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Abstract: This paper examines the dynamic dependence structure of crude oil and East Asian stock 
markets at multiple frequencies using wavelet and copulas. We also investigate risk management 
implications and diversification benefits of oil-stock portfolios by calculating and comparing risk 
and tail risk hedging performance. Our results provide strong evidence of time-varying dependence 
and asymmetric tail dependence between crude oil and East Asian stock markets at different 
frequencies. The level and fluctuation of their dependencies increase as time scale increases. 
Furthermore, we find the time-varying hedging benefits differ at investment horizons and reduced 
over the long run. Our results suggest that crude oil could be used as a hedge and safe haven against 
East Asian stock markets, especially in the short- and mid-term. 
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1. Introduction 

Crude oil remained the world’s leading fuel, accounting for 33.6% of global energy consumption 
in 2018 and BP’s Statistical Energy Outlook suggests that it will continue to play a similar role until 
2035. The influence of oil prices has become crucial for world economic development. It is fair to 
argue that oil remains to be one of the biggest drivers of the global economy. Furthermore, with the 
financialization of commodity markets, oil price not only have been concerned with macroeconomic 
factors, but also have become a critical part in financial field. Since the correlations between 
commodity and stock markets are low, crude oil has become an alternative investment tool for 
international portfolio diversification [1,2]. Analyzing price relationships between crude oil and stock 
markets is an essential topic of modern finance, especially in derivative pricing, portfolio allocation 
and risk management. 

In this paper, we investigate the dynamic dependence between crude oil and East Asian stock 
markets. Many literatures have examined the oil-stock relationship [3–9] for many developed 
countries, while the problem of how they work on the developing region such as East Asia attracts 
less attention. In fact, this subject is interesting and important. Over the previous decades, East Asian 
has experienced the fastest economic growth in the world and become one of the three core economic 
regions [10]. Its miraculous economic growth and dynamism has attracted increasing attention of 
business interest and academic research [11,12]. The demand for oil of East Asia has been increasing 
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for years. Additionally, East Asia is highly susceptible to oil shocks, for example, the 2003 Iraq war 
and the 2006 OPEC cut agreement, since the majority of East Asian oil imports are from the Middle 
East, and there has been no regional mechanism to stockpile emergency petroleum in East Asia [13]. 
Therefore, crude oil price fluctuations influenced East Asian economies to a larger extent than the 
developed countries. On the other hand, the hedging benefits from portfolio diversification is a major 
subject in the financial literatures. Investors make great efforts to improve the risk-return tradeoff of 
their portfolios in times of financial crises. Specifically, investors look to a more defensive 
diversification strategy by choosing alternative assets such as crude oil. These particularities of East 
Asia have therefore attracted great attentions from global investors, policy makers and portfolio 
managers. Understanding the dynamic dependence between crude oil and East Asian stock markets 
is very important to those interested in global asset allocation and risk management. 

Although the idea of utilizing crude oil as portfolio diversification tool attracted much attention, 
we found no consensus regarding their relationship. For example, in [14], the authors suggest that 
there is a negative relationship between oil price shocks and international equity returns. In [15], the 
authors conclude that oil is an almost perfect diversification tool for stocks, since their correlations 
are low, or even negative. However, in [16], the authors documents that an increase in oil prices 
exhibits a positive effect on the equity returns. The decreasing benefit of adding crude oil to stock 
portfolios over the past ten years is find in [4]. 

Another limitation of the literatures is that they are restricted to one or, at most, two aspects–the 
short and long term, paying little attention to the specific dependence structure between crude oil 
and stock markets by considering multiple frequencies. In this paper, we fill this gap and contribute 
to current literatures in two ways. 

First, this research is novel in that, we model the oil-stock relationship using wavelets and 
copulas, which can provide information on both dependence and tail dependence at different 
frequencies, as discussed in [17,18]. This unique setting provides information on both the over-time 
and cross-scale dynamic dependences, which are crucial for portfolio allocation and risk 
management. 

The second way we contribute to literature is that we investigate the implications of their 
dependence and tail dependence for risk management purpose at different investment horizons. 
More precisely, we investigate the time-varying risk and downside risk hedging performance by 
calculating and comparing the variance and expected shortfall of oil-stock portfolios to stock-only 
portfolios at different frequencies. The empirical results provide strong evidence that oil is an 
effective hedge and safe haven against East Asian stock markets. 

The remainder of the article is organized as follows. In Section 2, we introduce the model 
specification, including the marginal distributions, the wavelet transform, as well as the conditional 
copula functions. Section 3 briefly describes our data. In Section 4, we present and discuss our 
empirical results. In Section 5, we investigate risk management implications of oil-stock dependence 
and tail dependence at different investment horizons. Section 6 concludes. 

2. Model Specification 

Our model combines the wavelet transform analysis and the conditional copula functions to 
examine the relationship of the markets. Specifically, we utilize the wavelet transform to decompose 
the standardized shocks obtained from marginal models into time series at different frequency, and 
then employ the conditional static and dynamic copula functions to capture their constant and 
dynamic interdependence and tail dependence across different time horizons respectively. 

2.1. Marginal Distribution Models 

We first model the marginal distribution for each asset market. We assume that the 
autoregressive-generalized autoregressive conditional heteroskedasticity (AR-GARCH) type models 
for the conditional mean and variance. The equation of the return series (𝑦௜,௧) is as follows: 𝑦௜,௧ = 𝜇௜൫𝑦௜,௧ି௣, 𝜙൯ + 𝜎௜,௧൫𝑦௜,௧ିଵ, θ൯𝑧௜,௧, 𝑧௜,௧|ℱ௧ିଵ~𝐹௜(0,1) (1) 
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where 𝜇௜ is the conditional mean, 𝜎௜,௧ is the conditional variance, 𝑧௜,௧ is the standardized residual, 
and ℱ௧ିଵ is the information set. 𝜙 and 𝜃 are the vector of parameters. 

We use the AIC and BIC to determine the order of mean equation (p) and consider the volatility 
models in the Glosten–Jagannathan–Runkle-generalized autoregressive conditional 
heteroscedasticity (GJR-GARCH) (1, 1, 1) process [19] as follows: 𝑦௜,௧ =  𝜙଴,௜ + ∑ 𝜙௣,௜𝑦௜,௧ି௣ + 𝜀௜,௧, 𝑖 = 1, … , 𝑛, (2) 𝜀௜,௧ = 𝑧௜,௧𝜎௜,௧, 𝑧௜,௧|ℱ௧ିଵ~(0,1)  𝜎௜,௧ଶ = 𝜔௜ + 𝛽௜𝜎௜,௧ିଵଶ + 𝛼௜𝜀௜,௧ିଵଶ + 𝛾௜𝜀௜,௧ିଵଶ𝐼௜,௧ିଵ, (3) 

where 𝜙଴,௜  and 𝜙௣,௜ are parameters for mean equation, 𝜔௜ ,  𝛼௜,  𝛽௜ , and 𝛾௜  are the GJR-GARCH 
parameters for variable i, 𝜔௜ > 0, 𝛼௜, 𝛽௜, 𝛾௜ ≥ 0, 𝐼௜,௧ିଵ is equal to 1 when 𝜀௜,௧ିଵ < 0 and 0 otherwise. 

We assume that the standardized shocks 𝑧௜,௧ follow the Hansen’s skewed-t distribution [20] as 
follows: 

𝑑(𝑧|𝜂, 𝜆) = ⎩⎨
⎧𝑏𝑐(1 + 1𝜂 − 2 (𝑏𝑧 + 𝑎1 − 𝜆 )ଶ)ିఎାଵଶ 𝑖𝑓 𝑧 < − 𝑎𝑏𝑏𝑐(1 + 1𝜂 − 2 (𝑏𝑧 + 𝑎1 + 𝜆 )ଶ)ିఎାଵଶ 𝑖𝑓 𝑧 ≥ − 𝑎𝑏, (4) 

where 𝑎 ≡ 4𝜆𝑐 ఎିଶఎିଵ, 𝑏ଶ ≡ 1 + 3𝜆 − 𝑎ଶ, and 𝑐 ≡ ௰(ആశభమ )ටగ(ఎିଶ)௰(ആమ). 𝜆  and 𝜂 are the skewness parameter and 

degree of freedom parameter, respectively. This density is defined for 2 < 𝜂 < ∞ and −1 < 𝜆 < 1. 
If 𝜆 = 0, Hansen’s skewed t-distribution is then reduced to the traditional student t-distribution, 
which is symmetric. If, in addition, 𝜂 → ∞, the t-distribution collapses to the normal density. 

Therefore, we obtain the estimated standardized shocks 𝑧̂௜,௧ as 𝑧̂௜,௧ = 𝑦௜,௧ −  𝜙෠଴,௜ − ∑ 𝜙෠௝,௜𝑦௜,௧ି௝௝𝜎ො௜,௧ , (5) 

where 𝜙෠଴,௜, 𝜙෠௝,௜, and 𝜎ො௜,௧ are the estimates of each parameter. 

2.2. Maximal Overlap Discrete Wavelet Transform (MODWT) 

Next, we use wavelet analysis to decompose the estimated standardized shocks 𝑧̂௜,௧  into 
different time scales in order to capture the dynamics of the series across different time scales. 
Specifically, we apply the maximal overlap discrete wavelet transform (MODWT) which can 
overcome the dyadic length sample size (i.e., a sample size divisible by 2௃) restriction of discrete 
wavelet transform (DWT). In Sections 2.2.1 and 2.2.2, we seek to provide a brief review of a few DWT 
and MODWT techniques. Many more details can be found in the references [21–23]. 

2.2.1. Discrete Wavelet Transform (DWT) and DWT-Based Multi-Resolution Analysis 

Here, we provide a brief discussion on the DWT and its multi-resolution analysis. We denote 
the wavelet (high-frequency) filter by ℎ௟, 𝑙 = 0, … , 𝐿 − 1 and the scaling (low-frequency) filter by 𝑔௟, 𝑙 = 0, … , 𝐿 − 1 for discrete compactly supported filters of the Daubechies class [24]. By definition, 
the wavelet filter satisfies ∑ ℎ௟௅ିଵ௟ୀ଴ = 0, ∑ ℎ௟ଶ௅ିଵ௟ୀ଴ = 1, ∑ ℎ௟ℎ௟ାଶ௡௅ିଵ௟ୀ଴ = 0  (6) 

for all nonzero integers n so that the wavelet filter sums to 0, has unit energy, and is orthogonal to its 
even shifts. The scaling filter 𝑔௟ is also required to satisfy the last two conditions of Equation (6).  

Besides, the wavelet and the scaling filter have the quadrature mirror filter relationship 
satisfying ℎ௟ = (−1)௟𝑔௅ି௟ିଵ 𝑜𝑟 𝑔௟ = (−1)௟ାଵℎ௅ି௟ିଵ, 𝑓𝑜𝑟 𝑙 = 0, … , 𝐿 − 1 (7) 
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Consider 𝑋௧, 𝑡 = 0, … , 𝑁 − 1 a column vector of N observations of a real-valued time series. We 
assume that the sample size N is an integer multiple of 2௃, where J is a positive integer. The jth level 
wavelet and scaling coefficients of DWT is given by 𝑊௝,௧ = ∑ ℎ௟௅ିଵ௟ୀ଴ 𝑉௝ିଵ,(ଶ௧ାଵି௟)௠௢ௗே/ଶೕషభ, (8) 𝑉௝,௧ = ∑ 𝑔௟௅ିଵ௟ୀ଴ 𝑉௝ିଵ,(ଶ௧ାଵି௟)௠௢ௗே/ଶೕషభ, (9) 

where the length of 𝑉௝ିଵ,௧ is ୒ଶೕషభ and we start the pyramid algorithm from 𝑋௧ = 𝑉଴,௧ with 𝑗 = 1. 
After repeating the algorithm with 𝑗 = 2, 3, … , 𝐽, we obtain all the vectors of wavelet coefficients 𝑊ଵ, 𝑊ଶ, … , 𝑊௃ and a single vector of scaling coefficients V௃ (The other vectors of scaling coefficients 𝑉ଵ, 𝑉ଶ, … , 𝑉௃ିଵ can be regarded as intermediate computations.). 

Thus, we can reconstruct the jth level time series namely wavelet detail 𝐷௝,௧ and wavelet smooth 𝑆௝,௧ by using the j + 1th level wavelet and scaling coefficients as follows: 𝐷௝,௧ = ∑ ℎ௟𝑊௝ାଵ,(௧ା௟)௠௢ௗே/ଶೕ௢ + ∑ 𝑔௟𝑉௝ାଵ,(௧ା௟)௠௢ௗே/ଶೕ௢௅ିଵ௟ୀ଴௅ିଵ௟ୀ଴ , 𝑡 = 0, … , ேଶೕ − 1, (10) 

where 𝑊௝,௧௢ = ൝ 0, 𝑡 = 0, 2, … , ேଶೕ − 2𝑊௝,(௧ିଵ)/ଶ, 𝑡 = 1,3, … , ேଶೕ − 1 and 𝑉௝,௧௢ = ൝ 0, 𝑡 = 0, 2, … , ேଶೕ − 2𝑉௝,(௧ିଵ)/ଶ, 𝑡 = 1,3, … , ேଶೕ − 1. 

𝑆௝,௧ = 𝑆௝ିଵ,௧ − 𝐷௝,௧ (11) 

Thus, we can represent the multi-resolution representation of the original time series by 𝑍௧ = ∑ 𝐷௝,௧௃௝ୀଵ + 𝑆௃,௧ ,  (12) 

where 𝑍௧ represents the vector of the estimated standardized residuals; and 𝑆௃,௧ and 𝐷௝,௧ are the Jth 
order wavelet smooth and the jth order detail, respectively. The wavelet smooth can provide the 
approximated trend, while the wavelet detail can capture the local variance over the different time 
scales 2௝ days. 

2.2.2. MODWT and MODWT-Based Multi-Resolution Analysis 

Due to some limitations of the DWT, we employ here the MODWT (introduced by [25]). 
MODWT can overcome the dyadic length sample size requirements of DWT and both the MODWT 
wavelet and scaling coefficients, and multiresolution analysis are undecimated or shift-invariant [26–
28]. 

The wavelet and scaling filters of MODWT ℎ෨௟  and 𝑔෤௟  are rescaled as ℎ෨௟ = ℎ௟/√2, and 𝑔෤௟ =𝑔௟/√2. Thus, we compute the MODWT wavelet and scaling coefficients for levels 𝑗 = 1, 2, … , 𝐽 using 
circular linear filtering as follows:  𝑊෩௝,௧ = ∑ ℎ෨௟𝑉෨௝ିଵ,(௧ିଶೕషభ௟)௠௢ௗே௅ିଵ௟ୀ଴ , 𝑡 = 0, … , 𝑁 − 1, (13) 𝑉෨௝,௧ = ∑ 𝑔෤௟𝑉෨௝ିଵ,(௧ିଶೕషభ௟)௠௢ௗே௅ିଵ௟ୀ଴ , 𝑡 = 0, … , 𝑁 − 1. (14) 

Thus, we can reconstruct the MODWT wavelet detail 𝐷෩௝,௧ and wavelet smooth 𝑆ሚ௝,௧ as follows: 𝐷෩௝,௧ = ∑ ℎ෨௟𝑊෩௝ାଵ,(௧ାଶೕ௟)௠௢ௗே + ∑ 𝑔෤௟𝑉෨௝ାଵ,(௧ାଶೕ௟)௠௢ௗே௅ିଵ௟ୀ଴௅ିଵ௟ୀ଴ , 𝑡 = 0, … , 𝑁 − 1, (15) 𝑆ሚ௝,௧ = 𝑆ሚ௝ିଵ,௧ − 𝐷෩௝,௧.  (16) 

Then, equation 

𝑍௧ = ෍ 𝐷෩௝,௧௃
௝ୀଵ + 𝑆ሚ௃,௧  (17) 

constitutes an MODWT multi-resolution analysis analogous to Equation (12). 
Due to the limitation of the DWT that restricts the sample size to an integer multiple of 2, the 

MODWT is used in this study. The MODWT can provide all the functions of DWT and is well defined 
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for any sample size. The wavelet and scaling coefficients and multiresolution analysis of MODWT 
are shift-invariant, implying that it does not change the location of events in time and the pattern of 
wavelet transform coefficients [21–23]. Specifically, [21] documented and proved that the variance of 
the coefficients of the MODWT can perfectly capture the variance of the original time series. Recently, 
some studies applied MODWT to analyze or predict the time series in the financial markets. For 
example, [27] investigated the impact of oil shocks and stock crashes on correlations between oil and 
stock markets by using MODWT to avoid the lack of translation-invariance of DWT. [29] examines 
the spillovers in time and frequency from global stock market and oil prices toward African stock 
markets. They also select the MODWT to obtain the stock and oil returns at different time scales since 
the MODWT allows to have the data in time series on each scale and to analyze them more easily 
(unlike the CWT that converts data into a two-dimensional field). 

Thus, in our empirical analysis, we employ MODWT to decompose the daily data and choose 𝐽 = 6 to measure the local variance over 2 days, 4 days, 8 days, 16 days, 32 days, and 64 days, 
respectively. 

2.3. Copula Functions 

Then, we model the dependence structure between two crude oil and stocks by using the 
conditional copula functions, that is, the conditional joint distribution of the standardized shocks. 
[30] extended the theorem of [31] to the conditional copula function, which states that conditional 
joint distribution can be decomposed into different conditional marginal distributions and a 
conditional copula function. 

Consider the bivariate stochastic process 𝑍௧ = (𝑧ଵ௧, 𝑧ଶ௧)′ with a conditional joint distribution F, 
as well as conditional marginal distributions 𝐹ଵ and 𝐹ଶ. Thus, 𝐹 (𝑍௧|ℱ௧ିଵ) =  𝐶 (𝐹ଵ(𝑧ଵ௧|ℱ௧ିଵ), 𝐹ଶ(𝑧ଶ௧|ℱ௧ିଵ)|ℱ௧ିଵ), (18) 

where 𝐶 is the conditional copula of 𝑍௧ and ℱ௧ିଵ is the information set.  
We consider the copula functions as follows: 𝑈௜௧|ℱ௧ିଵ = 𝐹௜൫𝑧௜,௧൯, 𝑓𝑜𝑟 𝑖 = 1, 2, (19) 𝑈௧|ℱ௧ିଵ = {𝑢ଵ௧, 𝑢ଶ௧}′|ℱ௧ିଵ~𝐶(𝜅), (20) 

where 𝜅 is assumed as the parameter of any kind of copula functions. 
We take into account possible time variations in the copula function by considering the time-

varying dependence parameters according to an evolution equation that assumes a dependence 
parameter evolved according to an ARMA (1, 10) process-type process (see [30]): 𝜅௧ = ∆(𝜔 + 𝛽𝜅௧ିଵ + 𝛼 ଵଵ଴ ∑ ห𝑢ଵ,௧ି௝ − 𝑢ଶ,௧ି௝หଵ଴௝ୀଵ ), (21) 

where ∆(𝑥) is a logistic transformation, parameter 𝜔 is the constant term, 𝛽 is the autoregressive 
term, and 𝛼 is the transformed term. 

Copula functions can not only measure the dependence between two variables, but they can also 
provide information on tail dependence by measuring their extreme upward or downward 
probability. The conditional upper tail dependence (𝜏௎) and lower tail dependence (𝜏௅) are defined 
as follows: 𝜏௎ = 𝑙𝑖𝑚௨→ଵ Pr[𝑧ଶ ≥ 𝐹ଶି ଵ(𝑢)ห𝑧ଵ ≥ 𝐹ଵି ଵ(𝑢), ℱ௧ିଵ] = 𝑙𝑖𝑚௨→ଵ [ଵିଶ௨ା஼(௨,௨|ℱ೟షభ)]ଵି௨ , (22) 

𝜏௅ = 𝑙𝑖𝑚௨→଴ Pr[𝑧ଶ ≤ 𝐹ଶି ଵ(𝑢)ห𝑧ଵ ≤ 𝐹ଵି ଵ(𝑢), ℱ௧ିଵ] = 𝑙𝑖𝑚௨→଴ ஼(௨,௨|ℱ೟షభ)௨ ,  (23) 

where 𝜏௎, 𝜏௅ ∈ [0, 1]. If 𝜏௎ = 0, the probability of an extremely large value for variable 𝑧ଵ together 
with an extremely large value for another variable 𝑧ଶ  is zero, which means that they are 
asymptotically independent in the conditional upper tail dependence. If 𝜏௎ ∈ (0, 1], the variable 𝑧ଵ 
and 𝑧ଶ  are asymptotically upper tail dependent. The conditional lower tail dependence can be 
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described similarly. If 𝜏௅ = 0, the two variables have conditional lower tail independence, while if 𝜏௅ ∈ (0, 1], then they have conditional lower tail dependence. 
Here, we employ normal, Student’s t, rotated Gumbel, Clayton, and symmetrized Joe–Clayton 

(SJC) copula, to analyze the symmetric and asymmetric dependence and tail dependence structures. 
Appendix A describes these five copula functions including both constant copula function (as a 
benchmark) and dynamic copula. 

2.4. Estimation Method 

We first estimate the marginal models by using the maximum likelihood estimation (MLE). The 
log-likelihood function is given by  ∑ 𝑙𝑜𝑔𝑓௜௧(𝑧௜௧;  𝜙, 𝛼 ) =௧ ∑ 𝑙𝑜𝑔𝑓ଵ௧(𝑧ଵ௧;  𝜙, 𝛼 )௧ + ∑ 𝑙𝑜𝑔𝑓ଶ௧(𝑧ଶ௧;  𝜙, 𝛼 )௧ , 𝑖 = 1,2, (24) 

where (𝜙ᇱ, 𝛼ᇱ)′ are the parameters of the marginal models. 
Second, we use the wavelet method to decompose the standardized shocks obtained from 

marginal models into time series across different timescales. 
Finally, we estimate the copula functions scale by scale using MLE. The log-likelihood function 

is given by  𝑙𝑜𝑔ℒ௦(𝜅௦) = ෍ 𝑙𝑜𝑔 𝑐௦(𝐹ଵ௦௧൫𝑧ଵ௧; 𝜙෠, 𝛼ො ൯, 𝐹ଶ௦௧൫𝑧ଶ௧; 𝜙෠, 𝛼ො ൯; 𝜅௦)௧  (25) 

3. Data 

Our data consist of daily returns of crude oil and East Asian stock market indexes. West Texas 
Intermediate (WTI) Cushing Crude Oil Spot Price Index is selected to represent for oil prices. For East 
Asian stock markets, three representative East Asian countries are selected—Japan, China, and South 
Korea. All stock indexes are derived from the Morgan Stanley Capital International (MSCI) indexes. 
Our sample includes 4120 daily observations from 4 January 2000 to 28 October 2016. Table 1 presents 
the descriptive statistics. Clearly, all returns distributions are against normal as measured by the 
skewed distribution and excess kurtosis. 

Table 1. Descriptive statistics for crude oil and East Asian stock markets. 

 Mean Std.dev. Skewness Kurtosis Jarque-Bera 
Oil 01 0.0109 −0.0434 7.0412 2804.1 *** 

Japan 00 0.0063 −0.3540 9.2208 6727.7 *** 
China 01 0.0081 −0.1059 9.5531 7377.8 *** 

South Korea 01 0.0074 −0.3795 9.3222 6958.8 *** 
Notes: *** denote the rejection of the null hypotheses of normality at the 1% significance level. 

Figure 1 plots the price and return series in top and bottom panel, respectively. The prices are 
represented in US dollars. Oil price is considerably increased from 2006–2007 covering the periods of 
OPEC cuts and decreased during the global financial crisis. We can clearly observe that East Asian 
stock prices have also decreased since the 2008 global financial collapse. The volatility of oil and stock 
returns increased during the 2008 global financial crisis. 
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Figure 1. Time series of prices and returns. 

4. Empirical Results 

In this section, we present the empirical results of the relationship between crude oil and East 
Asian stock markets. Our application was firstly based on an AR-GJR-GARCH process for marginal 
distributions. Marginal models and lags were appropriately selected according to the information 
criteria. These estimates are presented in Table 2. Clearly, GARCH and distributional parameters 
were all significant. The Q-test showed no autocorrelation in (squared) standardized residuals, 
indicating that the marginal distributions awere properly specified. 

Table 2. Estimates of marginal distribution from AR (1)-GJR-GARCH (1, 1, 1) with skewed-t 
distributions. 

 Crude Oil Japan China South Korea 𝜇 0 0 0 0 
(0) (0) (0) (0) 𝜙ଵ −0.041 0.032 0.043 −0.004 

(0.016) (0.016) (0.015) (0.015) ω 0 0 0 0 
(0) (0) (0) (0) 𝛼 0.023 0.021 0.029 0.014 

(0.004) (0.009) (0.003) (0.004) 𝛽 0.953 0.890 0.922 0.943 
(0.007) (0.015) (0.008) (0.004) γ 0.041 0.124 0.076 0.075 
(0.009) (0.022) (0.009) (0.010) 

500

1000

1500

2000
Japan

2000 2001 2003 2005 2007 2009 2011 2013 2015

-0.05

0

0.05
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𝜆 0.924 0.929 0.979 0.931 
(0.020) (0.020) (0.020) (0.018) 𝜂 8.256 8.651 6.816 6.521 
(0.491) (1.196) (0.643) (0.642) 𝑄(30) 0.791 0.973 0.190 0.682 𝑄ଶ(30) 0.138 0.768 0.184 0.545 

Notes: Standard errors are in parentheses. The optimal AR and GARCH lags are selected according 
to information criteria. 

Then, the standardized shocks for each variable were decomposed using MODWT analysis up 
to six levels, D1 to D6, covering the short-term, midterm, and long-term horizons. D1 (two days) and 
D2 (four days) represent the fluctuation of prices in the short-term horizon. D3 (eight days) and D4 
(16 days) represent the fluctuation occurring in the midterm horizon. D5 (32 days) and D6 (64 days) 
represent for the long term horizon in this study. 

Figure 2 shows the wavelet decompositions of crude oil and East Asian stock markets from D1 
to D6, ranging from the highest to the lowest frequency. Obviously, in all markets, the level of 
fluctuations decreased as time scales increased, suggesting that market price was much noisier in the 
short term than in the mid- and long-term. 
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Figure 2. Wavelet decomposition of standardized residuals for crude oil and East Asian stock 
markets. Raw represents the original time series. D1 (two days) and D2 (four days) represent the 
short-term fluctuations. D3 (eight days) and D4 (16 days) represent for the mid-term. D5 (32 days) 
and D6 (64 days) represent for the long term. 

Next, we capture the joint behavior of stock and crude oil across the multiple time scales by 
using the conditional copula functions. Five copula functions are considered to analyze the constant 
and dynamic interdependence of pairs and their tail dependence, including normal, rotated Gumbel, 
Clayton, Student’s t, and SJC copulas. These copulas could capture different types of 
interdependence, with regard of asymmetry and tail dependence. The copula density functions are 
given in the appendix. 

The constant copula estimates are reported in Table 3. Generally, the oil-stock dependencies 
increase and become more significant as the time scales increase. According to log-likelihood and 
goodness-of-fit test, obviously, SJC copula describes the oil-stock dependencies most appropriately 
and accurately, suggesting that crude oil and stock returns are asymmetrically upper and lower tail 
dependent. The estimates of SJC copulas show that, except the very short-term (D1), crude oil and 
East Asian stock markets are significantly tail dependent. These results indicate that crude oil and 
stock markets response to identical macroeconomic shocks, however, may not simultaneously. 

Since the constant SJC copula describes the oil-stock dependencies best, we use the time-varying 
SJC copula function to investigate the dynamic dependence structures. These estimates are 
summarized in Table 4. Clearly, most estimates are highly significant. According to the log-
likelihood, we find that the dynamic copula offers a better fit compared to the constant copulas for in 
most cases, providing strong evidence that the relationship between crude oil and East Asian stock 
markets is time-varying at all investment horizons. 
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Table 3. Constant copula estimates of crude oil with East Asian stock market across multiple timescales. 

 Japan China South Korea 
 Raw D1 D2 D3 D4 D5 D6 Raw  D1 D2 D3 D4 D5 D6 Raw  D1 D2 D3 D4 D5 D6 

Normal ρ 0.069 0.008 0.111 0.142 0.085 0.176 0.234 0.112 0.039 0.155 0.175 0.212 0.283 0.277 0.115 0.057 0.148 0.185 0.159 0.170 0.285 
(0.015) (0.020) (0.019) (0.019) (0.025) (0.030) (0.019) (0.015) (0.019) (0.019) (0.019) (0.025) (0.028) (0.019) (0.015) (0.019) (0.019) (0.019) (0.026) (0.030) (0.018) 

log ℒ 9.807 0.129 25.350 41.659 14.810 64.622 116.356 25.884 3.160 50.066 63.891 95.053 171.456 164.292 27.293 6.608 45.477 71.346 52.904 60.130 174.298 

GOF 0.640 0.920 0.890 0.130 0.350 0.540 0.100 0.340 0.540 0.420 0.140 0.290 0.680 0 0.670 0.940 0.710 0.820 0.110 0.070 0.280 
Clayton κ 

0.067 0.015 0.185 0.252 0.243 1.118 2.413 0.130 0.076 0.257 0.338 0.576 1.415 2.359 0.120 0.100 0.234 0.344 0.440 1.108 2.502 
(0.017) (0.021) (0.027) (0.028) (0.033) (0.044) (0.056) (0.019) (0.025) (0.027) (0.028) (0.033) (0.045) (0.056) (0.019) (0.026) (0.027) (0.028) (0.033) (0.044) (0.057) τ୐ 0 0 0.023 0.064 0.057 0.538 0.750 0.005 0 0.067 0.128 0.294 0.613 0.745 0.003 0.001 0.052 0.133 0.207 0.535 0.758 

log ℒ 8.871 0.195 26.195 42.014 25.222 266.924 818.850 29.088 4.892 48.171 76.385 142.574 438.961 806.460 24.742 8.244 40.391 77.834 83.290 260.970 886.425 

GOF 0.480 0.210 0.040 0 0.010 0 0 0.640 0 0 0.010 0 0 0 0.450 0.630 0.050 0 0.020 0 0 
Rotated Gumbel κ 

1.034 1.018 1.099 1.139 1.132 1.673 2.473 1.071 1.047 1.139 1.177 1.296 1.862 2.471 1.066 1.061 1.130 1.187 1.229 1.668 2.539 
(0.009) (0.012) (0.013) (0.014) (0.016) (0.027) (0.035) (0.011) (0.013) (0.014) (0.015) (0.019) (0.028) (0.035) (0.011) (0.013) (0.014) (0.015) (0.018) (0.027) (0.036) τ୐ 0.045 0.025 0.121 0.162 0.155 0.487 0.677 0.090 0.062 0.162 0.198 0.293 0.549 0.676 0.085 0.079 0.154 0.207 0.242 0.485 0.686 

log ℒ 8.446 1.338 31.604 54.808 37.146 325.876 973.632 32.569 7.968 59.365 87.819 156.087 517.525 981.967 27.484 13.357 51.723 95.710 97.195 319.391 1.053E03 

GOF 0.250 0.150 0.050 0 0.050 0 0 0.840 0.380 0 0.150 0 0 0 0.240 0.690 0.030 0 0.080 0 0 
Student’s t ρ 

0.069 0.006 0.122 0.157 0.112 0.381 0.614 0.112 0.048 0.174 0.199 0.256 0.518 0.639 0.115 0.068 0.170 0.207 0.201 0.372 0.653 
(0.016) (0.019) (0.019) (0.018) (0.020) (0.029) (0.052) (0.016) (0.019) (0.018) (0.018) (0.020) (0.027) (0.096) (0.016) (0.019) (0.018) (0.018) (0.020) (0.030) (0.066) ηିଵ 

0 0.166 0.206 0.363 0.488 0.667 0.909 0.030 0.196 0.217 0.350 0.501 0.667 0.909 0.026 0.188 0.241 0.407 0.467 0.667 0.909 
(0) (0.035) (0.036) (0.032) (0.032) (0.047) (0.149) (0.016) (0.033) (0.035) (0.032) (0.033) (0.062) (0.315) (0.029) (0.034) (0.034) (0.031) (0.033) (0.047) (0.223) τ 0.005 0.034 0.077 0.178 0.215 0.381 0.549 0 0.056 0.097 0.186 0.275 0.450 0.563 0 0.055 0.111 0.217 0.240 0.377 0.572 

log ℒ 9.806 8.438 37.583 86.714 101.237 522.136 1.107E03 27.916 17.577 66.303 109.867 204.256 687.731 1.143E03 28.597 18.521 65.776 140.545 143.103 524.385 1.180E03 

GOF 0.680 0.350 0.790 0.870 0.760 0.100 0.150 0.170 0.550 0.760 0.230 0.330 0.720 0 0.770 0.840 0.710 0.900 0.360 0.110 0.390 
SJC τ୙ 

0 0 0.049 0.113 0.080 0.507 0.718 0 0 0.098 0.078 0.180 0.578 0.740 0.001 0 0.121 0.130 0.143 0.515 0.737 
(0) (0) (0.029) (0.030) (0.037) (0.016) (0.008) (0.002) (0) (0.029) (0.032) (0.033) (0.013) (0.007) (0.003) (0) (0.029) (0.030) (0.034) (0.016) (0.007) τ୐ 

0.002 0 0.026 0.041 0.080 0.477 0.703 0.035 0.011 0.059 0.142 0.280 0.549 0.686 0.020 0.024 0.023 0.119 0.208 0.473 0.709 
(0.003) (0) (0.026) (0.028) (0.037) (0.018) (0.010) (0.070) (0.011) (0.028) (0.030) (0.025) (0.015) (0.010) (0.012) (0.004) (0.026) (0.031) (0.029) (0.019) (0.009) 

log ℒ 9.817 0.196 34.121 61.196 37.787 433.488 1.163E03 31.686 5.736 66.539 90.553 171.933 650.844 1.203E03 29.012 10.434 62.106 102.417 106.582 435.570 1.251E03 

GOF 0.970 0.920 0.960 1 1 1 1 1 0.950 0.990 1 1 1 0.980 0.920 0.940 0.950 1 0.910 1 1 

Notes: ρ is the dependence parameter, τ denotes the tail dependence parameter, and τ୙, τ୐  are upper and lower tail dependence parameters respectively. 
Bootstrapped standard errors are reported in parentheses. GOF refers to p-values of the Cramer-von Mises goodness-of-fit tests. Raw represents the raw return 
series. 
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Table 4. Time-varying symmetrized Joe–Clayton (SJC) copula estimates of crude oil with Japanese stock market across different timescales. 

 Japan China South Korea 
 Raw D1 D2 D3 D4 D5 D6 Raw D1 D2 D3 D4 D5 D6 Raw D1 D2 D3 D4 D5 D6 𝜔௎ −12.81 −13.47 1.57 4.69 5.91 3.64 7.78 −11.74 −20.69 1.29 4.30 5.88 7.96 2.44 −9.87 −14.31 1.88 4.44 6.22 7.24 2.20 
 (2.35) (0.57) (0.49) (0.48) (0.39) (0.10) (0.14) (2.55) (0.40) (0.43) (0.37) (0.37) (0.18) (0.34) (8.59) (0.63) (0.49) (0.30) (0.27) (0.07) (0) 𝛼௎ 0.03 0 −16.29 −23.51 −25.15 −15.96 −21.41 0.08 0 −12.25 −21.78 −25.48 −28.01 −11.45 −3.38 0.01 −14.12 −20.81 −26.98 −24.57 −14.06 
 (0.29) (0) (2.97) (2.50) (1.64) (0.24) (0.36) (0.72) (0) (1.97) (1.81) (2.16) (1.80) (1.35) (10.93) (0) (2.46) (1.63) (2.20) (0.86) (0) 𝛽௎ 0 0 0.32 −3.47 −3.97 0.98 −4.61 0 0 0.52 −3.53 −4.06 −4.67 0.68 −0.01 0 0.93 −3.51 −3.99 −4.37 1.07 
 (0) (0) (0.80) (0.13) (0.12) (0.01) (0.05) (0.30) (0.01) (0.45) (0.18) (0.11) (0.07) (0.24) (0) (0) (0.44) (0.14) (0.12) (0.07) (0) 𝜔௅ −10.01 −14.08 2.09 4.79 6.89 6.92 8.10 0.23 3.45 1.32 5.11 6.62 6.93 2.30 2.45 2.54 2.40 4.19 6.29 7.20 2.03 
 (7.62) (0.51) (0.58) (0.38) (0.28) (0.12) (0.04) (0.87) (0.80) (0.49) (0.28) (0.27) (0.23) (0.47) (1.06) (0.66) (0.65) (0.27) (0.26) (0.23) (0) 𝛼௅ −2.27 0 −18.63 −22.96 −29.38 −24.34 −22.88 −12.78 −23.62 −13.33 −21.91 −23.85 −23.88 −12.16 −20.54 −17.67 −19.17 −19.95 −24.93 −27.22 −14.07 
 (2.64) (0) (3.15) (1.86) (2.12) (0.26) (0.25) (3.62) (3.91) (2.21) (1.51) (1.47) (2.02) (1.71) (5.34) (2.77) (3.64) (1.51) (1.88) (1.05) (0) 𝛽௅ 0.01 0 0.24 −3.37 −4.05 −4.13 −4.97 1.66 −4.61 0.71 −3.51 −4.09 −4.33 0.82 −11.62 −5.95 −1.81 −3.42 −4.04 −4.31 1.43 
 (0.01) (0) (0.72) (0.17) (0.08) (0.09) (0.03) (1.41) (1.36) (0.85) (0.14) (0.11) (0.06) (0.34) (3.75) (2.31) (1.30) (0.14) (0.10) (0.17) (0) 

log ℒ 9.02 −2.840 64.32 227.79 469.93 985.88 1939 35.97 12.72 101.49 300.78 586.14 1252 2083 33.03 21.60 105.82 289.50 478.24 1011 1966 

Notes: Bootstrapped standard errors are reported in parentheses. log ℒ is the value of log-likelihood. 
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Figure 3 shows the time-varying tail dependencies by dynamic SJC copula for each of the oil-
stock pair. These figures provide an intuitive impression into the time-varying tail dependence. 
Looking at these figures, we first find that tail dependencies varied significantly over time and 
differed in terms of the time horizons. The magnitude of these tail dependencies increasedas the time 
scales increased. Specifically, we found very weak tail dependence in the short term, which showed 
the absence of co-movements between crude oil and East Asian stock markets during very short time. 
However, the tail dependence increased as the time scales increased and differed in bear and bull 
markets. These results suggest that crude oil market was more likely to be tail dependent with East 
Asian stock markets in the mid- and long-term than in the short term. In other words, oil market 
would, but not simultaneously, react to the same extreme events with East Asian stock markets. The 
possible reasons are (1) the accurate assessment of the market impact of extreme shocks, costing 
investors some time, and (2) the gradual information diffusion hypothesis by [32]. These results are 
important in terms of hedging strategies and portfolio risk management. 

 



Energies 2020, 13, 294 14 of 24 

 

 

 



Energies 2020, 13, 294 15 of 24 

 

 

 



Energies 2020, 13, 294 16 of 24 

 

 

Figure 3. Time-varying tail dependence between crude oil and East Asian stock markets from SJC 
copula estimates. 

In sum, according to Figures 2 and 3, we can conclude that short-term signals are more volatile, 
and the relationship between short-term signals is weak and stable. While long-term signals are less 
volatile, but their relationship is strong and instable. That is because, the short-term signals are noisy, 
and there is no relationship between noise trading in crude oil and stock markets. While in the long 
term, both markets are more likely to suffer from the same macroeconomic shocks. 

5. Risk Management Analysis 

In this section, we investigate risk management implications of oil-stock dependence at multiple 
time scales. Generally, an asset is defined as a hedge or a safe haven if it is uncorrelated or negatively 
correlated with another asset or portfolio on average or in times of extreme market movements. 
Therefore, we examine hedging effectiveness and downside risk hedging performance by comparing 
the portfolio variance (PV) and expected shortfall (ES). Here, we consider two portfolios, the stock 
only portfolio and the oil-stock portfolio. For oil-stock portfolio, we randomly generate 100 weights 
from 0 to 1, and investigate the average performance of these portfolios. We simulate 1000 
observations from our model for each portfolio. We choose the best-fit copula—the time-varying SJC 
copula, and then form the portfolio returns using the wavelet counterparts: 𝑟௦,௧௣௢௥௧௙௢௟௜௢ = 𝑤௢௜௟𝑟௦,௧௢௜௟ + (1 − 𝑤௢௜௟)𝑟௦,௧௦௧௢௖௞ (26) 

where s represents the time scales, w is the weight. We consider percentage portfolio variance (PV) 
reduction of oil-stock portfolio with respect to stock only portfolio at multiple time scales in terms of 
the risk reduction (RR) effectiveness ratio as follows: 𝑅𝑅௦,௧௉௏ = 1 − ௉௏ೞ,೟ು೚ೝ೟೑೚೗೔೚௉௏ೞ,೟ೞ೟೚೎ೖ , (27) 

A higher value of 𝑅𝑅௦,௧௉௏ means greater variance reduction, implying that oil can provide higher 
hedging benefits against East Asian stock markets. Table 5 panel A reports the PV reduction 
performance. Overall, all PV reduction values are positive, indicating that oil is useful in hedging the 
risk of East Asian stock portfolio at different investment horizons. On the other hand, these PV 
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reduction values and their significance decrease as the time scales increase. Specifically, the hedging 
benefits are significant from D1 to D3, but most of these values are insignificant from D4 to D6. These 
results suggest a stronger hedging benefits in the short-term than those in the mid- and long-term. 

Table 5. Portfolio variance and expected shortfall reduction effectiveness of oil-stock portfolios at 
multiple time scales. 

 Raw D1 D2 D3 D4 D5 D6 
Panel A. Portfolio variance 

Japan 
0.295 0.296 0.262 0.222 0.200 0.104 0.063 

(0.048) (0.042) (0.055) (0.081) (0.100) (0.089) (0.065) 

China 
0.295 0.296 0.265 0.206 0.120 0.088 0.121 

(0.047) (0.044) (0.055) (0.080) (0.093) (0.098) (0.072) 

South Korea 
0.280 0.272 0.265 0.203 0.152 0.106 0.112 

(0.048) (0.045) (0.060) (0.071) (0.100) (0.102) (0.085) 
Panel B. Expected shortfall 

Japan 
0.176 0.159 0.125 0.084 0.075 0.044 0.043 

(0.053) (0.049) (0.052) (0.065) (0.071) (0.055) (0.036) 

China 
0.152 0.135 0.119 0.069 0.025 −0.002 0.031 

(0.052) (0.052) (0.050) (0.063) (0.062) (0.059) (0.039) 

South Korea 
0.164 0.128 0.130 0.081 0.048 0.056 0.063 

(0.050) (0.051) (0.054) (0.055) (0.067) (0.065) (0.047) 
Notes: Standard errors are reported in parentheses. 

In addition, we examine the usefulness of crude oil in hedging downside risk performance by 
estimating the expected shortfall (ES) of a portfolio composed of oil and stock. The ES is given by 𝐸𝑆௦,௧ = 𝐸[𝑟௦,௧௣௢௥௧௙௢௟௜௢|𝑟௦,௧௣௢௥௧௙௢௟௜௢ ≤ 𝑉𝑎𝑅௦,௧],  (28) 

where 𝑉𝑎𝑅௦,௧ = 𝐹௦,௧ିଵ(𝑞) represents the value at risk at the (1 − 𝑞)% confidence level of a portfolio 
and 𝐹(. )  is the conditional joint distribution. Similarly, we evaluated downside risk gains by 
evaluating percentage ES reduction of oil-stock portfolio with respect to stock only portfolio at 
different time scales in terms of the risk reduction (RR) effectiveness ratio as follows: 𝑅𝑅௦,௧ாௌ = 1 − ாௌೞ,೟ು೚ೝ೟೑೚೗೔೚ாௌೞ,೟ೞ೟೚೎ೖ . (29) 

Regarding downside risk, Table 5 panel B presents the results for the ES reduction. Similarly, 
most of these values are positive, implying that crude oil is useful in hedging the downside risk of 
East Asian stock market. The ES reduction ratios are bigger and more likely to be significant in the 
short-term than in the mid- and long-term. 

Figure 4 displays dynamic PV and ES reduction effectiveness. These plots offer graphical 
insights into the nature of the dynamic hedging and downside risk reduction at multiple time scales. 
Clearly, most values are positive over time and across frequencies, implying that crude oil is useful 
in reducing the risk and downside risk of East Asian stock markets over the whole sample period. 
The short-term hedging benefits are stable, while the mid- and long-term PV and ES reduction ratios 
vary dramatically over time. Moreover, the hedging benefits have been reduced in the long-run. 

Overall, these results point to the value of using crude oil as a hedge and safe haven against East 
Asian stock markets, although the hedging benefits would vary across markets and investment 
horizons. 
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Figure 4. Dynamic portfolio variance and expected shortfall reduction effectiveness for oil-stock 
portfolios at the multiple time scales. 

6. Conclusions 

Crude oil is widely recognized as a strategic commodity. Its price volatility and influence has 
become crucial for world economic development. Besides, crude oil has become important 
investment tool for portfolio diversification and risk management. It is important to understand the 
dependence and tail dependence of oil and stock markets at multiple investment time horizons. 
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This paper investigates the time-varying dependence and tail dependence between crude oil and 
East Asian stock markets across multiple time scales. We also assess the risk and downside risk 
hedging benefits of crude oil to East Asian stock markets. Our results provide strong evidence of 
time-varying dependence and asymmetric tail dependence between crude oil and stock markets at 
different time scales. The oil-stock dependence and tail dependence increase as the time-scale 
increases. Short-term signals are volatile, and their relationship is weak and stable. In contrast, long-
term signals are less volatile, but their relationship is strong and instable. 

Based on the analysis of the risk reduction of portfolio variance and expected shortfall, we 
investigate the risk and tail risk hedging performance of crude oil to stock portfolios. We find strong 
evidence that the hedging effectiveness vary over time and differ in terms of investment horizons. 
All PV and ES risk reduction values are bigger than zero, suggesting that crude oil is useful in 
diversifying the East Asian stock portfolio. We also find that hedging benefits decrease as time scales 
increase, indicating that oil is more useful in hedging the risk in the short-term than in the mid- and 
long-term. These results are in line with previous results of oil-stock dependence. From the statistical 
perspective, increasing positive relationship would decrease hedging benefits. From the economic 
perspective, oil and stock markets are influenced by similar macroeconomic shocks in the long-term. 
Our results have important implications for heterogeneous investors and market participants. 
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Appendix A. Copula Functions 

The normal copula can be written as: 𝐶ே(𝑢, 𝑣;  𝜌) = 𝜙൫𝜙ିଵ(𝑢), 𝜙ିଵ(𝑣)൯  (A1) 

where 𝜌 ∈ [−1, 1] is simply the linear correlation coefficient of the two random variables. 𝜙ିଵ is the 
inverse of standard normal distribution function. 𝜌 = 0 implies the independence copula. The lower 
and upper tail dependence of the Normal copula is zero. For the time-varying normal copula, the 
correlation is modelled by the transformed variable according to an ARMA (1, 10)-type process (see 
[30]): 𝜌௧ = 𝛬 ቀ𝜔 + 𝛽𝜌௧ିଵ + 𝛼 ଵଵ଴ ∑ 𝜙ିଵ൫𝑢௧ି௝൯𝜙ିଵ൫𝑣௧ି௝൯ଵ଴௝ୀଵ ቁ  (A2) 

where 𝛬 is a logistic transformation used for the purpose of keeping the parameter 𝜌 in its (−1, 1) 
interval of the copula function at all times, and 𝛬(𝑥) ≡ (1 − 𝑒ି௫)(1 + 𝑒ି௫)ିଵ. The parameter 𝜔 is the 
constant term, 𝛽 is the autoregressive term, and 𝛼 is the transformed term. 

The bivariate Student’s t copula has the following analytic form: 𝐶௧(𝑢, 𝑣;  𝜌, 𝜂) =  𝑇 ቀ𝑡ఎିଵ(𝑢), 𝑡ఎିଵ(𝑣)ቁ (A3) 

where 𝜌 ∈ [−1, 1] is the linear correlation coefficient of the bivariate Student’s t distribution. 𝑡ఎିଵ is 
the inverse of Student’s t distribution with  𝜂 degrees of freedom. The lower tail dependence of 
Student’s t copula is equal to the upper tail dependence. 𝜏௎ = 𝜏௅ = 2 − 2𝑡ఎାଵ(ඥ𝜂 + 1ඥ1 − 𝜌/ඥ1 + 𝜌)  (A4) 

For the time-varying Student’s t copula, the correlation parameter undergoes the same 
transformation as in the case of the Normal to guarantee 𝜌 ∈ (−1, 1). We allow only the dependence 
and tail dependence to vary through time while the degrees of freedom 𝜂 remain constant. 
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𝜌௧ = 𝛬 ቀ𝜔 + 𝛽𝜌௧ିଵ + 𝛼 ଵଵ଴ ∑ 𝑡ఎିଵ൫𝑢௧ି௝൯𝑡ఎିଵ൫𝑣௧ି௝൯ଵ଴௝ୀଵ ቁ  (A5) 

The bivariate Clayton copula is defined as 𝐶஼௟(𝑢, 𝑣;  𝜅) = (𝑢ି఑ + 𝑣ି఑ − 1)ିଵ௞ (A6) 

where 0 ≤ 𝜅 < ∞ . 𝜅 = 0  means the two variables are independent. The Clayton copula is 
asymmetric and has only lower tail dependence 𝜏௅ = 2ିଵ/఑. The Clayton parameter 𝜅 follows the 
process: 𝜅௧ = ∆ ቀ𝜔 + 𝛽𝜅௧ିଵ + 𝛼 ଵଵ଴ ∑ |𝑢௧ି௝ − 𝑣௧ି௝|ଵ଴௝ୀଵ ቁ  (A7) 

where ∆ is a logistic transformation used to keep the parameter 𝜅 in its (0, ∞) interval of the copula 
function at all times, and ∆(𝑥) = 𝑥ଶ . Hence, the time-varying parameter 𝜅௧  is explained by a 
constant 𝜔, by an autoregressive term 𝛽, and by the average product over the last 10 observations 
of the transformed difference of variables 𝛼. 

The bivariate Rotated Gumbel copula is defined by 𝐶ீ௨(𝑢, 𝑣;  𝜅) = 𝑒𝑥𝑝 (−[(−ln (1 − 𝑢))఑ + (−ln (1 − 𝑣))఑]ଵ఑) (A8) 

where 1 ≤ 𝜅 < ∞. 𝜅 = 1 means the independence. The Rotated Gumbel copula is asymmetric and 
has only lower tail dependence 𝜏௅ = 2 − 2ଵ/఑ . The dynamics of the rotated Gumbel copula is 
specified as: 𝜅௧ = ∆ ቀ𝜔 + 𝛽𝜅௧ିଵ + 𝛼 ଵଵ଴ ∑ |𝑢௧ି௝ − 𝑣௧ି௝|ଵ଴௝ୀଵ ቁ  (A9) 

where ∆(𝑥) = 1 + 𝑥ଶ is a logistic transformation to ensure that 1 ≤ 𝜅 < ∞. 
The Symmetrized Joe-Clayton (SJC) copula is derived from the linear combination of the Joe-

Clayton copula (𝐶௃஼). 𝐶ௌ௃஼(𝑢, 𝑣; 𝜏௅, 𝜏௎) = 0.5 ∗ (𝐶௃஼(𝑢, 𝑣; 𝜏௅, 𝜏௎) + 𝐶௃஼(1 − 𝑢, 1 − 𝑣; 𝜏௅, 𝜏௎) + 𝑢 + 𝑣 − 1) (A10) 𝐶௃஼(𝑢, 𝑣; 𝜏௅, 𝜏௎) = 1 − 

൮1 − ቌቈ1 − (1 − 𝑢) ଵ௟௢௚మ(ଶିఛೆ)቉ି ଵ௟௢௚మఛಽ + ቈ1 − (1 − 𝑣) ଵ௟௢௚మ(ଶିఛೆ)቉ି ଵ௟௢௚మఛಽ − 1ቍ௟௢௚మఛಽ൲௟௢௚మ(ଶିఛೆ)
 

(A11) 

where the two parameters 𝜏௅ ∈ (0, 1)  and 𝜏௎ ∈ (0, 1)  representing the lower and upper tail 
dependence respectively. The tail dependence parameters evolve according to: 𝜏௧௎ = ∆ ቀ𝜔 + 𝛽𝜏௧ିଵ௎ + 𝛼 ଵଵ଴ ∑ |𝑢௧ି௝ − 𝑣௧ି௝|ଵ଴௝ୀଵ ቁ  (A12) 

𝜏௧௅ = ∆ ቀ𝜔 + 𝛽𝜏௧ିଵ௅ + 𝛼 ଵଵ଴ ∑ |𝑢௧ି௝ − 𝑣௧ି௝|ଵ଴௝ୀଵ ቁ  (A13) 

where ∆(𝑥) = (1 + 𝑒ି௫)ିଵ is a logistic transformation used to retain 𝜏௅ ∈ (0, 1) and 𝜏௎ ∈ (0, 1). 
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