerodynamic performance. In
particular, the wavy airfoil that has the maximum waves shows the lowest aerodynamic performance
and the wavy airfoil that has the minimum waves shows the highest aerodynamic performance. For the
breakdown of the lift and drag coefficient concerning the pressure and friction stress contributions,
the pressure stress contributions are significantly dominant for all wavy airfoil shapes concerning the
lift, whereas the drag coefficient concerning the different wavy airfoil shapes are different, such as
the pressure stress component accounts for about 75% for the wavy airfoils that have more distinct
waves, while the frictional stress component accounts for about 70% for the wavy airfoils that have
less distinct waves. From the distribution of pressure isoline and streamlines around wavy airfoils,
it is confirmed that the pressure stress contribution of the drag are dominant due to high pressure on
the upstream side and low pressure on the downside; the frictional stress contribution of the drag is
dominant because of the large surface area facing the external flow. An adjoint-based aerodynamic
shape optimization method was utilized to find as much as possible the highest global aerodynamic
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efficiency wavy airfoil shape at Reynolds number 103 and angle of attack 0◦. Interestingly again,
the shape of the optimal airfoil is similar to a curved plate without distinct waves on the airfoil even
though the initial guess has waves on the airfoil. The optimal airfoil shape corresponds to an increase
of 60% over the aerodynamic efficiency from the initial geometry and increase of 132% concerning the
original corrugated airfoil. The corresponding increase in lift is 62% concerning the initial geometry
and 120% concerning the original corrugated airfoil. The optimal airfoil has an approximate drag
coefficient compared to the initial geometry and the original corrugated airfoil. The hydrodynamic
moment of force and attitude stability of the optimal airfoil was investigated as well. Concerning an
fixed angle of attack, the optimal airfoil is statically unstable in the range of the angle of attack from
−1◦ to 6◦, statically quasi-stable from −6◦ to −2◦, where the vortex is shedding at the optimal airfoil
leading edge. Concerning an angle of attack passively varied due to the fluid force, the optimal airfoil
keeps the initial angle of attack value with an initial disturbance, then quickly increases the angle of
attack and diverges in the positive direction. From the above, it is confirmed that the optimal airfoil is
destabilized.
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