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Abstract: Electric vehicles (EV) replacing the internal combustion engine vehicle may be the solution
for the particulate matter (PM) 2.5 pollution issue. However, the uncontrolled charging of EVs would
challenge the power system operation. Therefore, it is necessary to implement some level of control
over the EV charging procedure, especially in the residential network. In this paper, an optimization
of EVs charging scheduling considering energy arbitrage and the distribution network cost of an
urban village environment is presented. The optimized strategy focuses on decreasing the loss of EV
owners’ energy arbitrage benefit, introduced as the penalty cost. Also, peak demand, power loss,
and transformer aging are included in the estimation of the cost function for the distribution network.
The optimization problem is solved using the genetic algorithm. As a case study, data from the urban
village in Udon Thani, Thailand, are utilized to demonstrate the applicability of the proposed method.
Simulation results show a reduction in the loss of energy arbitrage benefit, transformer peak load,
power loss and the transformer loss of life. Therefore, the application of the optimized EV charging
can prolong transformer lifetime benefiting both the EV owner and the distribution system operator.

Keywords: electric vehicle; energy arbitrage; optimization; power loss; residential network;
transformer aging

1. Introduction

Nowadays, climate change and global warming on account of greenhouse gas (GHG) emissions
such as CO2, are negatively impacting the world environment. Moreover, CO2 emissions in the
transportation sector are also the cause of particulate matter (PM) 2.5 pollution which is generated
by internal combustion vehicles. Many countries are looking into changing their policies to increase
electric vehicle (EV) usage and there has been a consequent increase of EVs to over 5 million cars
worldwide in 2018 [1]. However, a large increase in EVs can significantly impact the power network,
especially the low voltage (LV) network, such as the urban village power system with a higher
potential of energy consumption [2]. EV charging can affect the distribution network in many ways,
for example, power quality issue and reliability problems [3], power fluctuation due to the uncertainty
of charging [4], voltage drop due to charging demand exceeding prior design specifications [5] and
network overloading because of dump charging [6,7]. Moreover, its impacts on grid asset deterioration
have been reported in references [8–10]. The research in reference [8] presented that the impact of EVs
charging demand in the city with a high annual average temperature environment can significantly
reduce the loss of life of the distribution transformer. In reference [9], the simulation result illustrated
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that the dump of peak load from uncontrolled EV charging can cause the power network bottleneck
problem and overloading. In reference [10], it was shown that uncoordinated EV charging causes
the distribution transformers and the grid components operate under high risk of failures. All of
these create real-life challenges for EV congestion management in village networks for the distribution
system operator (DSO) or the independent system operator (ISO).

Regarding the negative impacts of EV charging, many studies have been published on how to
deal with the EV charging impacts. To reduce the EV impacts on grid assets, optimal charging has
been a popular method in recent years. Research work in reference [11] proposed a smart schedule
for EV in the residential low-voltage system to flatten the load profile of the substation transformer
that can reduce the transformer aging. Reference [12] proposed the distributed scheduling algorithm
to coordinate the EV charging in a residential area in Pattaya, Thailand. The goal of this work is to
control the network load profile and prevent the transformer overloading. The optimization-based
coordination strategies on the voltage stability and phase imbalance in the semi-urban low voltage
grid was presented in reference [13] where one of the study optimization strategies was to minimize
the variance of the aggregated load at the transformer. Reference [14], proposed optimal EV charging
with considering the distribution network constraint set includes transformer and line limitations to
prolong the transformer lifetime and to protect the line damage. However, the above references do not
include the transformer aging due to temperature variation and the characteristic based on the winding
thermal mechanism model was not illustrated in these studies as well. Optimization of EV charging to
decelerate the distribution transformer loss of life using the exponential thermal models have been
reported by some researchers. Reference [15] presents the technical and economical optimization of
EV charging in a parking garage with photovoltaic (PV) and battery energy storage system (BESS)
considering the impact on transformer aging. Reference [16] discusses optimized EV charging in the
parking lot where the critical power limit of the distribution transformer is modeled with the ambient
temperature and the aging acceleration factors. In reference [17], the optimal strategies of the home
energy management system with EV charging for minimizing the distribution transformer aging were
shown. However, both studies did not consider the benefit of the EV owners’ energy arbitrage when
the electricity tariff is taken into account, such as the time of use (TOU) rate.

In the research work [18], the authors demonstrated the impact of the transformer aging in
community distribution networks under different EV charging strategies such as dump charging,
TOU charging and the proposed optimal charging considering minimization of energy costs and the
transformer loss of life. In reference [19], researchers proposed the optimal centralized model for a
residential grid to minimize the transformer aging considering the energy arbitrage benefits for EV
owners. In research work [20], optimal EV charging considering the cost of the distribution transformer
aging, network energy losses and charging cost in the residential area were proposed. However, they
did not perform the optimal EV charging using power flow analysis to consider the network operating
constraints such as the conductor current rating and bus-voltage boundary limitation. In addition,
all reviewed literature did not consider the loss of EV owner’s energy arbitrage benefit when they
change their charging profile to the optimal charging pattern that only supports the slowing down of
the transformer aging.

In order to fill the gap in previous research works, this paper proposes a methodology to optimize
EV charging allocation in an urban village network considering the EV owner’s benefit from EV
battery price arbitrage and the DSO network operation cost including the transformer loss of life
cost. The focus of this optimization work is to fulfill the objectives, namely, minimization of the loss
cost of energy arbitrage, peak demand cost, network power loss cost, and the transformer aging cost.
The model of transformer thermal characteristics is considered in the transformer loss of life cost. Also,
the constraint function of a transformer operating limit is added to avoid the gassing of transformer
insulation. Furthermore, the actual residential load of the urban village and the ambient temperature
in Udon Thani, Thailand, are used to validate the outcomes of the proposed methodology. Numerical
simulations with power flow analysis are done using MATLAB (version R2013b, Natick, MA, USA).
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In addition, the optimization problem is solved by using the genetic algorithm (GA) which is one of the
metaheuristic optimization methods. The major contributions of this study are summarized as follows:

• The loss of the EV owner’s benefit from battery energy arbitrage is formulated and taken into
account in the objective function, which has not been studied, in previous works.

• To optimize EVs charging allocation in the urban village environment, the network operating
limitation is considered in the optimization constraints and evaluated based on the power
flow analysis.

• The network peak demand, power loss and transformer loss of life are formulated to be the
economic term which represents the network operating costs for including in the objective function.

• Finally, the transformer aging is calculated using the winding thermal characteristic model where
the real baseload and the actual local ambient temperature, of an urban village, are utilized to
demonstrate the effectiveness of the proposed optimization.

The remainder of the paper is organized as follows. Section 2, describes the mathematical problem
formulation. Section 3 explains the proposed method that includes optimization functions and the
framework. Simulation results are discussed in Section 4, followed by the conclusions in Section 5.

2. Problem Formulation

On one hand, the EV owner likes to charge their EV with the lowest electricity costs and benefits by
using the energy arbitrage; however, this may negatively impact the network as previously mentioned.
On the other hand, the DSO prefers to sell electricity using distribution assets for a longer time and with
minimal operational cost. In addition, factors affecting the operation cost of distributing electricity in
the village network include peak demand power, power loss in the distribution system, and grid asset
degradation such transformer aging. All these factors are included in our formulation as described in
the next section.

2.1. Energy Arbitrage

The electricity price in the village network varies during each period of a day, therefore the price
will be on the TOU. In addition, the basic need of EV owners prefers to minimize their electricity charging
cost which can be achieved by scheduling their EV charging following the TOU rate. This charging
method can benefit EV owners by them selling the residual energy of an EV’s battery back to the
distribution network by the vehicle to grid (V2G) mode at a high electricity price period during peak
time. Then, the EV owner buys energy from the network by the grid to vehicle (G2V) mode with the
lower electricity price in the off-peak period. This process is called energy arbitrage [21]. The profit
from the energy arbitrage can be expressed as in Equation (1).

CAB,i =
T∑

t=1

(
Pd

i,t + Pc
i,t

)
∆tct (1)

where CAB,i is the daily energy arbitrage benefit of the i-th EV in $. Pd
i,t and Pc

i,t are discharged and
charged powers of the i-th EV in kW at time t, respectively. Also, ∆t is the time interval at the time t
and ct is the electricity price at time t in $/kWh. T is the total number of time slots of a day.

2.2. Peak Demand

The power flow balance equations for the village network are expressed as follows:

Pt =
Nev∑
i=1

PEV
i,t +

Nbus∑
j=1

Pbase
j,t +

Nbra∑
k=1

Ploss
k,t (2)
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Qt =
Nbus∑
j=1

Qbase
j,t +

Nbra∑
k=1

Qloss
k,t (3)

St =
√

P2
t + Q2

t (4)

Ploss
k,t = Pto

k,t − P f r
k,t, ∀t ∈ T, ∀k ∈ Nbra (5)

Qloss
k,t = Qto

k,t −Q f r
k,t, ∀t ∈ T, ∀k ∈ Nbra (6)

where in Equations (2) and (3), Pt and Qt are total active power in kW and total reactive power in kVar
at the time t, respectively. PEV

i,t is charging power in kW of the i-th EV at time t. Pbase
j,t and Qbase

j,t are the

village baseload of bus j in kW and kVar at the time t, respectively. In addition, Ploss
k,t and Qloss

k,t are the
active power loss in kW and the reactive power loss in kVar of the distribution branch k at the time t,
respectively. In Equation (4), St is the total apparent power in kVA at the time t. Pto

k,t in Equation (5)
and Qto

k,t in Equation (6) are the power flow to the receiving end of branch k at time t in kW and kVar,

respectively. P f r
k,t and Q f r

k,t are the power flow from the sending end of branch k at time t in kW and
kVar, respectively. Also, Nev is the total number of electric vehicles while Nbus and Nbra are the total
number of network buses and branches, respectively.

Since only one distribution transformer supplies the village network, the transformer loading at
any time t can be evaluated using Equation (4). Thus, the cost of village daily peak demand can be
formulated by multiplying the daily peak load with the demand charge fee, as follows:

Cpeak = Ppeakcd (7)

Ppeak = max{P1, P2, . . . , PT}, ∀t = 1, 2, . . . , T (8)

Equation (8) is provided to find the peak load power of 24 h of a day that is used to calculate the
peak demand charge. Where Cpeak is the peak demand cost in $, Ppeak is the daily peak load power in
kW and cd is a daily demand charge fee in $/kW which is obtained by dividing the monthly fee (Cm)
by 30.

2.3. Power Loss

The second operation cost is the power loss in the distribution network that includes power loss
in conductor lines and a distribution transformer. This cost can be formulated in an economic term as
shown below:

Closs =
T∑

t=1

Nbra∑
k=1

Ploss
k,t ∆tct (9)

where, Closs is the daily power loss cost of the network in $.

2.4. Transformer Aging Model

According to the IEEE standard C57.91-2011 [22], the transformer aging is mostly estimated from
the transformer insulation life. In fact, aging or deterioration of insulation is considered to be due to
aging effects produced by the hottest-spot temperature. The winding hottest-spot temperature is the
result of three heat components as shown in Equation (10).

θH
t = θA

t + ∆θTo
t + ∆θH

t (10)

where θH
t is the winding hottest-spot temperature at the end of time period t. θA

t is the average ambient
temperature during the measurement time period t, ∆θTo

t is the top-oil temperature rise over the
ambient temperature at the end of the measurement time period t and ∆θH

t is the winding hottest-spot
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temperature rise over the top-oil temperature at the end of the same time period. All temperatures are
in degrees Celsius (◦C).

The top-oil temperature rise over the ambient temperature at the time t after a load change is
given by the exponential expression function containing an oil time constant [19] as follows:

∆θTo
t =

(
∆θTo,U

t − ∆θTo
t−1

)(
1− e−∆t/τo

)
+ ∆θTo

t−1 (11)

where ∆θTo,U
t is the ultimate top-oil temperature rise over the ambient temperature at time t and

∆θTo
t−1 is the top-oil temperature rise over the ambient temperature at the previous period in ◦C. ∆t is

the interval of evaluation in hour and τo is the oil time constant of transformer for any load and for
any specific temperature differential between the ultimate top-oil rise and the initial top-oil rise [22].
The calculation of the ultimate top-oil temperature rise over the ambient temperature (∆θTo,U

t ) is
based on the top-oil temperature rise over the ambient temperature at the transformer rated loading
(∆θTo,rated) as shown in Equation (12).

∆θTo,U
t = ∆θTo,rated

t

(
k2

uR + 1
R + 1

)n

(12)

where ku is the ratio of transformer ultimate loading and the rated loading. R is the ratio of transformer
power loss at rated load and no-load and n is an empirically derived exponent of the cooling parameter,
whose value depends on the type of transformer cooling method and approximately accounted for
considering the effects of change in transformer resistance with a change in load.

Also, the winding hottest-spot temperature rise over the top-oil temperature at time t after load
changes is given by the exponential expression function containing the winding time constant at hot
spot location as in Equation (13) [19].

∆θH
t =

(
∆θH,U

t − ∆θH
t−1

)(
1− e−∆t/τw

)
+ ∆θH

t−1 (13)

where ∆θH,U
t is the ultimate winding hottest-spot temperature rise over the top-oil temperature at the

end of time t in ◦C. ∆θH,U
t−1 is the winding hottest-spot temperature rise over the top-oil temperature

previously in ◦C and τw is the transformer winding temperature time constant. The calculation of
the ultimate winding hottest-spot rise temperature over top-oil temperature (∆θH,U

t ) is based on
the winding hottest-spot rise over the top-oil temperature at rated loading (∆θH,rated) as shown in
Equation (14).

∆θH,U
t = ∆θH,rated

t k2m
u (14)

where m is an empirically derived exponent of the cooling parameter of the transformer [22].
The relation between insulation deterioration with time and the winding hottest-spot temperature

can be evaluated using an aging acceleration factor (FAA
t ) [22]. The FAA

t of a given hottest-spot
temperature at time t, usually is based on the reference temperature of 110 ◦C and can be evaluated
using Equation (15).

FAA
t = e

( 15000
383 −

15000
θH

t +273
)

(15)

Thus, the FAA
t is equal to 1, when the winding hottest-spot temperature is equal to the reference

temperature. The FAA
t is more than 1 when the winding hottest-spot temperature is higher than the

reference temperature. This condition indicates that the transformer is experiencing accelerated aging
and its lifetime is reduced. The equivalent of the aging acceleration factor and daily transformer
percent loss of life over a time period of a day can be written, as in Equations (16) and (17), respectively.

Feqa =
T∑

t=1

FAA
t ∆t
Td

 (16)
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LoLd =
FeqaTd × 100

β
(17)

where Feqa is the equivalent of the aging acceleration factor and LoLd is the daily transformer percent
loss of life in hours while Td is the studied time duration of a day which normally is considered to
be 24 h. Also, β is the normal insulation life of the transformer, according to IEEE standard [22], the
residual tensile strength (RTS) of the end point in sealed tube aging was considered at a level of 20%
residual. The end of life criteria for the oil-immersed transformer is an RTS of 20% at the reference
temperature of 110 ◦C and a normal life of 150,000 h (17.12 years).

Finally, the daily transformer aging cost can be calculated as in Equation (18).

CTxLoL =

(
STxTxcapLoLd

)
100

(18)

where, CTxLoL is the transformer aging cost in $. STx and Txcap are the transformer power rating in kVA
and the transformer installation cost per unit in $/kVA, respectively.

3. The Proposed Optimization Method

The goal of the proposed optimization is the minimization of the loss of EV owner’s energy
arbitrage benefit through optimal charging and reduction of the distribution network operation cost.
The objective and constraint functions are formulated as shown below:

3.1. Objective Function

To combine the EV owner and the DSO perspectives mentioned above, control of EV charging in
the distribution network is one way to benefit both the owner and the DSO. Consequently, the objective
function for minimizing the related cost can be written by the following:

f = CABpen + Cpeak + Closs + CTxLoL (19)

CABpen =
Nev∑
i=1

CAb,i +
Nev∑
i=1

T∑
t=1

Pev
i,t∆tct (20)

where, CABpen is the penalty cost of the EV owners’ arbitrage benefit loss in $ while CAb,i is the energy
arbitrage of the i-th EV in $, which can be calculated using Equation (1). Pev

i,t is the optimized charging
power in kW for the i-th EV at time t when parking at home and ct is the electricity price rate in $/kWh
at time t. The optimal charging power value can be either positive value when charging (G2V) or
negative if discharging (V2G).

3.2. Constraints

3.2.1. Electric Vehicle (EV) Charging Constraints

The optimization of EVs charging in urban village networks is performed after EV is parked at
home. The ratio of the EV stored energy level and its battery capacity is defined as the state of charge
(SoC), which the initial battery level of the i-th EV (SoCi,int) at the beginning of charging which can
be calculated using Equation (21). The high accuracy model of EV battery’s SoC level estimation can
be found in [23]. However, this model must be evaluated by using many parameters of the battery.
Therefore, to reduce the complexity of this constraint, the SoC of EV battery energy formula as shown
in Equation (22) is used in this work. This equation can be compared with the equation in [23] and is
successfully used in reference [15].

SoCi,int = SoCi,depart − (100× εidi)/ci,bat (21)
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SoCi,t = SoCi,t−1 +
(
100× ηEVPev

i,t∆t
)
/ci,bat (22)

where, SoCi,depart is the battery level of the i-th EV when it departs from home and εi is the electrical
consumption rate of the i-th EV in kWh/km. di is the daily traveling distance in km and ci,bat is the
EV battery capacity in kWh. SoCi,t and SoCi,t−1 are the battery level of the i-th EV at time t and the
previous time (t–1), respectively. Besides, ηEV is equal to ηc when EV battery operates at charging
mode and ηEV is equal to −1/ηd if it operates at discharging mode, where ηc and ηd are charging and
discharging efficiencies, respectively.

The charging power rating of EVs in a household is limited by the nominal rated power of its
on-board charger as described below:

−PEV
i,rated ≤ PEV

i,t ≤ PEV
i,rated, ∀i = 1 . . .Nev (23)

where PEV
i,rated is the on-board charger power rating in kW for the i-th EV.

To prolong the EV battery’s lifetime, the state of charge (SoC) of each EV battery at time t, should
be limited between the minimum (SoCmin) and the maximum (SoCmax) state of charge limits. Also, the
final state of charge of each EV battery (SoCi, f inal) before departing must not be below its minimum
desired level (SoCi,des) and not above its maximum level (SoCmax). Both constraints are shown in
Equations (24) and (25), respectively. The minimum required charging time of the i-th EV (Tch

i,min) can
be calculated using Equation (26).

SoCmin ≤ SoCi,t ≤ SoCmax, ∀i = 1 . . .Nev (24)

SoCi,des ≤ SoCi, f inal ≤ SoCmax, ∀i = 1 . . .Nev (25)

Tch
i,min =

(
SoCi,des − SoCi,int

)
ci,bat

100× ηcPev
i,rated

, ∀i = 1 . . .Nev (26)

In this study, both ηc and ηd are set to be 95%. The state of charge of each EV battery at the time t
should be between SoCmin and SoCmax. To prolong the EV battery’s lifetime, the SoCmin is set to be
20% while the SoCmax is set to be 95% in order to protect the overcharging (no more than 100%) of the
battery. In addition, the SoCi,des of each EV is set to be SoCmax when the parking period is longer than
the Tch

i,min. Otherwise, it must be continuously charged with a rated power and the final SoC depends
on its available charging time at home.

3.2.2. Transformer Constraints

The transformer loss of life is related to the winding hottest-spot temperature that correlates with
the transformer loading and the ambient temperature. Therefore, to protect the transformer’s aging,
one can control the transformer winding hottest-spot temperature to make sure that the temperature
does not go over the limit. This condition can be achieved by optimizing the EV’s charging load.
Thus, the constraints we have used are as follows.

θH
t ≤ θ

H
max, ∀t = 1 . . .T (27)

St ≤ Smax, ∀t = 1 . . .T (28)

where, θH
max is the maximum limit of the winding hottest-spot temperature to avoid gassing in the

solid insulation and the oil. According to the recommendation in [22], θH
max is set to be 140 ◦C for this

study. In addition, Smax is the maximum limit of the transformer loading to safeguard its connector
and protecting switch from damage due to higher temperatures. To defer the upgrade cost of the
distribution transformer, transformer overloading can be allowed up to some appropriated limit.
Following the guide in IEEE standard C57.91-2011, the Smax in this study is set to be 1.4 times the
transformer nameplate rating in kVA.
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3.2.3. Network Constraints

The final constraint term is the network inequality limitation as listed below:

Vmin ≤ V j,t ≤ Vmax, ∀ j = 1 . . .Nbus, ∀t = 1 . . .T (29)

Ik,t ≤ Ik,max, ∀k = 1 . . .Nbra, ∀t = 1 . . .T (30)

where, V j,t is the voltage of the bus j at time t while Vmin and Vmax are the lower and upper limits of
the voltage level, respectively, which are set to be 0.9–1.1 p.u. of the nominal voltage. In addition, Ik,t is
the current of the branch k at time t and Ik,max is the maximum current limit per specification of the
conductor type at branch k.

3.3. Optimization Framework

The aim of the proposed charging algorithm is to find the optimal day-ahead planning of EVs
charging schedule in the village network for increasing EV owner’s energy arbitrage benefit and
decreasing the power distribution operating cost. This concept can be applied in the real world by
using the EV aggregation system [24] which is provided by the DSO/ISO of a village. The EV aggregator
can communicate with an EV owner for obtaining daily traveling data such as the expected arrival
time at home and departure time from home while the driven distance can be forecast by using the
historical data or user provides. Also, the EV charging scheduling can be controlled through the home
energy management system (HEMS) [25].

According to the objective function in Equation (19) which may have multiple locally optimal
points. Also, the constraints in Equations (27)–(30) are nonlinear function which its value are evaluated
based on power flow analysis (nonlinear problem). That means this is a non-convex optimization
problem and cannot be solved by using the linear optimization method. While the metaheuristic
optimization methods are widely known for their ability to solve the complexity problem. A genetic
algorithm (GA) is a search heuristic algorithm that is inspired by the natural revolution. It is one
of the popular intelligent algorithms because of its exploitation and robustness. The examples of
success using the GA to solve the optimization of EV charging were presented in references [9,11,26,27].
Therefore, the GA method is selected to solve the optimization problem in this work. However,
because the GA method does not guarantee the global optimal solution. The process of the proposed
optimization method is operated 10 times in order to obtain the best result. The parameters of GA,
such as the population size is set to be 400 with the number of maximum generations is 100 to increase
the convergence rate. While, crossover and mutation rates have been determined by a trial and error
method to balance the quality of the solution and computation time, which are found to be 0.8 and 0.1,
respectively. A diagram of the proposed optimization process based on the GA method is presented in
Figure 1. The mechanism to determine the optimal EV charging scheduling is given as follows:

(1) The process begins by creating a random initial population of each individual which feasible
in the region considering constraints in Equations (22)–(25) based on the information of EV
traveling data set such as driven distance, EV model, arrival time, departure time and minimum
required energy.

(2) Next, the information about network topology, village baseload and ambient temperature profile
for 24 h (96 time slots) are considered in the process. The feasibility of each individual is used to
calculate network power flow for evaluating the optimization constraints function in Equations
(27)–(30).

(3) In this step, the cost functions of the EV owners’ arbitrage benefit (1), peak demand (7), power
loss (9) and the transformer loss of life (18) are calculated. Then these related costs are used to
evaluate the fitness function in Equation (19).

(4) The GA optimization process continually generates a new population using GA terminology
operation as crossover, mutation and selection until one of the stopping criteria is met. In this
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study, two stopping criteria are used. First, when the convergence tolerance is within 10−6,
the process will be stopped. Second, the generation process reaches the maximum number.

(5) Finally, the best solution of the GA shows the optimal charging power of each EV charging at any
time interval. Then the EV charging and discharging schedule considering the energy arbitrage
and distribution network cost for the village is used for the day ahead planning optimization.
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4. Simulation and Results

4.1. A Studied Urban Village Case

To test the proposed optimization approach, we have selected the distribution radial network
in Udon Thani, Thailand, which represents an urban village network. A typical single-phase
distribution transformer with a rating of 50 kVA connects the main grid with the 22 kV voltage system.
This transformer serves 12 households with a low voltage level of 230 V and delivers power using
the 50 THW conductor line, which spans 40 m for the main feeder and 10 m for the service drop line.
The network topology for this study is shown in Figure 2. In order to evaluate the transformer aging,
the village baseload and ambient temperature of a day in summer (hottest) and winter (coldest) in
2018 were used for simulations. The village baseload profile with the time step of 15 min was obtained
from the automatic meter recording (AMR) of the Provincial Electricity Authority (PEA) [28] with a
constant power factor of 0.9 (lagging). In addition, the hourly ambient temperature data were obtained
from the Thai Meteorological Department (TMD) [29], Thailand. Both village demand power and the
environment temperature profile used for this study are presented in Figure 3.
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4.2. EV Model

A report of the top 10 EV sales by model in the U.S. [30], is used to select 3 EV models for this
study, namely the Chevy Volt [31], Nissan Leaf [32] and Tesla Model 3 [33]. Because the area of this
study is focused on the urban village, therefore, we have assumed one EV per house in this urban
village study. The specifications of the three selected EV types are listed in Table 1. In this work, we
expect all participating EVs in a village must have completed their charging when they park at home.
Since the interval time (∆t) is set to be 15 min, the total number of time slots in a day is 96. The EV
charger equipment at home is AC level type 2, which operates with a unity power factor. The charging
and discharging rates follow the electricity tariffs based on the TOU rate. The electricity tariff and the
monthly demand charge fee for a residential network in this study are shown in Table 2. The energy
rates are converted from THB to USD using the exchange rate of 1 USD equals 32 THB.

Table 1. EV model and specifications.

EV Model Battery (kWh) Charging Power (kW) Consumption (kWh/km)

Chevy Volt [31] 18 3.3 0.15
Nissan Leaf [32] 40 6.6 0.15

Tesla Model 3 [33] 55 6.6 0.14

Table 2. Electricity tariff data from [34].

Period
Peak Time Off-Peak Time

9:00 a.m.–10:00 p.m. 10:00 p.m.–9:00 a.m.

Price 18.12 ¢/kWh 8.24 ¢/kWh
Monthly demand charge fee (Cm) = 4.1541 $/kW



Energies 2020, 13, 349 11 of 20

The uncertainties associated with EVs travel such as departure time, arrival time, and daily
traveling distance are applied in this study through random generation of data based on the statistical
probability of the traveling pattern from the National Household Travel Survey (NHTS) data [35].
The normal distribution is used to create the random set of the departure time and the arrival time.
The departure times from home are randomly generated with mean µ = 7.0 and standard deviation σ

= 1.5 while the arrival times at home are randomly generated with the mean µ = 18.0 and the standard
deviation σ = 3.0. Based on reference [36], the random values for the daily driven distance is generated
using a lognormal distribution with mean µ = 3.2 and standard deviation σ = 0.88. The probability
distribution function (PDF) of the departure time, the arrival time and the daily driven distance are
generated using the MATLAB probability density function shown in Figures 4 and 5, respectively.
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The village baseload at each house in summer and winter cases, EV model and its initial SoC of
each EV battery are shown in Table 3. The baseload power of each house is obtained from the monthly
electricity bill while the daily load profile of an individual house is generated using the similar load
pattern of the transformer. The peak load of each house is multiplied with a normalized curve of the
transformer daily load profile to represent the daily load curve of each house.
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Table 3. Baseload point and EV dataset.

House
Baseload (kW)

EV Model Initial SoC (%)
Summer Winter

1 3.74 2.43 Chevy Volt 48.78
2 3.71 2.40 Nissan Leaf 52.25
3 1.50 0.97 Tesla Model 3 73.23
4 1.63 1.06 Chevy Volt 46.14
5 2.38 1.55 Nissan Leaf 61.00
6 4.31 2.80 Tesla Model 3 71.41
7 3.86 2.51 Chevy Volt 55.51
8 1.96 1.27 Nissan Leaf 60.89
9 1.50 0.98 Tesla Model 3 50.87

10 1.72 1.12 Chevy Volt 25.46
11 4.30 2.79 Nissan Leaf 67.48
12 3.96 2.57 Tesla Model 3 54.57

4.3. Simulation and Scenarios

Based on the village network topology, EV models and the studied data as mentioned before, the
power flow analysis was computed using the Newton Raphson method. Next, MATLAB is used for
simulation to demonstrate the ability of the proposed optimization. To evaluate the transformer loss
of life, the transformer thermal parameters used in this study are listed in Table 4. For simulations,
existing EV datasets for both summer and winter seasons are used. Finally, the numerical simulations
were done for 3 scenarios as explained below:

• Case I: Dump charging (uncontrolled charging), each EV starts charging immediately when it
arrives at home with a rated charging power without V2G operation.

• Case II: TOU charging (EV owner’s perspective), every EV will be delayed for charging for low
electricity TOU rates. In addition, the discharging mode will be used at the high TOU rate period.

• Case III: Optimal charging, all EVs are aggregated to charge and discharge with the
proposed method.

Table 4. Transformer parameters data from [37].

Rating = 50 kVA ∆θTO,R= 55 ◦C τTo= 5 h m = 0.8

R = 5.5 ∆θH,R= 25 ◦C τw= 0.2 h n = 0.8

4.4. Impact on Transformer Aging

Bar graphs in Figure 6 illustrate the EVs charging scheduling in 24 h for each scenario.
The transformer power was calculated using Equation (4) which is shown its load profiles in Figure 7.
In addition, the transformer aging acceleration factor (FAA

t ) profile versus the EV’s charging load
is presented in Figure 8, and the correlation of the transformer loss of life (LoL) and the winding
hottest-spot temperature (θH

t ) is shown in Figure 9.
In EV charging with the dump charging method, results show that when the EVs are connected to

the village network with uncontrolled charging, the transformer peak load is increased to 95.56 kVA
(1.91 p.u.) due to dumping of the EVs charging load during a day in summer and 90.87 kVA (1.82 p.u.)
in winter. Thus, the winding hottest-spot temperature exceeds 110 ◦C, as a result, FAA

t is more than 1
for both the summer and winter days. Under this condition, the transformer experiences accelerated
aging and its lifetime is reduced. In Case 2, when EVs are charged following TOU charging, this reflects
the basic preference of EV owners who want to make profit by the energy arbitrage. Without any
optimization, the EV that has the capability to discharge its stored energy is operated in V2G mode
during the high rate period (e.g., 9 a.m. to 10 p.m.). Consequently, the large amount of EV discharging
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(V2G) can cause reverse power flow between 7 p.m.–10 p.m., which in turn, may create overvoltage
related issues in the village network. Moreover, all EVs status will change to dump charge when
the tariff rate is low, which occurs at 10 p.m. This leads to the transformer peak load at 112.78 kVA
(2.26 p.u.) during a summer day and 104.62 kVA (2.09 p.u.) during a winter day. This condition rapidly
increases the winding hottest-spot temperature over 250 ◦C during a summer day and over 190 ◦C
during a winter day. Consequently, it leads to the extreme raising of the accelerated aging factor, which
ultimately reduces the transformer lifetime. As a result, the insulation is gassed, which can lead to
an explosion.

In the case of optimal charging, results show that the proposed EV charging method using optimal
scheduling of both charging and discharging can minimize the transformer peak load to 68.81 kVA
(1.38 p.u.) in summer and 65.22 kVA (1.30 p.u.) in winter. In addition, the transformer winding
hottest-spot temperature is lower than 140 ◦C during the day of summer and lower than 110 ◦C during
the day of winter. Accordingly, FAA

t declines indicating that the proposed optimization can prolong
the transformer aging. Results of transformer loading and its winding hottest spot temperature were
evaluated and the summary of the transformer aging including the equivalent of the aging acceleration
factor and the percent of daily transformer loss of life for each scenario in summer and winter season
are presented in Table 5.
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Table 5. Transformer aging evaluation.

Charging Case Feqa LoLd (%)

Dump-summer 12.01 0.1921
TOU-summer 2967.94 47.4870

Optimal-summer 1.92 0.0307

Dump-winter 0.51 0.0081
TOU-winter 47.28 0.7565

Optimal-winter 0.03 0.0004

The TOU charging method results in the highest of the equivalent of the aging acceleration factor
and the percent transformer loss of life, followed by the dump charging method. Compared to TOU
and dump charging, the proposed optimal charging method can reduce the aging acceleration factor
with the lowest percent transformer loss of life.

4.5. Cost Evaluation

This subsection presents the simulation results estimating the penalty cost of the EV owners’
arbitrage benefit loss, peak demand cost, power loss cost and the transformer loss of life cost under all
three scenarios. All these costs are evaluated based on per day and the daily energy arbitrage (CAB,i)
values that are obtained from the TOU charging method case. In addition, the transformer capital cost
(Txcap) is set to be 166.1 $/kVA [19]. A summary of the economic cost evaluation is presented in Table 6.
Also, the efficiency improvement of the proposed optimization method based on the cost evaluation
compared with the dump charging method and TOU charging method is demonstrated in Figure 10.
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Figure 10. Efficiency improvement of the proposed method based on the cost reduction; peak demand
cost (a), power loss cost (b), transformer loss of life cost (c) and the total cost (d).

Table 6. Economic cost evaluation.

Charging Case Penalty Cost ($) Peak Demand Cost ($) Power Loss Cost ($) CTxLoL ($) Total ($)

Dump-summer 39.37 13.76 6.96 15.95 76.04
TOU-summer - 16.50 6.16 3943.8 3966.46

Optimal-summer 10.46 9.55 3.96 2.55 26.52

Dump-winter 39.37 13.06 5.28 0.68 58.39
TOU-winter - 15.24 4.29 62.83 82.36

Optimal-winter 9.67 9.10 2.63 0.03 21.43

In the case of dump charging, the penalty cost and the power loss cost are the highest when
compared to the other charging methods because the energy arbitrage opportunity by V2G operation
is not considered. The TOU charging case shows none of the penalty costs, which means EV owners
can profit from the energy arbitrage using the V2G mode, but the peak demand cost, the transformer
loss of life cost and the total cost are the highest. For the EV optimal charging case, results show that it
induces a penalty cost; however, this value is lower than the dump charging case. This is because,
in the proposed optimization method, we have included objective and constraint functions to minimize
peak load, power loss and slow down the transformer aging. Hence, the transformer loss of life by the
optimized case is the lowest among the EV charging cases. It can be observed that in both summer and
winter the costs of peak demand, power loss and the transformer loss of life of the proposed optimized
EV charging are the lowest compared to other charging methods. Also, the overall cost of the optimal
charging method in both season cases is the lowest. However, due to the addition of penalty cost
being presented, the EV owners’ arbitrage benefit loss. Thus, the DSO or ISO could manage this cost
with the suitable electricity tariff program to motivate the EV owner to participate in this optimal
charging strategy.
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5. Conclusions

This paper presents the optimization of the EV charging method in an urban village network
considering energy arbitrage and network operating cost. The focus of this optimization work is to
minimize the loss of the EV owner’s benefit, peak demand cost, power loss cost, and the transformer
aging cost. The loss of the EV owner’s benefit from battery energy arbitrage is introduced as the
penalty cost function. The proposed optimization process includes distribution transformer aging
affected by EV charging load. Also, the transformer loss of life model is formulated based on the
winding hottest-spot temperature rising mechanism. Besides, the network operation limitations such
as bus voltage, branch current and the transformer loading are set as constraints and are obtained from
the power flow analysis result. To validate the outcomes of the proposed optimal EV charging method,
a typical distribution radial network in Udon Thani, Thailand with real village baseload and the local
ambient temperature was selected for simulations.

The numerical simulations were undertaken using MATLAB. Results show that the negative
impacts due to the EVs dump charging and the TOU charging method on distribution network that
consists of the network overloading, increased power loss, and the transformer aging, can be mitigated
by the proposed optimization charging strategy. Also, the proposed optimization of the EVs charging
method presents the lowest of the peak demand cost, power loss cost and the transformer loss of life
cost when compared with other charging methods. In addition, the result shows that the loss of the EV
owner’s energy arbitrage benefit can be reduced and the overall network operation cost is minimized.
The simulation results prove that the proposed optimization method based on the genetic algorithm
works efficiently for a variety of EV models, different initial EV battery energies, arrival times and
departure times. Moreover, the robustness of the algorithm is presented when it performs with the
different seasons of the study village case. Where the proposed optimization EVs charging shows high
performance in both season cases. In summary, the application of the proposed optimal EV charging
strategy can benefit both the EV owner and the distribution system operator (DSO) or independent
system operator (ISO).

Author Contributions: Conceptualization, C.S. and R.C.; methodology, C.S. and R.C.; software, C.S.; validation,
C.S. and R.C..; formal analysis, C.S., P.G. and R.C.; investigation, P.G. and R.C; resources, C.S. and R.C.; data
curation, C.S.; writing—original draft preparation, C.S.; writing—review and editing, P.G. and R.C; visualization,
C.S., P.G., A.S. and R.C.; supervision, A.S. and R.C.; project administration, R.C.; funding acquisition, R.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Young Researcher Development project of Khon Kaen University and
the Faculty of Engineering, Khon Kaen University under grant number: Ph.D.Ee -1/2562.

Acknowledgments: Authors would like to acknowledge the Provincial Electricity Authority (PEA) to support all
data used in this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. International Energy Agency (IEA). Global EV Outlook 2019-Scaling-Up the Transition to Electric Mobility.
Available online: https://www.iea.org/reports/global-ev-outlook-2019 (accessed on 15 May 2019).

2. Singh, B.N.; Sun, S.; Okoye, F.; Roy, P. Urban sustainability through emerging technologies. In Proceedings
of the 2017 IEEE Canada International Humanitarian Technology Conference (IHTC), Toronto, ON, Canada,
21–22 July 2017; pp. 161–166. [CrossRef]

3. Sanchari, D.; Kari, T.; Karuna, K.; Pinakeshwar, M. Impact of Electric Vehicle Charging Station Load on
Distribution Network. Energies 2018, 11, 178. [CrossRef]

4. Haiyang, L.; Yiling, L.; Qie, S.; Rui, X.; Hailong, L.; Ronald, W. The impact of electric vehicle penetration and
charging patterns on the management of energy hub—A multi-agent system simulation. Appl. Energy 2018,
230, 189–206. [CrossRef]

5. Jairo, Q.; Luis, O.; Sahban, A.; Tim, B. Control of EV Charging Points for Thermal and Voltage Management
of LV Networks. IEEE Trans. Power Syst. 2015, 4, 1–11. [CrossRef]

https://www.iea.org/reports/global-ev-outlook-2019
http://dx.doi.org/10.1109/IHTC.2017.8058180
http://dx.doi.org/10.3390/en11010178
http://dx.doi.org/10.1016/j.apenergy.2018.08.083
http://dx.doi.org/10.1109/TPWRS.2015.2468062


Energies 2020, 13, 349 19 of 20

6. Awadallah, M.A.; Singh, B.N.; Venkatesh, B. Impact of EV Charger Load on Distribution Network Capacity:
A Case Study in Toronto. Can. J. Electr. Comput. Eng. 2016, 39, 268–273. [CrossRef]

7. Satarworn, S.; Hoonchareon, N. Impact of EV home charger on distribution transformer overloading in an
urban area. In Proceedings of the 2017 14th International Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, 27–30 June 2017;
pp. 469–472. [CrossRef]

8. El-Battawy, A.; Basta, B.; Morsi, W.G. Impact of Integrating Electric Vehicles and Rooftop Solar Photovoltaic
on Transformer’s Aging Considering the Effect of Ambient Temperature. In Proceedings of the 2018 IEEE
Electrical Power and Energy Conference (EPEC), Toronto, ON, Canada, 10–11 October 2018. [CrossRef]

9. Blasius, E.; Wang, Z. Effects of charging battery electric vehicles on local grid regarding standardized load
profile in administration sector. Appl. Energy 2018, 224, 330–339. [CrossRef]

10. Ramos Muñoz, E.; Razeghi, G.; Zhang, L.; Jabbari, F. Electric vehicle charging algorithms for coordination of
the grid and distribution transformer levels. Energy 2016, 113, 930–942. [CrossRef]

11. Alonso, M.; Amaris, H.; Germain, J.G.; Galan, J.M. Optimal charging scheduling of electric vehicles in smart
grids by heuristic algorithms. Energies 2014, 7, 2449–2475. [CrossRef]

12. Nguvauva, T.; Kittipiyakul, S. Distributed Scheduling of Electric Vehicles in a Residential Area in Thailand.
In Proceedings of the 2018 10th International Conference on Knowledge and Smart Technology (KST), Chiang
Mai, Thailand, 31 January–3 February 2018; pp. 287–292. [CrossRef]

13. Martin, S.; Jonas, S.; Elpiniki, A.; Marco, P. Optimized Integration of Electric Vehicles in Low Voltage
Distribution Grids. Energies 2019, 12, 4059. [CrossRef]

14. Hoog, J.; Alpcan, T.; Brazil, M.; Thomas, D.A.; Mareels, I. Optimal Charging of Electric Vehicles Taking
Distribution Network Constraints into Account. IEEE Trans. Power Syst. 2015, 30, 365–375. [CrossRef]

15. Affonso, C.M.; Kezunovic, M. Technical and economic impact of PV-BESS charging station on transformer
life: A case study. IEEE Trans. Smart Grid 2019, 10, 4683–4692. [CrossRef]

16. El-Bayeh, C.Z.; Mougharbel, I.; Asber, D.; Saad, M.; Chandra, A.; Lefebvre, S. Novel approach for optimizing
the transformer’s critical power limit. IEEE Access 2018, 6, 55870–55882. [CrossRef]

17. Olsen, J.; Sarker, R.; Ortega-Vazquez, A. Optimal Penetration of Home Energy Management Systems
in Distribution Networks Considering Transformer Aging. IEEE Trans. Smart Grid 2018, 9, 3330–3340.
[CrossRef]

18. Sanchez, A.; Romero, A.; Rattá, G.; Rivera, S. Smart charging of PEVs to reduce the power transformer loss
of life. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference-Latin America
(ISGT Latin America), Quito, Ecuador, 20–22 September 2017; pp. 1–6. [CrossRef]

19. Sarker, M.R.; Olsen, D.J.; Ortega-Vazquez, M.A. Co-Optimization of Distribution Transformer Aging and
Energy Arbitrage Using Electric Vehicles. IEEE Trans. Smart Grid 2017, 8, 2712–2722. [CrossRef]

20. Beaude, O.; Lasaulce, S.; Hennebel, M.; Mohand-kaci, I. Reducing the Impact of EV Charging Operations on
the Distribution Network. IEEE Trans. Smart Grid 2016, 7, 2666–2679. [CrossRef]

21. Sardi, J.; Mithulananthan, N.; Gallagher, M.; Quoc, D. Multiple Community Energy Storage Planning in
Distribution Networks Using a Cost-Benefit Analysis. Appl. Energy 2017, 190, 453–463. [CrossRef]

22. IEEE Power & Energy Society. Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators;
IEEE Standard C57.91-2011 (Revision of IEEE Standard C57.91-1995); IEEE Standards Association: New York,
NY, USA, 2012. [CrossRef]

23. Hussain, S.; Ali, M.U.; Park, G.; Nengroo, S.H.; Khan, M.A.; Kim, H. A Real-Time Bi-Adaptive Controller-Based
Energy Management System for Battery–Supercapacitor Hybrid Electric Vehicles. Energies 2019, 12, 4662.
[CrossRef]

24. Zhou, S.; Yuntao, W.; Qichao, X.; Minrui, F.; Yu-Chu, T.; Ning, Z. A Secure Charging Scheme for Electric
Vehicles with Smart Communities in Energy Blockchain. IEEE Internet Things J. 2019, 6, 4601–4613. [CrossRef]

25. Aoun, A.; Ibrahim, H.; Ghandour, M.; Ilinca, A. Supply Side Management vs. Demand Side Management of
a Residential Microgrid Equipped with an Electric Vehicle in a Dual Tari Scheme. Energies 2019, 12, 4351.
[CrossRef]

26. Urooj, A.; Muhammad, B.R.; Ameena, S.A.; Atiq, U.R.; Ihsan, A.; Amer, A.; Abdullah, A. Smart Energy
Optimization Using Heuristic Algorithm in Smart Grid with Integration of Solar Energy Sources. Energies
2018, 11, 3494. [CrossRef]

http://dx.doi.org/10.1109/CJECE.2016.2545925
http://dx.doi.org/10.1109/ECTICon.2017.8096276
http://dx.doi.org/10.1109/EPEC.2018.8598330
http://dx.doi.org/10.1016/j.apenergy.2018.04.073
http://dx.doi.org/10.1016/j.energy.2016.07.122
http://dx.doi.org/10.3390/en7042449
http://dx.doi.org/10.1109/KST.2018.8426112
http://dx.doi.org/10.3390/en12214059
http://dx.doi.org/10.1109/TPWRS.2014.2318293
http://dx.doi.org/10.1109/TSG.2018.2866938
http://dx.doi.org/10.1109/ACCESS.2018.2873077
http://dx.doi.org/10.1109/TSG.2016.2630714
http://dx.doi.org/10.1109/ISGT-LA.2017.8126729
http://dx.doi.org/10.1109/TSG.2016.2535354
http://dx.doi.org/10.1109/TSG.2015.2489564
http://dx.doi.org/10.1016/j.apenergy.2016.12.144
http://dx.doi.org/10.1109/IEEESTD.2012.6166928
http://dx.doi.org/10.3390/en12244662
http://dx.doi.org/10.1109/JIOT.2018.2869297
http://dx.doi.org/10.3390/en12224351
http://dx.doi.org/10.3390/en11123494


Energies 2020, 13, 349 20 of 20

27. Mehboob, N.; Restrepo, M.; Cañizares, A.; Rosenberg, C.; Kazerani, M. Smart operation of electric vehicles
with four-quadrant chargers considering uncertainties. IEEE Trans. Smart Grid 2019, 10, 2999–3009. [CrossRef]

28. Provincial Electricity Authority (PEA), Thailand. Available online: https://www.pea.co.th/en (accessed on
1 September 2019).

29. Thai Meteorological Department (TMD), Thailand. Available online: https://www.tmd.go.th/en (accessed on
1 September 2019).

30. Electric Vehicle Sales: Facts & Figures; Edison Electric Institute (EEI): Washington, DC, USA, 2019; Available
online: https://www.eei.org/issuesandpolicy/electrictransportation/Documents/FINAL_EV_Sales_Update_
April2019.pdf (accessed on 1 September 2019).

31. Chevy Volt Plug in Hybrid. Available online: https://www.chevrolet.com/electric/volt-plug-in-hybrid
(accessed on 1 September 2019).

32. 2019 Nissan Leaf. Available online: https://www.nissanusa.com/vehicles/electric-cars/leaf.html (accessed on
1 September 2019).

33. Tesla Model 3. Available online: https://www.tesla.com/model3 (accessed on 1 September 2019).
34. Electricity-Tariff 2018. Provincial Electricity Authority (PEA), Thailand. Available online: https://www.pea.

co.th/en/electricity-tariffs (accessed on 1 September 2019).
35. 2009 National Household Travel Survey (NHTS); USA Department Transportation: Washington, DC, USA, 2019.

Available online: www.nhts.ornl.gov (accessed on 1 September 2019).
36. Li, Y.; Xie, K.; Wang, L.; Xiang, Y. The impact of PHEVs charging and network topology optimization on bulk

power system reliability. Electr. Power Syst. Res. 2018, 163, 85–97. [CrossRef]
37. Provincial Electricity Authority (PEA). Single Phase-Transformer Specification for 22 kV 50 Hz Distribution

System; Provincial Electricity Authority (PEA): Bangkok, Thailand, 2018.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSG.2018.2816404
https://www.pea.co.th/en
https://www.tmd.go.th/en
https://www.eei.org/issuesandpolicy/electrictransportation/Documents/FINAL_EV_Sales_Update_April2019.pdf
https://www.eei.org/issuesandpolicy/electrictransportation/Documents/FINAL_EV_Sales_Update_April2019.pdf
https://www.chevrolet.com/electric/volt-plug-in-hybrid
https://www.nissanusa.com/vehicles/electric-cars/leaf.html
https://www.tesla.com/model3
https://www.pea.co.th/en/electricity-tariffs
https://www.pea.co.th/en/electricity-tariffs
www.nhts.ornl.gov
http://dx.doi.org/10.1016/j.epsr.2018.06.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem Formulation 
	Energy Arbitrage 
	Peak Demand 
	Power Loss 
	Transformer Aging Model 

	The Proposed Optimization Method 
	Objective Function 
	Constraints 
	Electric Vehicle (EV) Charging Constraints 
	Transformer Constraints 
	Network Constraints 

	Optimization Framework 

	Simulation and Results 
	A Studied Urban Village Case 
	EV Model 
	Simulation and Scenarios 
	Impact on Transformer Aging 
	Cost Evaluation 

	Conclusions 
	References

