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Abstract: Due to their low cost and very high energy density, zinc–air batteries (ZABs) exhibit high
potential for various energy applications. The electrochemical performance of the air-cathode has a
decisive impact on the discharge performance of ZABs because the sluggish oxygen reduction reaction
(ORR) kinetics increase the overpotential of the air-cathode and hence the performance of ZABs.
In this work, reduced graphene oxide decorated with silver nanoparticles (AgNP/rGO) is synthesized
using simultaneous reduction of graphene oxide and silver ions. Different amounts of silver loading
are examined for the synthesis of AgNP/rGO. The synthesized AgNP/rGO samples are analyzed
using a rotating disk electrode in order to investigate ORR activity. Then, the synthesized AgNP/rGO
electrocatalyst is applied on a tubular designed zinc–air battery in order to study the performance
of the zinc–air battery. Results demonstrate that AgNP/rGO is an efficient and cost-effective ORR
electrocatalyst for its practical application in ZABs.
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1. Introduction

Electricity is the most important and convenient way of energy consumption. It is clean and
efficient. It requires minimal maintenance and produces minimal pollution during consumption.
An essential element for electrification is an electrical energy storage (EES) system [1]. The most
common kind of EES system is a rechargeable battery [2]. Lithium-ion batteries (LIBs) provide the
leading energy storage solution for various applications and are widely recognized as the most viable
option [3]. Unfortunately, their limitations on high cost and safety issues are of prime concern [4–6].

Zinc–air batteries (ZABs) have exhibited high potential for various energy applications because
of their cost effectiveness and very high energy density (1.35 kWh/kg) [7–10]. Zinc (Zn) is an
attractive electrode material because it is light-weight, non-toxic, inherently safe, inexpensive, and
abundant [11,12]. In addition, zinc is also the metal produced in the fourth largest quantity after iron
(Fe), copper (Cu) and aluminum (Al). Moreover, an established Zn recycling industry exists to reclaim
Zn from its myriad uses in industry [13].
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The mechanism behind ZABs involves Zn dissolution at the negative electrode (zinc anode) and
oxygen reduction reaction (ORR) at the positive electrode (air cathode) [14,15]. The performance of
the positive electrode has a decisive impact on the performance of ZABs because the sluggish ORR
kinetics increase the overpotential and decrease the power density as well as the performance of
ZABs [16]. The mechanism of ORR is complicated and involves many intermediates depending on
the characteristics of the cathode, catalyst and electrolyte [17]. In aqueous solutions, the ORR can
proceed by two pathways: a direct (four-electron) pathway and a peroxide (two-electron) pathway [18].
In the four-electron pathway, oxygen directly reduces to hydroxide ion (OH−) through dissociative
adsorption of oxygen on the catalyst surface [19]. In comparison, in the two-electron pathway, an
initial reduction to hydroperoxide ion (HO2

−) is followed by the reduction of HO2
− to OH−.

For high performance ZABs, an efficient, durable and low-cost air-cathode with low polarization
ORR is essential. In acidic and alkaline solution, platinum (Pt) is an excellent ORR electrocatalyst.
Nonetheless, high cost and scarcity hinder its practical applications [20]. Silver (Ag) is a good alternative
because it is significantly cheaper than platinum. The cost ratio of platinum to silver is currently
about 60. In the earth’s crust, silver is 15 times more abundant than platinum. Also, silver shows
thermodynamically and electrochemically stable, with high ORR activity in alkaline media [21,22].

Graphene is a two-dimensional monolayer of carbon atoms densely packed in a honeycomb
crystal lattice [23]. As a promising material for next-generation energy storage and conversion devices,
graphene has attracted tremendous attention because of its superior properties [24–27]. Graphene
exhibits a unique two-fold advantage with remarkably high electron mobility at room temperature and
fast heterogeneous electron transfer at the edges. Besides, graphene has an ultra-high surface area of
2630 m2 g−1, which is significantly higher than its one-dimensional carbon nanotube (1315 m2 g−1) and
three-dimensional graphite (10 m2 g−1) counterparts. Recently, graphene has obtained much attention
as regards decoration with metal nanoparticles [28].

Tang et al. [29] demonstrated the synthesis of reduced graphene oxide (rGO) decorated with
silver nanoparticles (AgNP) by simultaneous reduction of graphene oxide (GO) as well as silver ions.
Kumar et al. [30] synthesized AgNP decorated on rGO and examined the ORR catalytic performance
for rechargeable lithium-O2 batteries. Lim et al. [31] reported that AgNP was successfully anchored
on rGO through simultaneous reduction of silver ions and GO without surfactants. Synthesized
AgNP/rGO improved ORR activity by changing the half-wave potential towards more positive values
and increased ORR activity via a four-electron pathway in alkaline media. The results also indicated
that rGO is an excellent support material providing a remarkably high specific surface area that can
accommodate highly concentrated metal nanoparticles.

Soo et al. [32] demonstrated the preparation of silver particles on nitrogen-doped reduced graphene
oxide (Ag/N-rGO) by a simple thermal annealing of silver salts with GO and melamine. Results
highlighted that Ag/N-rGO has the potential to substitute the platinum on the carbon (Pt/C) catalyst
for ORR in alkaline media because of its lower cost and excellent ORR catalytic performance.

Wang et al. [33] focused on silver decorated nitrogen-doped carbon sheets (Ag/NC). The Ag/NC
demonstrated outstanding ORR activity in contrast to nitrogen-doped carbon sheets (NC). This excellent
performance was accredited to the synergistic effect between the nitrogen species and silver particles
and the high amount of pyridinic nitrogen species. Moreover, Ag/NC showed excellent methanol
tolerance and stability. Guo et al. [34] used a citrate-protecting method in order to prepare different
loadings of silver on carbon (Ag/C) catalysts. It was reported that the ORR onset potential shifted
positively with silver loading reaching upwards from (10 to 60) wt.%.

Graphene, when decorated with silver nanoparticles, exhibits superior electronic, ionic
conductivity and excellent ORR catalytic performance in alkaline media. Herein, the synthesis,
characterization, and performance evaluation of rGO decorated with silver nanoparticles (AgNP/rGO)
using simultaneous reduction of GO and silver ions from silver nitrate (AgNO3) is reported. Different
loadings of AgNP on rGO are attained by using different concentrations of AgNO3 precursor.
The synthesized AgNP/rGO is analyzed using a rotating disk electrode (RDE) in order to investigate
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the oxygen reduction reaction (ORR) activity. Then, the AgNP/rGO is applied on tubular designed
ZABs in order to examine the performance of ZABs.

2. Materials and Methods

2.1. Synthesis and Characterization of AgNP/rGO

Graphene oxide was prepared by oxidation of natural graphite powder (Sigma-Aldrich, St. Louis,
MO, USA) using a modified Hummers method [35]. We mixed 2 g graphite powder and 2 g
sodium nitrate (NaNO3, QRëC, Auckland, New Zealand) with 90 mL of sulfuric acid (H2SO4 98%,
Sigma-Aldrich) in a 1000 mL volumetric flask which was kept at 0–5 ◦C. While maintaining vigorous
agitation, 12 g potassium permanganate (KMnO4, QRëC, Auckland, New Zealand) was introduced
slowly to the mixture in order to keep the temperature of the suspension below 5 ◦C. After that, the
suspension was transferred to a 35 ◦C bath and vigorously stirred for 2 h. After 2 h of stirring, the
mixture was heated at 98 ◦C for 10 min. After 10 min, an additional 200 mL of water was added to
dilute the solution. Then, it was followed by a slow addition of 40 mL hydrogen peroxide (H2O2

30 w/w%, Merck KGaA, Darmstadt, Germany). Next, the solution was stirred for 1 h. After that, the
mixture was centrifuged and washed with deionized water. Finally, the resulting solid was vacuum
dried at 60 ◦C for more than 6 h and became graphene oxide (GO) powder.

The method for decoration of rGO with silver was reported by Tang et al. [29]. First, silver–ammonia
solution was prepared by dropping 2 wt.% ammonia aqueous solution (Sigma-Aldrich) into silver nitrate
solution (Sigma-Aldrich) until the brown precipitation disappeared. Accordingly, the concentration of
silver nitrate solution was varied viz. 0.1 M, 0.2 M and 0.3 M. Herein, the samples obtained from 0.1 M,
0.2 M and 0.3 M were denoted as follows: namely, 0.1 M AgNP/rGO, 0.2 M AgNP and 0.3 M AgNP,
respectively. Next, the synthesized GO powder was added to DI water (0.5 mg/mL) and then sonicated
for 5 min. Poly(vinylpyrrolidone) (PVP, Sigma-Aldrich) solution (4 mg/mL, 1 mL) was firstly mixed
with GO suspension (0.5 mg/mL, 10 mL) to form a uniform mixture and glucose (80 mg) was added.
Then the mixture was stirred. When the suspension reached 60 ◦C, silver–ammonia solution (1 mL)
was introduced slowly which gave AgNP/rGO. After the reaction, AgNP/rGO was centrifuged, washed
with deionized water and ethanol, and then dried at 80 ◦C. In Figure 1a, the process of oxidation and
exfoliation of graphite and simultaneous reduction of GO and silver ions is shown.

The synthesized AgNP/rGO samples were examined via transmission electron microscopy (TEM,
JEOL (Tokyo, Japan) JEM-1400, 100 kV) as well as x-ray diffraction pattern (XRD, Bruker (Billerica,
Massachusetts, USA) D8-Advance, Cu Kα radiation, λ = 1.5418 Å) operating within a 2θ range of
(10 to 80) degrees. The presence of AgNP can be identified by XRD pattern and energy dispersive
spectroscopy (EDS). XRD was also used to confirm the reduction of GO. The morphology of AgNP
was investigated via TEM.

The ORR electrocatalytic activity of the synthesized AgNP/rGO samples was examined by a
rotating disk electrode (RDE) with a potentiostat/galvanostat system (AMETEK (Berwyn, PA, USA),
PAR VersaSTAT 3A). A glassy carbon electrode, 5 mm in diameter, was rinsed with distilled water and
sonicated in acetone. Then, the samples: 0.1 M AgNP/rGO, 0.2 M AgNP/rGO and 0.3 M AgNP/rGO
were dropped onto the glassy carbon surface. The catalyst films were dried at 30 ◦C for 1 h. The RDE test
was carried out using a three-electrode system with a glassy carbon working electrode, a silver/silver
chloride (Ag/AgCl) reference electrode and a Pt plate (20× 20) mm counter electrode. Ag/AgCl reference
electrode is suitable for aqueous applications and commonly used as reference in reduction potential
studies. The experiments were carried out in 0.1 M KOH solution. The solution was saturated with
oxygen gas (O2) by dispersing O2 into the solution for 30 min before each test. The RDE test was
performed using linear sweep voltammetry in a potential range from (0.2 to −0.8) V vs. Ag/AgCl at a
scanning rate of 5 mV/s under different rotation speeds (400, 900, 1600) rpm.
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Figure 1. (a) Formation of silver nanoparticles decorated on reduced graphene oxide sheets by oxidation
and exfoliation of graphite powder and simultaneous reduction of graphene oxide and silver ions, (b) a
schematic diagram of the zinc–air battery.

2.2. Fabrication and Performance Evaluation of ZAB

Zinc–air batteries were produced and applied to evaluate the performance of the prepared
AgNP/rGO ORR electrocatalysts. In Figure 1b, the schematic diagram of the batteries is displayed.
A stainless-steel mesh cylinder, 10 cm long and 1 cm in diameter, was utilized as the structural support
of the cell. Two stainless-steel tubes are attached to the cylinder at both ends. The total volume of the
cell was 20 cm3. The separator was made by casting 2 g of 24 wt.% poly(vinyl acetate) (PVAc, TOA
Paint Public Co., Ltd., Samut Prakan, Thailand) aqueous solution over both sides of a filter paper (No. 1
Whatman, Sigma-Aldrich) and then dried in an oven at 55 ◦C for 10 min. The support cylinder was
wrapped with the separator. Consequently, the cylinder was wrapped with the air-cathode, consisting
of three layers: a gas diffusion layer, a cathode current collector and a catalyst layer. The catalyst
layer is positioned in contact with the separator. Nickel foam (99.97%, 100 pores per inch, 1 mm thick,
Qijing Trading Co., Ltd., Shiyan, China) was utilized as the cathode current collector. The catalyst
layer was prepared by casting a slurry mixture of 1 g poly(tetrafluoroethylene) (PTFE, Sigma-Aldrich)
powder, 0.45 g poly(vinyl butyral) (PVB, TOA Paint Public Co., Ltd., Samut Prakan, Thailand) and 9 g
of the mixture between ORR catalyst (AgNP/rGO or manganese oxide (MnO2, Sigma-Aldrich) and
carbon black (Vulcan® XC-72, Cabot Corporation, Boston, MA, USA) in 10 mL ethanol on one side
of the nickel foam. The varying weight ratios of AgNP/rGO to carbon black were 9:0, 7:2, 5:4 and
3:6, while the weight ratio of MnO2 to carbon black was 2:7. In total 1 g of the slurry was deposited
on the nickel foam. The gas diffusion layer was fabricated on the other side of the nickel foam by
casting a slurry mixture of 3 g carbon black, 7 g PTFE powder, and 0.5 g PVB in 10 mL of ethanol.
Absolutely 1 g of the slurry was deposited on this side of the nickel foam. The coated nickel foam
was then heat-pressed at 350 ◦C for 5 min using a manual hot press machine. The gas diffusion layer
revealed hydrophobicity and kept the electrolyte inside the cell whilst enabling oxygen gas to diffuse
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to the catalyst layer. Besides, the hydrophobicity of the gas diffusion layer prevented leakage of the
electrolyte and water flooding in the cathode.

Another stainless-steel mesh cylinder with 0.45 cm diameter was used as the anode current
collector. The anode current collector was inserted inside the structural support cylinder. The anode
made of 10 g zinc granules (99%, Ø = 0.8 mm, Sirikul Engineering Ltd., Part., Samut Prakan, Thailand)
was packed inside the anode current collector. The electrolyte of 8 M KOH aqueous solution, with a
total volume of 15 mL, was fed to the cell.

The polarization characteristics of the batteries were analyzed by a battery analyzer MC2020,
Battery Metric, Toronto, ON, Canada). The discharge potentials of the battery were recorded
point-by-point while the discharge current density of the battery was stepped up from 0 mA/cm2

upwards. At each point, the battery was held for 5 s to allow the system to reach equilibrium potential.
In addition, the Ag/AgCl reference electrode was placed inside the cell in order to measure the
overpotential of the air cathode.

3. Results and Discussion

3.1. Characterization of AgNP/rGO Samples

As shown in Figure 1a, the desired AgNP/rGO sheets were obtained by exfoliation and oxidation
of graphite powder and followed by simultaneous reduction of GO and silver ions using glucose at
60 ◦C. Both the crystalline nature and phase structure of the synthesized samples were determined by
XRD analysis (Figure 2). All AgNP/rGO samples displayed a broad peak at 25.4◦ corresponding to the
(002) plane of rGO [36] which confirmed that GO was successfully reduced to rGO. In addition, the
peaks observed at 38.1◦, 44.3◦ and 64.5◦ corresponded to the (111), (200) and (220) crystallographic
planes of the AgNP phase according to JCPDS no. 04-0783 [37]. These reflections indicated that the
structure of AgNP was a face-centered cubic structure. No crystal impurity peaks were observed,
which indicated high purity of the samples. Results confirmed that the samples consisted of AgNP
decorated on rGO. After forming AgNP/rGO, the crystalline structure of the silver was barely affected.
Thus, it was verified that the oxygen-containing groups of GO could adsorb Ag(NH3)2

+ by electrostatic
interaction and then these ions could be reduced by the addition of glucose. However, the pinning
force, supplied by the oxygen-containing groups, could hinder the movement and recrystallization of
the AgNP generated on the rGO sheets [38]. The average crystallite size of the AgNP estimated by
the Debye–Scherrer formula [39] was found to be in the range of 5–10 nm. In each sample, the silver
content was determined by EDS. Based on the EDS results, 0.1 M AgNP/rGO, 0.2 M AgNP/rGO and
0.3 M AgNP/rGO showed an average percentage of Ag 10.2 wt.%, 18.6 wt.% and 28.0 wt.%, respectively.

The morphology of AgNP decorated onto rGO sheets was investigated via TEM (Figure 3). Thus,
it can be seen in Figure 3a–c that silver nanoparticles were homogeneously distributed over the surface
of rGO sheets without obvious aggregation. The samples showed several small AgNP uniformly
distributed on the substrates. The AgNP were mostly distributed between 3 and 8 nm, and the mean
particle size diameter was 5 nm. The size of AgNP observed was in line with the size estimated from
XRD analysis. In Figure 3c, the sample 0.3 M AgNP/rGO displayed the highest number of tiny AgNP
which were well dispersed on the rGO sheets.
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3.2. ORR Electrochemical Performance of AgNP/rGO Samples

In Figure 4, the linear scan voltammograms for ORR using different AgNP/rGO samples at
different rotating speeds 400, 900, and 1600 rpm are shown. Also, the inset shows a magnified part
of the original plot at 1600 rpm. The electrode using rGO without silver exhibited the lowest ORR
performance. Also, its linear scan voltammograms show insignificant change with respect to the change
in rotating speed. For 0.1 AgNP/rGO, 0.2 AgNP/rGO and 0.3 AgNP/rGO electrodes, it can clearly
be seen that the limiting diffusion current of all samples increased when rotating speed increased.
The electrode using 0.3 AgNP/rGO exhibited the less negative onset potential, while the 0.1 AgNP/rGO
electrode was found to have its oxygen reduction at most negative potential. Further, it is noted that the
0.3 AgNP/rGO electrode showed larger limiting current density and more positive half-wave potential
compared to the 0.2 AgNP/rGO and 0.1 AgNP/rGO electrodes. More positive onset potential, more
positive half-wave potential and greater limiting current of the 0.3 AgNP/rGO electrode for oxygen
reduction compared to the 0.2 AgNP/rGO, and 0.1 AgNP/rGO electrodes demonstrated that the higher
Ag content resulted in increased electrocatalytic activity towards ORR. This further confirms that the
decoration of AgNP on rGO sheets significantly boosted its electroactive performance towards ORR.
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ORR is a complicated and multi-step reaction process capable of proceeding through multiple
pathways. Oxygen can be reduced to OH− by a four-electron pathway, as exhibited in Equation (1), or
to HO2

− by a two-electron pathway and further reduce to OH−, as presented in Equations (2) and (3):

O2 + 2H2O + 4e− → 4OH− (1)

O2 + H2O + 2e− → HO−2 + OH− (2)

HO−2 + H2O + 2e− → 3OH− (3)

Koutecky–Levich equation was applied to determine the number of electron transfer per oxygen
molecule for oxygen reduction [40], as shown accordingly in Equation (4):

1
j
=

1
jk

+
1

Bω1/2
, (4)

where j is the total current density, jk is the kinetic current density, and ω is the electrode rotation speed.
The coefficient B is determined from the slope of the Koutecky–Levich plots by expressing the linear
relationship between j−1 and ω−1/2. Then, the Levich equation was applied to determine the number of
electron transfer (n), as shown in Equation (5):

B = 0.2nFD2/3
O2

v−1/6CO2 , (5)

where n is the number of electrons transferred per oxygen molecule. F is 96,485 C mol−1 (the Faraday
constant). DO2 is the diffusion coefficient of oxygen gas in 0.1 M KOH, which is (1.9 × 10−5) cm2 s−1, ν
is the kinetic viscosity (0.01 cm2 s−1), and CO2 is the concentration of O2 (1.2 × 10−6 mol cm−3). It is
noted that the rotation speed (ω) is represented in rpm. Table 1 presents important data extracted from
Figure 4. It is noted that the electrode using rGO without silver is not included as it showed very low
ORR performance.
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Table 1. Electrochemical data (at 1600 rpm) for 0.1 M AgNP/rGO, 0.2 M AgNP/rGO and 0.3 M
AgNP/rGO extracted from linear scan voltammograms, as shown in Figure 4.

Samples Current Density (mA cm−2)
at −0.4 V vs. Ag/AgCl

Onset Potential (V vs.
Ag/AgCl)

The Number of
Electron Transfer

0.1 M AgNP/rGO −0.63 −0.21 2.79
0.2 M AgNP/rGO −2.20 −0.15 3.68
0.3 M AgNP/rGO −3.28 −0.11 3.92

It is known that, in an alkaline solution, oxygen is either reduced to HO2
− as an intermediate

through a two-electron pathway, followed by further reduction to OH−, or it can be reduced to OH−

through a four-electron pathway. The latter is more efficient and favorable for zinc–air batteries.
According to the three different samples: 0.1 M AgNP/rGO (10.2 wt.% Ag loading), 0.2 M

AgNP/rGO (18.6 wt.% Ag loading) and 0.3 M AgNP/rGO (28.0 wt.% Ag loading), the number of
electrons transferred at −0.4 V vs. Ag/AgCl and 1600 rpm was found to be 2.79, 3.68 and 3.92,
respectively. For the 0.1 M AgNP/rGO sample, the number of electron transfer being 2.79 was seen to
be closer to the two-electron pathway than to the four-electron pathway. In contrast, regarding the
0.2 M AgNP/rGO and 0.3 M AgNP/rGO samples, the ORR mechanism was seen to be more favorable to
the four-electron pathway. Specifically, the number of electron transfer for the 0.3 M AgNP/rGO sample
favored the four-electron pathway more than the others on account of the increasing amount of AgNP,
as observed from EDS and TEM results. Lim et al. [31] reported that the loading of high amount of
silver and good distribution generates good ORR catalytic performance. Herein, the number of electron
transfer reached four, which corresponded to the result obtained in the present work. By increasing
the amount of silver, the number of electrons transferred became closer to four; increasing the amount
of AgNP also increased the number of active sites, which resulted in higher activity [41]. Although the
silver loading in this work was less than what Lim et al. [31] reported, the result is not much different.
It is evident, therefore, that loading silver of 28 wt.% was sufficient to produce a direct four-electron
pathway. ORR activity depends on several parameters such as the amount of silver loading, the particle
size of silver nanoparticles, and the distribution of silver particles on the rGO sheets. However, in this
work, the ORR activity mainly depends on the quantity and distribution of silver particles because the
particle size of silver in the three samples are very similar.

3.3. Performances of ZAB Using the Synthesized AgNP/rGO Electrocatalyst

As regards air cathode polarization, the zinc–air battery was fabricated using the 0.3 M AgNP/rGO
catalyst with different ratios of AgNP/rGO to carbon black: namely, 9:0, 7:2, 5:4 and 3:6. The air-cathode
made of MnO2 to carbon black of 2:7, which is generally used as ORR electrocatalyst [42,43], was also
included, as a reference, to compare the performance of the synthesized electrocatalysts. Figure 5a shows
the overpotential of the air cathodes. Initially, in all cases, the overpotential dropped significantly. Then,
it linearly decreased with discharge current density. The highest current density was obtained using
the 9:0 AgNP/rGO cathode. The latter exhibited the current density of 410 mA cm−2 at overpotential
of −0.8 V while the air-cathode made of 2:7 MnO2 showed the current density of 200 mA cm−2 at
overpotential of −0.8 V. When the AgNP/rGO were mixed with conductive carbon additive, they
showed a higher overpotential as compared to the 9:0 AgNP/rGO cathode. Consequently, the cathode
using 9:0 AgNP/rGO was implemented in ZAB for measuring battery performance.
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The batteries were examined for polarization characteristics. In Figure 5b, discharge polarization
curves are shown for the performance of ZABs with the AgNP/rGO and MnO2 cathodes. Generally,
the discharge voltage of battery depends on the battery state of charge and the discharge current
density. In this study, the battery had a zinc electrode with an excess capacity, therefore the battery state
of charge remained constant throughout the polarization test. Consequently, the discharge voltage
was a function of discharge current density. The performance of the battery solely depended on
the air-electrode. During discharge, the zinc anode dissolves in the electrolyte to form zincate ions
([Zn(OH)4]2−), releasing electrons flowing to the cathode via an external circuit. The corresponding
reaction at the anode is as shown in Equation (6):

Zn + 4OH− → [Zn(OH)4]
2− + 2e− (6)

The results, as plotted in Figure 5b, revealed that the battery with the AgNP/rGO air-cathode
was seen to perform much better than the battery with the MnO2 air-cathode. The open-circuit
voltages of AgNP/rGO and MnO2 batteries were 1.40 V and 1.38 V, respectively. When the discharge
current increased, the potential of both batteries slowly dropped linearly due to ohmic loss. At 1 V,
the current densities of the batteries with the AgNP/rGO and MnO2 catalysts were found to be
32.5 and 20 mA cm−2, respectively. The potential of the battery using MnO2 dropped to 0.388 V at
107 mA cm−2. In comparison, the potential of the battery using AgNP/rGO dropped to 0.435 V at
150 mA cm−2. The higher current density value of AgNP/rGO was due to the higher ORR catalytic
performance. The maximum current densities of the batteries using AgNP/rGO and MnO2 were 150
and 107 mA cm−2, respectively. In addition, the peak power densities of the batteries with AgNPs/rGO
and MnO2 reached 68 mW cm−2 at 130 mA cm−2 and 46 mW cm−2 at 90 mA cm−2, respectively. Thus,
the power density of the battery with the AgNP/rGO catalyst proved to be higher than the battery with
the MnO2 catalyst, as confirmed by the results of the cathodic polarization. In conclusion, the battery
that used the synthesized AgNP/rGO catalyst as an ORR electrocatalyst exhibited better performance
than the battery using MnO2 as an ORR electrocatalyst. Table 2 shows a comparison of the battery that
used the synthesized AgNP/rGO catalyst and other zinc–air batteries previously reported. The battery
using the AgNP/rGO catalyst showed a higher performance. However, results may differ depending
on different conditions in the experiment.
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Table 2. Comparison of the battery that used the synthesized catalyst (0.3 M AgNP/rGO) and other
zinc–air batteries previously reported.

Air Cathode Anode/Electrolyte
Potential (V)/Current
Density (mA cm−2) @
Peak Power Density

Peak Power
Density

(mW cm−2)
References

AgNP/rGO Zn granular/8 M KOH 0.52/130 68 This work
MnO2 Zn granular/8 M KOH 0.51/90 46 This work

MnO2 on carbon paper Zn sheet/6 M KOH 0.5/30 19.5 [44]

α-MnO2-LaNiO3/CNT Zn plate/6 M KOH +
0.4 M ZnO 0.6/81 55.1 [45]

Stability of the air cathode using the synthesized catalyst (0.3 M AgNP/rGO) was examined. The
battery was filled initially with 10 g of zinc granules and 15 mL electrolyte. The battery was then
discharged at the discharge rate of 25 mA cm−2 until the discharge potential reached 0.7 V. The battery
was then disconnected, cleaned and replaced with new zinc granules and fresh electrolyte. Three
repetitions of discharge test were conducted. As shown in Figure 6, the galvanostatic discharge
characteristics of the battery are displayed. In the first test, the battery exhibited discharge plateau at
(1.05–0.99) V for discharge capacity of 717.5 mAh gZn

−1. Moreover, the discharge characteristics of
the second and third tests were like the first test. The second and the third tests exhibited discharge
capacities of 722.1 and 719.6 mAh gZn

−1, respectively. The significant degradation of the battery was
not observed. Results demonstrated excellent stability of the air cathode.Energies 2020, 13, x FOR PEER REVIEW 10 of 13 
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4. Conclusions

This work focused on the development of a cost-effective ORR electrocatalyst for a zinc–air battery.
Thus, AgNP/rGO was synthesized via oxidation and exfoliation of graphite powder and followed by
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simultaneous reduction of graphene oxide and silver ions. The small and uniformly dispersed AgNP
offered a large surface area of active sites for the ORR. Loading silver of 28 wt.% proved sufficient to
produce a four-electron pathway. It was significant that the air cathode made of AgNP/rGO without
addition of carbon black exhibited the smallest overpotential and performed much better than the
MnO2 catalyst. Hence, the battery with the AgNP/rGO catalyst reached the maximum current density
of 150 mA cm−2 at 0.435 V and peak power of 68 mW cm−2 at 130 mA cm−2.
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ZAB Zinc–air battery
ORR Oxygen reduction reaction
AgNP/rGO Silver nanoparticle decorated on reduced graphene oxide
EES Electrical energy storage
LIB Lithium-ion battery
rGO Reduced graphene oxide
GO Graphene oxide
AgNP Silver nanoparticle
Ag/N-rGO Silver decorated on nitrogen-doped reduced graphene oxide
Pt/C Platinum on carbon
Ag/NC Silver decorated on nitrogen-doped carbon sheet
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