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Abstract: A new hybrid solar dryer was designed and constructed in this study, which consisted
of a flat-plate solar collector with dual-function (DF-FPSC), drying chamber with glass, fan etc.
The DF-FPSC was firstly applied in drying agricultural products. The innovative application of
hybrid solar dryer can control the drying chamber air temperature within a suitable range by
different operation strategies. Drying experiments for lemon slices in the hybrid solar dryer were
conducted by comparing open sun drying (OSD). Eight mathematical models of drying characteristics
were employed to select the most suitable model for describing the drying curves of lemon slices.
Furthermore, energy, exergy economic and environment (4E) analysis were also adopted to analyze
the drying process of lemon slices. The results show that under the same experimental condition,
the drying capability of the hybrid solar dryer was stronger than that of OSD. Meanwhile, it was
found that the Two term and Wang and Singh models were the most suitable for fitting the lemon
slices’ drying characteristics inside the hybrid solar dryer. The drying chamber air temperature can
be controlled under about 60 ◦C during the process of lemon slices’ drying. The experimental results
show the feasibility and validity of the proposed hybrid solar dryer.

Keywords: mathematical modeling; hybrid solar dryer; solar collector; lemon slices; performance
analysis

1. Introduction

Due to the energy crisis and environmental pollution issues, many governments are working on
developing green energy to alleviate these problems. In the process of drying, it is an effective way for
improving the economic efficiency of drying to reduce the energy consumption of drying systems.
Drying system energy consumption is mainly affected by the dried product and energy efficiency of the
drying system [1]. Hot air convection drying using a traditional energy source is not a sustainable way
of drying due to environmental pollution, high investment and operating costs [2]. Solar drying has the
advantages of being a renewable, free, and abundant energy source, meanwhile, the low-temperature
utilization of solar energy just matches the suitable material drying temperature [3]. However, the
practical application of solar drying generally needs to be supplemented by other forms of energy
due to the influence of solar energy instability, periodic change, low heat collection efficiency, and so
on [4–6]. Therefore, numerous research works concerning solar drying have been conducted over the
past few decades.

Solar drying can be divided into four groups: open sun drying, direct solar drying, indirect
solar drying and hybrid solar drying [7]. Many researchers have studied the design types of a solar
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dryer. Solar thermal components are the key to distinguishing different solar drying systems. Hybrid
photovoltaic-thermal (PV/T), solar air collector types, greenhouses, etc. have been adopted in previous
literature reviews. Banout et al. [8] designed a new model of double-pass solar drier and tested it
under tropical conditions in central Vietnam. Tiwari et al. [9] proposed a hybrid pPV/T greenhouse
solar dryer under mixed mode. Elkhadraoui, A. et al. [10] investigated a forced convection solar
greenhouse dryer; this dryer consisted of a solar air collector and chapel-shaped greenhouse. Kabeel
and Abdelgaied [11] investigated a new solar dryer with rotary desiccant wheel. In addition, other
different types of solar drying system have also been designed and investigated such as Janjai, S. [12],
Aktaş, Mustafa [13], Sonthikun, Sonthawi [14] et al.

After the solar drying system is determined, the characteristics and operational analysis of the
drying system need to be studied. On the one hand, drying characteristics of various agricultural
products were also widely reported in the different solar drying systems. Can [15] investigated the
drying kinetics of pumpkinseeds. Gulcimen et al. [16] performed an experimental and theoretical study
on the drying of sweet basil with solar air collectors, and the drying kinetics mathematical modeling of
sweet basil was found. Ali et al. [17] studied the drying kinetics of sewage sludge at different drying
temperatures under the same air flow rate condition, the influencing factors on the product drying
process were investigated, and the best suitable mathematical model was found. Moreover, rubber
sheet [18], red pepper [19], seedless grapes [20], thymus and mint [21] were also studied to select the
best suitable drying characteristics mathematical model.

On the other hand, the operational performance and evaluation of the drying materials of the
solar drying system need to be analyzed and optimized. Energy analysis can provide the quantity of
energy required and can determine the quality of energy and analyse irreversible causes and directions
of processes in thermodynamics [3]. Rabha et al. [22] proposed and studied a solar tunnel dryer
by energy and exergy analysis; the average overall thermal efficiency of solar air collector ranged
from 22.95% to 23.30%. Fudholi et al. [23] studied the red seaweed drying process using energy and
exergy analysis. Akbulut and Durmuş [24] investigated the mulberry drying process with energy
and exergy analysis, and the maximum value of exergy loss was 10.82 W, the maximum value of
energy utilization ratio was 55.2%, and the exergetic efficiency increased with the increase of drying
air mass flow rate. Midilli and Kucuk [25] studied a solar drying cabinet for drying pistachios with
energy and exergy analysis. In addition, photovoltaic/thermal integrated with a solar greenhouse were
performed by Nayak and Tiwari [26] using the energy and exergy method. Aktaş et al. [13] presented
solar heat-recovery solar drying, with solar air collector efficiency of 50.6% being obtained. Janjai
et al. [12] investigated a PV-ventilated solar greenhouse dryer by employing qualities of dried product
and economic evaluation. Sarhaddi et al. [27] studied the exergetic performance of a PV/T air collector.
Environmental analysis and mathematical modeling of modified greenhouse dryer were conducted by
Prakash and Kumar [28].

From the above literature review, the DF-FPSC has not yet been applied in drying agricultural
products. Lemon is a more popular fruits for most people being rich in nutrients such as vitamin C,
carbohydrate, calcium and minerals. There are few studies on lemon slices’ solar drying in the current
research literature, among which Chen et al. [29] proposed and built the closed-type dryer and Wang
et al. [30] presented the far-infrared assisted vacuum dryer for drying lemon slices. In addition, energy,
exergy, economic and environmental (4E) comprehensive evaluations of solar drying have not been
studied so far.

Thus, the goals of this paper are to propose and study a new hybrid solar dryer with a flat-plate
solar collector with dual-function (DF-FPSC) for drying lemon slices and to develop a most suitable
drying characteristics mathematical model for lemon slices. The advantage of this study is to control
the suitable air drying temperature for drying lemon slices. Furthermore, energy, exergy economic and
environmental analysis of the dryer operation process were also carried out.
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2. Materials and Methods

2.1. Description of System

The new hybrid solar dryer with DF-FPSC was designed and established by the author of this
paper at Jinan city, located at Shandong province, China. According to the previous study results [4,31],
the maximum hot air drying temperature for lemon slices should not exceed 60 ◦C. Therefore, the
maximum temperature of the drying chamber inside air was set as 60 ◦C in this study. The schematic
diagram of the working principle of the hybrid solar dryer is shown in Figure 1. When the drying
temperature is lower than 60 ◦C, the outdoor air is heated by the collector absorbing energy, and then
sent to the cabinet, as shown in Figure 1a. When drying temperature is higher than 60 ◦C, the collector
absorbing energy is divided into two parts, one for drying lemon slices and the other for storing energy
in the water tank as shown in Figure 1b. In the operation process of hybrid solar dryer, the operation
modes of DF-FPSC include air cycle and air and water cycle simultaneous. When drying temperature
is higher than 60 ◦C, the air and water cycle of the DF-FPSC were simultaneously opened by water
pump and fan.
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Figure 1. The schematic diagram of hybrid solar dryer operation.

The hybrid solar dryer includes DF-FPSC, water pump, fan, water tank, auxiliary electric heating
and drying chamber etc. The photograph of the hybrid solar dryer is shown in Figure 2. The system
composition characteristic parameters are listed in Table 1. The other detailed descriptions of the
system can be referenced to [32].
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Table 1. The system composition characteristic parameters.

Component Name Function Characteristic Parameters

Flat-plate solar collector with
dual-function (DF-FPSC)

Converting solar energy into hot
air or hot water

Dual air and water channel. Size:
2 m × 1 m × 0.15 m (L ×W × H).

Cabinet Drying sample material Total volume: 0.77 m2. Inclination:
of 26.7◦

Fan Driving air flow Fan power of 80 W
Water tank Storing hot water Water tank bulk of 120 mL

Water pump Driving water flow Pump power of 200 W
Auxiliary system Providing extra heating energy Electric heating power of 800 W

Tray Placing the drying material Size: 0.6 m × 0.3 m (L ×W).

The schematic diagram of the drying chamber is shown in Figure 3. Material trays with the
wire mesh of evenly spaced pores are placed in the drying chamber. In addition, the air outlet of the
DF-FPSC is connected to the drying chamber air inlet through the ventilation pipe with a diameter of
110 mm. The water channel of the DF-FPSC is connected to the water tank through the water pipe with
a diameter of 32 mm. The hybrid solar dryer operation is controlled by temperature control device
according to the air temperature in the drying chamber.
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2.2. Sample Preparation

Fresh lemons were purchased from the RT-mart (at Jinan city, Shandong province). For testing
the moisture content of lemon, the lemon slices were placed in a drying oven with the temperature of
105 ◦C for 24 h [33]. The average initial moisture content (wet basis) of the fresh lemons was tested as
82.8%. In order to reduce errors caused by drying raw materials, the lemons used in this experiment
were selected according to the same species and purchase batches. The lemons chosen were almost
the same size. The fresh lemons without pre-treatment were sliced with the similar size (diameter:
5 ± 0.2 cm, thickness: 0.3 ± 0.1 cm). For each of the tests, the sample weights of an experimental group
and a contrast group were selected from 300~400 g for studying drying characteristics. In addition, the
mass of drying fresh lemons was selected at about 4 kg for studying the operational performance of
the hybrid solar dryer.

2.3. Experimental Procedure

In order to meet the objective of this research, the drying experiment was carried out twice. One
set of experiments was conducted to study the drying characteristics of lemon slices; the other set of
experiments was carried out to study the operational performance of hybrid solar dryer. In the drying
characteristics of lemon slices experiment, two drying methods for lemon slices were employed; one
was OSD, the other was the new hybrid solar dryer. The drying process was terminated until the
change of samples quality is less than ±1 g for studying drying characteristics and ±10 g for studying
the operation performance of hybrid solar dryer. Lemon slice drying experiments were carried out in
June 2018 from 08:30 to 18:00. The measurement variables included air temperature (inlet and outlet of
collector, inlet and outlet of drying chamber, ambient and drying chamber inside), relative humidity
(inlet and outlet of drying chamber, ambient and drying chamber inside), water temperature (inlet and
outlet of collector), solar radiation intensity, electrical consumption of fan and pump, mass of drying
lemon slices, mass rate of drying air and water. The schematic diagram of the experimental test system
is shown in Figure 4. The test instruments characteristics were listed in Table 2. The experimental data
are recorded automatically every 10 min, and the data collection was connected to the computer.
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Figure 4. The schematic diagram of the experimental test system.

2.4. Uncertainty Analysis

In general, the R value of experimental results uncertainty may be calculated by a set of independent
measurements, namely x1, x2, . . . , xn. The uncertainty of the experimental results R can be calculated
as follows [22]:
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wR =

[
(
∂R
∂x1

w1)
2
+ (

∂R
∂x2

w2)
2
+ ..... + (

∂R
∂xn

wn)
n] 1

2

(1)

The independent parameters measured in this study were solar radiation intensity, ambient
temperature and relative humidity, samples’ mass, temperature (drying air temperature and relative
humidity, air outlet temperature of collector, water inlet and outlet temperature of collector), air and
water mass flow rate of the collector. The dependent parameters measured include solar collector
efficiency, thermal efficiency and exergy efficiency. Uncertainties in different measurement variables of
the experiments are listed in Table 3.

Table 2. Characteristics of the test instrument.

Instruments
Name

Measuring
Parameters Range Accuracy

TBQ-2
Pyranometer

Solar radiation
intensity 0~2000 W/m2 2%

T type
thermocouple temperature −200~350 ◦C ±0.5 ◦C

Temperature and
humidity tester

Air relative
humidity 0~100% 3%

Air flow meter Mass flow rate of
air 0~500 m3/h 1%

Water flow meter Mass flow rate of
water 0~15 m3/h 1%

Electronic balance Samples mass 0~10 kg ±0.1 g

Clamp meter Testo
770-3

Power of fan and
pump

Alternating/direct current (0~600 A)
Alternating/direct voltage (0~600 V)

Alternating/direct current (± 2%)
Alternating/direct voltage (± 1%)

Table 3. Different experimental variables’ uncertainty values.

Name Value

Solar radiation 2.8 W/m2

Temperature 1 ◦C
Mass flow rate (air and water) 1.4 m3/h

Power 0.04 W
Air relative humidity 4.24%

Sample mass 0.52 kg
Thermal efficiency of collector 3.44%

Drying system thermal efficiency 2%
Drying system exergy efficiency 2.43%

3. Performance Analysis

3.1. Drying Analysis

The moisture content of the lemon slices at the initial time is determined on a dry basis (d.b) as:

Md,0 =
W0 −Wd

Wd
(2)

The moisture content of the lemon slices at initial time is determined on a wet basis (w.b) as:

Mw,0 =
W0 −Wd

W0
(3)
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The drying rate of lemon slices during drying experiments can be expressed using the following
equations:

DR =
Mt+dt −Mt

dt
(4)

The quantity of water can be calculated as:

W f =

(
M0 −M f

)(
100−M f

) ×W0 (5)

The instantaneous moisture content can be defined as:

Mt =

[
(M0 + 1)Wt

W0
− 1

]
(6)

The relation between dry basis and wet basis can be expressed as:

Mw = 1−
(

1
Md + 1

)
(7)

The moisture ratio MR is defined as:

MR =
Mt −Me

M0 −Me
(8)

Due to MeFar less than M0, the above equation can be simplified as:

MR =
Mt

M0
(9)

Drying mathematical models were used to select the most suitable model for describing the
drying curves of lemon slices during the drying process, as given in Table 4. The regression analysis
was performed by using the Statistical Package for Social Scientists (SPSS) 17 software package. The
coefficient of determination R2 and root mean square error (RMSE) was also applied to select the most
suitable models.

The above statistical parameters can be calculated using the following equations:

R2 =

N∑
i=1

(MRi −MRpre,i) ·
N∑

i=1
(MRi −MRexp,i)√

[
N∑

i=1
(MRi −MRpre,i)

2][
N∑

i=1
(MRi −MRexp,i)

2]

(10)

RMSE =

 1
N

N∑
i=1

(
MRexp,i −MRpre,i

)2


1
2

(11)

Table 4. Drying curve models for lemon slices.

Number Model Name Model Equation Ref.

1 Newton MR = exp(−k× t) [34]
2 Page MR = exp(−k× tn) [35]
3 Henderson and pabis MR = α× exp(−k× t) [36]
4 Logarithmic MR = α× exp(−k× t) + c [37]
5 Two term MR = α× exp(−k0 × t) + b× exp(−k1 × t) [38]
6 Wang and Singh MR = 1 + α× t + b× t2 [39]
7 Modified Page MR = exp(−(kt)n) [40]
8 Thompson t = α× ln(MR) + b× (ln(MR))2 [41]
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3.2. Energy Analysis

The energy analyses of the hybrid solar dryer were carried out by the conservation of mass and
energy. In the process of lemon slices’ drying, the energy inflows of the hybrid solar dryer include
solar energy and electric energy used by the fan and pump, the energy outflows of the hybrid solar
dryer include heat losses of different locations (solar collector, connection duct, drying chamber et al.)
and the drying air of the drying chamber outlet.

The general mass conservation equation of drying air can be expressed as follows:∑ .
ma,in =

∑ .
ma,out (12)

The general mass conservation equation of moisture can be calculated as follows:∑
(

.
ma,inwin +

.
mmp) =

∑ .
ma,outwout (13)

The general equation of energy conservation can be expressed as follows:

Q−W =
∑

ma,out

hout +
V2

out
2

−∑
ma,in

hin +
V2

in
2

 (14)

During the energy analyses, the following assumptions can be made:

• The drying air flow was assumed to be steady [25].
• The hybrid solar dryer was the same horizontal line.
• The kinetic energies of the hybrid solar dryer can be neglected [22].

Therefore, the energy conservation of the lemon slices’ drying process can be determined as
follows based on the above assumptions and equations:

Q−W = ma(hout − hin) (15)

The relative humidity of drying air can be calculated as follows:

φ =
wP

(0.622 + w)Psat@T
(16)

The collector efficiency was calculated by:

η =
Qu

ατIAc
(17)

The enthalpy of drying air can be expressed:

h = Cp,aTa + whsat@T (18)

The useful heat gained of collector can be calculated by:

Qu =


maCp,a(Tou,a − Tin,a)

mwCp,w(Tou,w − Tin,w)

maCp,a(Tou,a − Tin,a) + mwCp,w(Tou,w − Tin,w)

only air cycle
only water cycle

air and water cycle simultaneously
(19)

The specify energy consumption (SEC) of system can be defined as follows:

SEC =
Qu + E f an + Ep

mw
(20)
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The mass of water removed can be estimated by:

mw =
mp(mi −m f )

100−m f
(21)

The system drying efficiency can be calculated as follows:

η =
mwhev

IAc + E f + Ep
(22)

The theoretical thermal efficiency can be calculated by:

ηth =
Tdc − Tdc.out
Tdc − Tamb

(23)

3.3. Exergy Analysis

In general, the exergy losses of the drying chamber include the exergy loss of the drying chamber
wall heat dissipation, the exergy loss of drying air, and the exergy loss of the product. The following
assumptions were made:

• The flow of drying air can be assumed to be steady.
• The exergy loss of the product was neglected due to the type of chamber.
• The variation of drying air moisture content was neglected [22].
• The change of pressure in the inlet and outlet of drying chamber was neglected.

Therefore, the flow exergy of steady flow stream of drying chamber can be given by:

Ex = maCp,a

[
(T − Tr) − Tr ln

( T
Tr

)]
(24)

The exergy of drying chamber inlet can be given by:

Exin = maCp,a

[
(Tdc − Tr) − Tr ln

(Tdc
Tr

)]
(25)

The exergy of drying chamber outlet can be given by:

Exout = maCp,a

[
(Tout − Tr) − Tr ln

(Tout

Tr

)]
(26)

Thus, the exergy losses of the drying chamber can be determined by:∑
Exloss =

∑
Exin −

∑
Exout (27)

The exergetic efficiency of drying chamber can be written as:

ηEx =
Exout

Exin
= 1−

Exloss
Exin

(28)

The improvement potential (IP) of the novel hybrid solar dryer can be given as:

IP = (1− ηEx)Exloss (29)

3.4. Economic Analysis

The capital costs of the hybrid solar dryer include material cost and construction cost, which can
be obtained from a local market. It can be calculated by:
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Ct = Cm + Cc (30)

The annual cost calculation method was proposed by Audsley and Wheeler [42] and can be
expressed by:

Ca =

Ct +
N∑

i=1

(Cmaint + Coptera)Zi

( Z− 1
Z(ZN − 1)

)
(31)

where
Z =

100 + iin
100 + i f

(32)

The operating cost of the hybrid solar dryer include only the electricity consumption cost (fan and
pump), and it can be calculated by:

Coptera = E f an · t f an + Ep · tp (33)

The maintenance cost of the hybrid solar dryer was equal to 1% of the capital cost. The cost per
unit of drying materials can be calculated by:

F =
Ca

Md
(34)

The payback period can be calculated by:

PBP =
Ct

MdPd −M f P f −MdF
(35)

3.5. Environmental Analysis

In the drying process, the CO2 reductions per batch based on results of this experiment can be
calculated as follows [43]:

Rco2 =
ψco2 ·Qu,overall

1000
(36)

The CO2 emission of system per batch drying products can be obtained as follows:

EMco2 = (E f an + Ep) ·ψco2 (37)

The revenue of CO2 abatement was calculated by:

Yco2 = CPco2 · (Rco2 − EMco2) (38)

4. Results and Discussion

4.1. Drying Characteristics

The set of experimental data for studying the drying characteristics of lemon slices were performed
on 7 and 8 June 2018. The change of solar radiation intensity was shown in Figure 5. The maximum
values of solar radiation intensity at two days were 424 W/m2 and 438 W/m2, respectively, and the
average values of solar radiation intensity were 257.36 W/m2 and 218.33 W/m2, respectively. The
maximum values of solar radiation intensity at two days occured at 12:30 and 11:40, respectively. The
solar radiation intensity increased gradually to the maximum value and then decreased during the
period of the drying experiment.

The change of air temperature and relative humidity is shown in Figure 6. The range of ambient
temperature was 28~38.5 ◦C. Meanwhile, the range of temperature inside drying chamber was
28.5~60.2 ◦C. The average temperature of drying cabinet was about 44 ◦C. The range of ambient
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environment relative humidity was 22.4%~44.5%. Meanwhile, the relative humidity range inside
drying chamber was 11.7%~38.1%. The maximum temperature of drying chamber was almost equal
to the experiments set value. These results show that the operation parameters can meet design
requirement in terms of controlling the drying temperature of the drying chamber.
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4.1.1. Drying Kinetics

The change of lemon slices’ moisture content is shown in Figure 7. The lemon slices moisture
content of OSD was 0.455 g g−1 higher than that of hybrid solar dryer at the end of first day, and lemon
slices’ moisture content of OSD was 0.598 g g−1 higher than that of hybrid solar dryer at the end of
second day of drying. The lemon slices moisture content of OSD and hybrid solar dryer was 0.905 g g−1

and 0.307 g g−1 respectively at the end of drying. These results indicate that the drying capacity of the
hybrid solar dryer is higher than that of OSD under the same conditions. Furthermore, according to
Figure 6, drying temperature has an important influence on the different solar drying curves of lemon
slices. It is consistent with the problems revealed by the factors influencing the effective diffusion rate
in material drying [10,17,44].
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Figure 8 represented the change of moisture ratio for lemon slices. The moisture ratio ranged 
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Figure 7. The change of lemon slices moisture content.

Figure 8 represented the change of moisture ratio for lemon slices. The moisture ratio ranged
from 1 to final moisture ratio of about 0.073 inside hybrid solar dryer. Meanwhile, the moisture ratio
ranged from 1 to the final moisture ratio of about 0.215 under the OSD operation mode. These results
again indicate that the hybrid solar dryer drying capacity was higher than that of OSD under the
same conditions.

In addition, the decrease in the rate of the moisture ratio was faster at the beginning of the drying
experiment and later decreased, as shown in Figure 8. This is because the lemon slices’ surface water
evaporated during the initial drying process, and the water content of lemon slices diffuses from inside
to the surface of drying materials. These results were also verified by previous research [45,46].
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Figure 8. The change of moisture ratio for lemon slices’ drying.

4.1.2. Drying Rates Curves

Figure 9 shows the change of lemon slices’ drying rate of the typical experiments. The drying rate
of lemon slices at the first day was higher than that on the second day. The average drying rate of lemon
slices for the hybrid solar dryer and OSD was 0.262 g g−1 s−1 and 0.229 g g−1 s−1, respectively, on the
first day. The average drying rate of lemon slices for the hybrid solar dryer and OSD was 0.109 g g−1 s−1
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and 0.085 g g−1 s−1, respectively, on the second day. The average drying rate of lemon slices for hybrid
solar dryer was faster than OSD due to the high temperature of drying air. Combined with the results
of Figure 6, these results show that the drying rate of lemon slices is affected significantly by the drying
air temperature. The drying capacity of the hybrid solar dryer was higher than OSD.
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4.1.3. Fitting of Drying Model 

The highest value of R2 and the lowest value of root mean squared error (RMSE) are used to 
select the drying characteristics mathematical model as shown in Table 5. It can be concluded that 
Two term and Wang and Singh were the best model for fitting the lemon slices drying with R2 value 
of 0.998 and RMSE value of 0.001 for the hybrid solar dryer. Two term was the best model with R2 
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4.1.3. Fitting of Drying Model

The highest value of R2 and the lowest value of root mean squared error (RMSE) are used to select
the drying characteristics mathematical model as shown in Table 5. It can be concluded that Two term
and Wang and Singh were the best model for fitting the lemon slices drying with R2 value of 0.998
and RMSE value of 0.001 for the hybrid solar dryer. Two term was the best model with R2 value of
0.998 and RMSE value of 0.001 for OSD. The relationship between predicted and experimental values
for lemon slices’ drying are shown in Figure 10. The predicted values can be fitted into a line with
the slope of 1. Therefore, the Two term model and Wang and Singh model are the most suitable to
describe the drying characteristics of lemon slices under hybrid solar dryer. Two term model is the
most suitable to describe the drying characteristics of lemon slices under OSD.

Table 5. Non-linear regression analyses for lemon slices’ drying.

Name of
Model

Hybrid Solar Dryer Open Sun Drying (OSD)

Constant Coefficients R2 RMSE Constant Coefficients R2 RMSE

Newton k = 0.116 0.973 0.0617 k = 0.083 0.956 0.0316
Page k = 0.156 n = 0.834 0.989 0.0742 k = 0.128 n = 0.767 0.992 0.0138

Henderson and
pabis a = 0.965 k = 0.109 0.979 0.0276 a = 0.953 k = 0.075 0.974 0.0239

Logarithmic a = 0.735 k = 0.208 c = 0.277 0.996 0.0120 a = 0.596 k = 0.192 c = 0.404 0.997 0.0069

Two term a = 0.031 b = 0.976
k0 = −0.168 k1 = 0.15 0.998 0.0069 a = 0.87 b = 0.126 k0 = 0.133

k1 = −0.075 0.998 0.0069

Wang and
Singh a = −0.127 b = 0.007 0.998 0.0069 a = −0.099 b = 0.005 0.997 0.0098

Modified Page k = 0.108 n = 0.834 0.989 0.0195 k = 0.071 n = 0.773 0.986 0.0183
Thompson a = −5.36 b = 4.412 0.985 0.3727 a = −6.424 b = 10.215 0.992 0.2661
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4.2. Energy and Exergy Analysis

The set of experiments data for studying the operation performance of hybrid solar dryer were
carried out on 1–3 June 2018. The change of solar radiation intensity and ambient temperature are
shown in Figure 11. The red dotted line indicates the end of the previous dry day and the beginning
of the next dry day. In the process of drying lemon slices, the solar radiation intensity ranged from
33 W/m2 to 618 W/m2. The variation amplitude of solar radiation intensity was relatively large on
the first drying day. In addition, the maximum of solar radiation intensity occurred at the time of
11:30~14:00. The ambient temperature varied from 25.6 ◦C to 37.5 ◦C with an average of 32.08 ◦C.

Figure 12 represents the change of different parts temperature and relative humidity. The inlet
and outlet air temperature range of drying cabinet were from 27.6 ◦C to 52.8 ◦C and from 27.8 ◦C to
54 ◦C, respectively. The relative humidity of ambient air and the drying chamber inside varied from
31.3% to 59.2% and 10.7% to 34.9%, respectively. The average inlet and outlet air temperature of the
drying chamber were 43.39 ◦C and 43.14 ◦C, respectively. See Figure 12, the outlet air temperature of
drying chamber was occasionally higher than the inlet air temperature of the drying chamber, it was
not consistent with the research results of Rabha et al. [22], this is because the drying chamber type in
this study is different from Rabha et al. [22]. The experimental results of this study were similar to
those of Elkhadraoui et al. [10]. Furthermore, the average relative humidity of ambient air and drying
chamber inside were 45.14% and 17.36%, respectively.
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Figure 13 shows the change of lemon slice moisture content. The moisture content of lemon slices
was reduced from initial moisture content (w.b) of 83.6 g g−1 to 10.3 g g−1 during the drying time of
27 h. The change trend of drying lemon slices was similar to that of other drying products such as red
pepper [47], thymus and mint [21], and rubber sheet [18].

Figure 14 represents the change of drying chamber air temperature and thermal efficiency. The air
temperature of the drying chamber varied from 29.2 ◦C to 60.4 ◦C with an average of 48.97 ◦C. The
maximum air temperature of the drying chamber can be controlled under 60 ◦C. It was shown that the
operation of the system can effectively avoid the influence of high temperature on the quality of dry
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products. Dimitrios and Joachim [48] demonstrated that excessive drying temperature can result in
deteriorating the drying product’s color. Meanwhile, the thermal efficiency of collector was in range of
2% to 69.52% with an average of 44.6%.
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Figure 15 exhibits the variation of exergy flow, loss and efficiency. The exergy flow of the drying
cabinet inlet and outlet ranged from 6.46 W to 359.34 W and 0.68 W to 149.42 W, respectively, and the
change trend of exergy inflow and outflow was to increase first and then decrease. The maximum
value of exergy inflow and outflow occurred at 11:10, 11:20, respectively. Furthermore, the exergy loss
and efficiency varied from 3.42 W to 239.35 W and 39.38% to 71.7%, respectively, in the drying cabinet.
The maximum exergy efficiency appeared in the end of each drying day. Boulemtafes-Boukadoum
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et al. [49], Sami et al. [50] and Kesavan et al. [51] found a similar research result for drying chamber
exergy analysis.

Energies 2020, 13, x FOR PEER REVIEW 17 of 23 

 

Figure 15 exhibits the variation of exergy flow, loss and efficiency. The exergy flow of the drying 
cabinet inlet and outlet ranged from 6.46 W to 359.34 W and 0.68 W to 149.42 W, respectively, and the 
change trend of exergy inflow and outflow was to increase first and then decrease. The maximum 
value of exergy inflow and outflow occurred at 11:10, 11:20, respectively. Furthermore, the exergy 
loss and efficiency varied from 3.42 W to 239.35 W and 39.38% to 71.7%, respectively, in the drying 
cabinet. The maximum exergy efficiency appeared in the end of each drying day. Boulemtafes-
Boukadoum et al. [49], Sami et al. [50] and Kesavan et al. [51] found a similar research result for 
drying chamber exergy analysis. 

 
Figure 15. The variation of exergy flow, loss and efficiency. 

Figure 16 represents the variation of improvement potential (IP) and theoretical thermal 
efficiency of the drying cabinet. The improvement potential range of drying cabinet was from 0.65 W 
to 85.56 W. The change trend of improvement potential is to increase first and then decrease at each 
drying day. This result was similar to that of Fudholi et al. [23]. The theoretical thermal efficiency of 
the drying chamber varied from 4.5% to 78% with an average of 36.47%. It can be concluded that the 
drying chamber can be improved by adding insulation measures [22,52]. The performance 
parameters for drying lemon slices are summarized in Table 6. The specific energy consumption of 
hybrid solar dryer is 4.05 kW·h/kg, which was lower than that of Fudholi et al. [53] (5.26 kW·h/kg for 
red chili), Rabha et al. [22] (18.72 kW·h/kg for ghost chilli pepper and 8.82 kW·h/kg for ginger) and 
was higher than that of Fudholi et al. [23] (2.62 kW·h/kg for red seaweed). It can be concluded that 
the specific energy consumption of a drying system is different based on different drying products. 

 
Figure 16. The variation of improvement potential and theoretical thermal efficiency. 

Figure 15. The variation of exergy flow, loss and efficiency.

Figure 16 represents the variation of improvement potential (IP) and theoretical thermal efficiency
of the drying cabinet. The improvement potential range of drying cabinet was from 0.65 W to 85.56 W.
The change trend of improvement potential is to increase first and then decrease at each drying day.
This result was similar to that of Fudholi et al. [23]. The theoretical thermal efficiency of the drying
chamber varied from 4.5% to 78% with an average of 36.47%. It can be concluded that the drying
chamber can be improved by adding insulation measures [22,52]. The performance parameters for
drying lemon slices are summarized in Table 6. The specific energy consumption of hybrid solar dryer
is 4.05 kW·h/kg, which was lower than that of Fudholi et al. [53] (5.26 kW·h/kg for red chili), Rabha
et al. [22] (18.72 kW·h/kg for ghost chilli pepper and 8.82 kW·h/kg for ginger) and was higher than
that of Fudholi et al. [23] (2.62 kW·h/kg for red seaweed). It can be concluded that the specific energy
consumption of a drying system is different based on different drying products.
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Table 6. Performance parameters of hybrid solar dryer for drying lemon slices.

Performance Parameters Value Unit

Initial mass (lemon slices) 4.12 kg
Final mass (lemon slices) 0.55 kg

Total drying time 27 h
Specific energy consumption 4.05 kW·h/kg
Initial moisture content (w.b) 83.6 %
Electrical consumption of fan 2.28 kW·h

Electrical consumption of pump 0.75 kW·h
Final moisture content (w.b) 10.3 %

Thermal efficiency of collector 2~69.52 %
Thermal efficiency of hybrid solar dryer 9.5 %

Exergy inflow of hybrid solar dryer 6.46~359.34 W
Exergy outflow of hybrid solar dryer 0.68~149.42 W

Exergy efficiency of hybrid solar dryer 39.38~71.7 %

4.3. Economic and Environment Analysis

The set of experiments data for analyzing economic and environment of hybrid solar dryer were
carried out on 1–3 June 2018. The economic analyses were carried out based on the current hybrid
solar dryer and china economic situation. The economic analysis results of the hybrid solar dryer are
listed in Table 7. The capital cost of the hybrid solar dryer is 5700 RMB. The drying capacity of the
hybrid solar dryer is 5 kg for lemon slices. The hybrid solar dryer can be used for 4 months according
to the local climate parameters. It can be concluded that the payback period was 3.63 years compared
to the lifetime of the hybrid solar dryer (5 years).

Table 7. The economic analysis results of the hybrid solar dryer.

Parameters Value Unit

Material cost (collector, fan, pipe etc.) 3500 RMB
Construction cost 2200 RMB
Maintenance cost 57 RMB
Electricity price 0.8 RMB/kW·h

Fresh lemon price 22.9 RMB/kg
Dried lemon price 169 RMB/kg

Lifetime 5 Year
Interest rate 5.63 %
Inflation rate 2.5 %

Pay-back period 3.63 Year
Annual cost calculation 1177 RMB

Cost per unit of drying materials 5.89 RMB/kg

The environmental analyses of the hybrid solar dryer were conducted based on a batch of dried
lemon products. By using Equation (36), the CO2 reduction per batch based on results of this experiment
was 21.79 kg/batch. The revenue of CO2 abatement per batch was 1.61 RMB/batch by using Equations
(37) and (38). The results show that the system has good economic and environmental benefits.

4.4. Analysis of Hybrid Solar Dryer Operation Mode

The set of experimental data for studying hybrid solar dryer operation mode was gathered on
7 and 8 June 2018. Due to the fact that high drying temperature will affect the quality of the drying
sample [54], the working principle of hybrid solar dryer operation mode is to control the air temperature
inside chamber at less than 60 ◦C. According to Figure 6, the maximum drying air temperature is
60.2 ◦C in the cabinet, which meets the demand of the hybrid solar dryer operation working principle.
The variation of DF-FPSC air and water outlet temperature is shown in Figure 17. It can be found
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that the air temperature of the collector outlet decreases instantly while the water temperature rises.
The start-up time of the water pump was 12:51, 12:19, respectively, for two days. This was because
the dry cabinet air temperature was higher than the suitable product drying temperature. There are
two operation modes (only air cycle and air and water simultaneous cycle) in the process of DF-FPSC
operation. According to Equations (18) and (19), the average solar collector efficiency under different
operation mode was 42.9% (only air), 47.4% (air and water simultaneous cycle) with the air flow rate of
28.125 m3/h and the water flow rate of 1.125 m3/h on the first day; the average solar collector efficiency
under different operation mode was 39.2% (only air), 41.4% (air and water simultaneous cycle) with
the air flow rate of 28.125 m3/h and water flow rate of 1.125 m3/h on the second day. Based on the
analysis of the above experimental results, the experimental results show the feasibility and validity of
the proposed hybrid solar dryer.
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5. Conclusions

A new hybrid solar dryer with DF-FPSC was designed and constructed in this study; and drying
experiments for lemon slices (initial moisture content 82.8% on a wet basis) were carried out under
hybrid solar dryer and OSD conditions. The drying characteristics and operational performance of the
hybrid solar dryer for drying lemon slices have been analyzed. From the above studies, the following
conclusions have been reached:

• Under the same drying time condition, the drying capacity of the hybrid solar dryer is better than
OSD. Meanwhile, it was found that the Two term model and Wang and Singh model were the
best suitable models to describe the lemon slices drying characteristics for hybrid solar dryer. The
Two term model was only the best model for OSD.

• The efficiency range of DF-FPSC was from 2% to 69.52% with an average of 44.6%. The exergy
flow of the drying cabinet inlet and outlet ranged from 6.46 W to 359.34 W and 0.68 W to 149.42
W, respectively. The exergy efficiency range of the drying cabinet was from 39.38% to 71.7%,
respectively. The improvement potential range of the drying cabinet was from 0.65 W to 85.56 W.
It can be concluded that the outlet of the drying chamber lost considerable energy.

• It was found that the pay-back period was 3.63 years. The CO2 reduction per batch based on the
results of this experiment was 21.79 kg/batch. The revenue of CO2 abatement per batch was 1.61
RMB/batch. The system has good economic and environmental benefits.

• During the period of hybrid solar dryer operation, the maximum drying air temperature can be
controlled under 60.2 ◦C in the cabinet. The start-up time of the water pump was 12:51, 12:19,
respectively, for two days. This was because the dry cabinet air temperature was higher than the
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suitable product drying temperature. The experimental results showed the feasibility and validity
of the proposed hybrid solar dryer with DF-FPSC.
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Nomenclature

Nomenclature
Wd Final mass of products (g)
Md,0 Initial moisture content on dry basis (g g−1)
w Uncertainty
IP Improvement potential (W)
M Moisture content (g g−1)
i Year
Wt Evaporate quantity of water at t time (g)
Me Equilibrium moisture content (g g−1)
MR Moisture ratio
R2 Regression coefficient
Ex Exergy (W)
SEC Specify energy consumption (kW·h/kg)
DR Drying rate of products (g g−1 s−1)
Ct Capital cost (RMB)
RMSE Root mean square error
a,b,k,n,k0,k1 Constant used in models
m Mass flow (m3/h)
Qu Useful energy (J)
I(t) Solar radiation intensity (W/m2)
Ac Collector area (m2)
Mw,0 Initial moisture content on wet basis (g g−1)
Cm Material cost (RMB)
Cc Construction cost (RMB)
Ca Annual cost (RMB)
t Time (s)
PBP Payback period (year)
P Cost per unit of drying materials (RMB/kg)
R CO2 reductions (kg CO2)
EM CO2 emission (kg CO2)
CP International carbon price (RMB/ton)
Y Renue of CO2 abatement (RMB)
Cp Specific heat capacity (kJ/(kg ◦C))
T Temperature (◦C)
Greek symbols
δ Saving-time percentage of drying
ψco2 Average CO2 equivalent intensity for electricity generation from coal (kg CO2/kW·h)
α Absorptivity
τ Transmissivity
φ Relative humidity (%)
η Thermal efficiency of collector
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Subscripts and abbreviations
0 Initial time
a Air
mp Moisture of product
exp Experimental
pre Predicted
sat Saturated
w Water
i Number
ou Outlet
in Inlet
ev Evaporate
th Theoretical thermal efficiency
dc Drying chamber
ref Reference value
c Collector
f Final time
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