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S1. Single-parabolic-band model 

In the single-parabolic-band model, the thermoelectric parameters of the VB and CB computed by 

using the Boltzmann transport equations [S1] can be substituted into the following equations (S1)–(S4),  

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝜎𝜎𝑖𝑖𝑖𝑖 ,                                (S1) 

𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝑆𝑆𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖
∑ 𝜎𝜎𝑖𝑖𝑖𝑖

,                                (S2) 

 𝑅𝑅𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
∑ 𝑅𝑅𝐻𝐻𝑖𝑖𝜎𝜎𝑖𝑖
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𝑖𝑖

(∑ 𝜎𝜎𝑖𝑖𝑖𝑖 )2 ,                             (S3) 

 𝜅𝜅𝑏𝑏𝑏𝑏 = �∑ 𝑆𝑆𝑖𝑖2𝜎𝜎𝑖𝑖𝑖𝑖 − 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝑇𝑇.                      (S4) 

The calculated σtot and Stot of the samples were fitted to the experimental σ and S by adjusting the Eg, 

Edef, and m* values for the VB and CB to estimate κbp (Table 1) [S1]. In the fitting, Eg estimated by using 

the Goldsmid–Sharp formula was employed [S2]. Owing to the symmetry of the Bi2(Sb,Te)3 crystal, 

more than one Fermi pocket contributes to m* as m* = NV
2/3mb*, where NV and mb* denote the valley 

degeneracy and band mass of a single valley, respectively. NV for the VB and CB is 6. The Fermi level 

of an individual band calculated by using the experimental RHtot was used to validate the values 

calculated by using Sp and Sn. The calculated RHp and RH were used to estimate the hole and electron 

concentrations, shown in Table 1. κbp calculated by Equation (S4) with the parameters in Table 1 is 

shown in Figure 5(b). 
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S2. Debye–Callaway model 

 The effect of the S doping on κlatt was analyzed by using the Debye–Callaway model [S3]. In 

substitutes are considered as additional point defects in the native cation disorder of Te2.8S0.2 in 

Bi2(Te2.8S0.2). The thermal conductivity κ can be expressed by using the kinetic gas model,  

𝜅𝜅 =  1
3
𝐶𝐶𝑉𝑉𝑣𝑣𝑣𝑣 = 1

3
𝐶𝐶𝑉𝑉𝑣𝑣2𝜏𝜏,                               (S5) 

where CV, v, l, and τ denote the heat capacity, velocity, distance, and relaxation time between collisions, 

respectively. Equation (S5) can be used for phonons in solids as opposed to gas particles. The Callaway 

equation for κlatt (Equation (S6)) is [S3] 

𝜅𝜅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  1
3 ∫ 𝐶𝐶𝑉𝑉(𝜔𝜔)𝑣𝑣𝑔𝑔(𝜔𝜔)2𝜏𝜏(𝜔𝜔)𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

0 d𝜔𝜔,                       (S6) 

where vg denotes the phonon group velocity (vg = dω/dk), equivalent to the speed of sound, v (Debye 

model). Thus, Equation (S6) can be expressed as Equation (S7), which corresponds to the Debye–

Callaway model,  

𝜅𝜅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑘𝑘B
2𝜋𝜋2𝑣𝑣

�𝑘𝑘B𝑇𝑇
ℏ
�
3
∫ 𝜏𝜏total(𝑧𝑧) 𝑧𝑧4𝑒𝑒𝑧𝑧

(𝑒𝑒𝑧𝑧 − 1)2
𝜃𝜃𝑚𝑚 𝑇𝑇⁄
0 d𝑧𝑧,                       (S7) 

where kB, ℏ, θ, and z denote the Boltzmann constant, reduced Planck constant, Debye temperature θa, 

and ℏ𝜔𝜔/𝑘𝑘𝐵𝐵𝑇𝑇, respectively. The Debye temperature θa (94 K) and average phonon velocity (2147 m s-1) 

were obtained from the literature [S4,S5]. κlatt was estimated by using Equation (S7), where the total 

relaxation time τtotal(z) is calculated by using the individual relaxation times (τi) of various scattering 

mechanisms based on the following relationship,  

𝜏𝜏total(𝑧𝑧)−1 =  ∑ 𝜏𝜏𝑖𝑖(𝑧𝑧)−1𝑖𝑖 =  𝜏𝜏𝑈𝑈(𝑧𝑧)−1 +  𝜏𝜏𝐵𝐵(𝑧𝑧)−1 +  𝜏𝜏𝑃𝑃𝑃𝑃(𝑧𝑧)−1,              (S8) 

where τU, τB, and τPD are the relaxation times of the Umklapp scattering, boundary scattering, and point-

defect scattering, respectively. The point-defect scattering can be described by the scattering parameter 
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(Г), which is related to the mass difference (ΔM) and lattice constant difference (Δa) between the two 

different constituents,  

𝜏𝜏𝑃𝑃𝑃𝑃−1 = 𝑃𝑃𝑓𝑓(1 − 𝑓𝑓)𝜔𝜔4 =  𝑉𝑉𝜔𝜔
4

4𝜋𝜋𝑣𝑣3
Г,                          (S9) 

Г = 𝑓𝑓(1 − 𝑓𝑓) ��∆𝑀𝑀
𝑀𝑀
�
2

+ 2
9
�(𝐺𝐺 + 6.4𝛾𝛾) 1+𝑟𝑟

1−𝑟𝑟
�
2
�∆𝑡𝑡
𝑡𝑡
�
2
�,                (S10) 

where P is a fitting parameter, f represents the fractional concentration of the substitutes, G is the ratio 

of the fractional change in bulk modulus to the local bond length, and 𝛾𝛾  and r are the Grüneisen 

parameter and Poisson’s ratio, respectively. The same parameters used to calculate the individual 

relaxation times τU and τB were used for the fitting for the undoped sample. 

To estimate τPD for the S-doped sample, we considered P in Equation (S9) as an adjusting parameter, 

where f is a fixed parameter, the determined factional concentration. For x = 0.05 and 0.15, the f values 

were 0.017 and 0.05, respectively. P was 83.1 × 10-41 s3, fitted by using the experimental κlatt values of 

the two doped samples. Thus, the 𝑃𝑃S𝑓𝑓(1 − 𝑓𝑓) values were 1.63 and 3.95 × 10-41 s3 for x = 0.05 and 

0.15, respectively. The fitted parameters are shown in Table S1. The lines in Figure 4(c) show the κlatt 

values of the S-doped samples calculated with the fitted parameters.  

 

Table S1. Point defect contributions to the total relaxation rates (𝜏𝜏total−1) used to model the κlatt values 

of the samples.  

Cu0.008Bi2Te2.8-xSe0.2Sx 
Fitting parameter, PS  

(10-41s3) 
f(1-f)*PS 
(10-41s3) 

x=0 
f=0 - - 

x=0.05 
f=0.017 83.1 1.63 

x=0.15 
f=0.05 83.1 3.95 
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