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Abstract: In this paper, we design an optimal controller for a wind turbine (WT) with doubly-fed
induction generator (DFIG) by decomposing the algebraic Riccati equation (ARE) of the singularly
perturbed wind turbine system into two reduced-order AREs that correspond to the slow and fast
time scales. In addition, we derive a mathematical expression to obtain the optimal regulator gains
with respect to the optimal pure-slow and pure-fast, reduced-order Kalman filters and linear quadratic
Gaussian (LQG) controllers. Using this method allows the design of the linear controllers for slow
and fast subsystems independently, thus, achieving complete separation and parallelism in the design
process. This solves the corresponding ill-conditioned problem and reduces the complexity that arises
when the number of wind turbines integrated to the power system increases. The reduced-order
systems are compared to the original full-order system to validate the performance of the proposed
method when a wind turbulence and a large-signal disturbance are applied to the system. In addition,
we show that the similarity transformation does not preserve the performance index value in case of
Kalman filter and the corresponding LQG controller.

Keywords: wind turbine generators; double-fed induction generator; singular perturbation; model
order reduction; kalman filter; linear quadratic gaussian controller

1. Introduction

Wind turbines, having mechanical and electrical components, are known to operate in at least
two time-scales: the slow time scale in which mechanical state variables evolve and the fast time
scale in which electrical and electronic state variables evolve. The result is the “stiff” numerical
problem that happens naturally in power systems due to the presence of “parasitic” parameters
such as small time constants, masses, resistances, inductances, capacitances, moments of inertia, etc.
Singular perturbation methods eliminate the stiffness problem and decouple the original system into
slow and fast reduced-order subsystems. A reduced-order system can be obtained through ignoring
the fast subsystem and compensating for its effect by introducing a “boundary layer” correction to
the slow subsystem towards a better approximation for the original system. Various methods have
been proposed [1,2] to obtain the exact slow and fast subsystems. The Chang transformation [3] has
been widely used to get the exact pure-slow and pure-fast subsystems, even when the perturbation
parameter ε is not very small. Moreover, a number of recursive algorithms [4–6] have been developed
to avoid the problems involving ill-conditioned systems and to obtain an approximate solution to the
algebraic Riccati equation (ARE), which can be decomposed after that into slow and fast parts.

Double-Fed Induction Generators (DFIGs) are characterized by consuming less reactive power,
inflicting less mechanical stress on turbines, and allowing the control of the active and reactive power
to be decoupled. As such, DFIGs are commonly used in variable-speed wind energy systems [7].
However, due to their poorly damped eigenvalues, modeling and control of DFIG-based wind systems
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is more complicated than that of other induction generators. This is further exacerbated by the
sensitivity of DFIGs to grid disturbances, which may, under certain operating conditions, render the
system unstable [8].

Time scale analysis and optimal control of wind energy systems have been widely explored [9–14].
Using time scale analysis, in [9] the linear quadratic regulator (LQR) and LQG controllers were
designed for deterministic and stochastic wind energy systems with permanent magnet synchronous
generators (PMSG). In [10], the LQR controller was designed for a DFIG wind turbine and compared to
current-mode control under different types of disturbances affecting the wind turbine system. The LQR
controller is used in [11] for the pitch angle control, and in [12] to control the oscillatory behavior
towards improving the stability, of the DFIG connected to the grid. In comparison to the balanced
reduction methods in [13], time scale and singular perturbation analysis provide better results in
reducing the order of the DFIG-based WT system. A LQG-based power oscillation damping controller
is designed in [14] to provide the supplementary reference signals for the active and reactive power of
the DFIG wind generator and to enhance the damping of poorly damped modes.

In this paper, the method of singular perturbation will be used to design LQR, Kalman filter, and
LQG optimal controllers in two independent time scales for a fifth-order single-cage DFIG wind turbine.
Here, the ARE of the singularly perturbed wind turbine system is decomposed into two reduced-order
AREs that correspond to the slow and fast time scales. Using this method allows designing linear
controllers for the slow and fast subsystems independently, thus, achieving complete separation
and parallelism in the design process. The advantages of such an approach are alleviating stiffness
difficulties and reducing computational complexities and dimensionality burdens resulting from the
increased penetration of wind turbines to the power grid.

The rest of this paper is organized as follows. In the next section, the wind turbine and
DFIG dynamics are reviewed and the state space model of the fifth-order single-cage DFIG wind
turbine is presented. Section 3 reviews the exact decomposition method of the ARE. The optimal
performance-invariance of the LQR under similarity transformation is considered in Section 3.1.
In Section 3.2, the slow and fast decomposition of the optimal performance criteria is provided.
The Kalman filtering time scale analysis is reviewed in Section 4. The effect of similarity transformation
on the optimal performance of the Kalman filter is derived in Section 4. In Section 5, Optimal LQG
Control is discussed. The performance index of the LQG under the similarity transformation and LQG
slow and fast optimal performance criteria are derived in Sections 5.1 and 5.2, respectively. Simulation
results are presented in Section 6. The paper is concluded in Section 7.

2. Modeling Wind Turbine with Double-Fed Induction Generator

The mechanical power collected from the wind can be formulated as:

Pm =
1
2

ρπR2v3Cp(λ, β) (1)

where ρ is the air density [Kg/m3], R is the radius of the turbine in [m], v is the wind speed [m/s],
Cp(λ, β) is the power coefficient of the wind turbine that describes the efficiency of power extraction.
Cp is a nonlinear function that depends on the blade pitch angle β and the tip speed ratio λ, which is
given by

λ =
Rωr

v
(2)

where ωr is the rotor angular velocity. Cp is a measure for power performance of the wind turbine.
Using the turbine characteristics, the latter can be approximated as:

Cp(λ, β) = C1(
C2

λi
− C3β− C4)e

−C5
λi + C6λ (3)
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where λi can be calculated approximately as follows

1
λi

=
1

λ + 0.08β
− 0.035

β3 + 1
(4)

The coefficients Ci, i = 1, 2, . . . , 6, depend on the turbine design characteristics and are given in
Appendix A.2. The maximum mechanical power Popt collected by the wind turbine is

Popt = ρπR5Cp−optω
3
opt/2λopt = koptω

3
opt (5)

which requires maintaining λ at its optimum value λopt and the pitch angle at β = 0. Figure 1 shows
a typical wind turbine characteristics with the optimal power extraction Popt. As the wind speed
varies, the controller plays the role of ensuring that the wind turbine follows the optimal power curve
in Figure 1a.

(a) (b)
Figure 1. Maximum power extraction characteristic for wind turbines. (a) Optimal power-speed
characteristics (b) Torque-speed characteristics.

A wind turbine converts the mechanical power of the wind rotating the blades of the turbine
into electrical power. In this paper, the one-mass derive train model is considered in which the total
inertia Ht is the sum of the turbine rotor and generator inertias. The dynamics of this model can be
formulated as the differential equation:

2Ht
dωr

dt
= Tm − Te (6)

where Tm is the mechanical torque and Te is the electromechanical torques.
A typical configuration of a utility grid involving a DFIG is shown in Figure 2. For a simplified

mathematical model, all equations of the induction generator are derived using the direct-quadrature
(d-q) transformation. The stator and rotor voltage equations in d-q synchronous reference frame are
given, respectively by: [

vds
vqs

]
= −Rs

[
ids
iqs

]
+ ωs

[
−ψqs

ψds

]
+

1
ωb

d
dt

[
ψds
ψqs

]
(7)

[
vdr
vqr

]
= Rr

[
idr
iqr

]
+ sωs

[
−ψqr

ψdr

]
+

1
ωb

d
dt

[
ψdr
ψqr

]
(8)

where the subscripts s and r denote the stator and rotor quantities while subscripts q and d denote the
components aligned with the q-axis and d-axis reference frames, respectively. In (7) and (8), Rs and
Rr are the stator and rotor resistances, respectively, and ωs and ωb are synchronous and base angular
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frequencies, respectively. s is defined as the slip of the generator and given by s = (ωs − ωr)/ωs.
The corresponding magnetic flux equations are given by:

ψds = Lsids + Lmidr

ψqs = Lsiqs + Lmiqr

ψdr = Lridr + Lmids

ψqr = Lriqr + Lmiqs

(9)

where Ls, Lr, and Lm are stator, rotor, and self magnetizing reactances, respectively. Ls and Lr are
defined by the following equations:

Ls = Lls + Lm

Lr = Llr + Lm
(10)

Figure 2. A typical configuration for a DFIG-based wind turbine.

In [15,16] a synchronous reference frame was considered to derive the mathematical model.
The following assumptions were imposed: (a) The stator current is assumed to be negative when
flowing toward the machine; (b) q-axis is 90◦ ahead of the d-axis with respect to the direction of rotation.
In this paper, the current model of a single-cage DFIG wind turbine reported in [15,16] is considered.
The general linearized state-space current model is given by:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(11)

where A, B, C, and D represent the system state, input, output, and feed forward matrices, respectively.
The state-space variables, inputs and outputs of the fifth-order single-cage DFIG wind turbine can be
described by the following vectors:

ẋ =
[
ids iqs idr iqr

]T
(12)

u =
[
vds vqs vdr vqr

]T
, y =

[
idr iqr

]T
(13)

where the state variables x are the rotor and stator currents, the control signals u are the input voltages
and the outputs of the system y are the rotor currents in the d-axis and q-axis, respectively. In terms of
state variables, the electromechanical torque can be formulated as:

Te = Lm(idriqs − iqrids) (14)
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using (6) and (14) we get

ω̇m =
Tm

2Ht
+

Lm

2Ht
(iqrids − idriqs) (15)

The state-space model of the fifth-order single-cage DFIG wind turbine is obtained by integrating
Equations (12)–(15). The new state variables, control signal and outputs are given as follows:

ẋ =
[
ids iqs idr iqr ωm

]T
(16)

u =
[
vds vqs vdr vqr Tm

]T
, y =

[
idr iqr

]T
(17)

The linearized system, control and output matrices A, B, and C, evaluated at the system’s
operating points, are characterized by [10,15,16]:

A = KG ·


−RsLr α1ωs −RrLm −βrωs a15

−α1ωs −RsLr −βrωs −RrLm a25

−RsLm βsωs −RrLs −α2ωs a35

−βsωs −RsLm α2ωs −RrLs a45

Kwiqr −Kwidr −Kwiqs Kwids 0

 , B = KG ·


−Lr 0 Lm 0 0

0 −Lr 0 Lm 0
−Lm 0 Ls 0 0

0 −Lm 0 Ls 0
0 0 0 0 1

2Ht

 ,

C =

[
0 0 1 0 0
0 0 0 1 0

]
, D =

[
0 0 0 0 0
0 0 0 0 0

]
(18)

where α1 = LsLr − sL2
m, α2 = L2

m − sLsLr, βs = LmLs(1− s) , βr = LmLr(1− s), σ = 1− L2
m/LrLs,

KG = ωb(LsLrσ)−1, Kw = Lm(2HtKG)
−1, a15 = Lm(Lmiqs − Lriqr), a25 = Lm(−Lmids + Lridr),

a35 = Ls(Lmiqs − Lriqr), a45 = Ls(−Lmids + Lridr).
Appendices A.1–A.3 lists the parameters of the system and the DFIG, in addition to the operating

points employed in the linearization procedure.

3. Exact Decomposition of the Algebraic Riccati Equation

Consider the linear singularly perturbed control system:

ẋ1(t) = A1x1(t) + A2x2(t) + B1u(t)

εẋ2(t) = A3x1(t) + A4x2(t) + B2u(t)
(19)

where xi(t) ∈ <n, i = 1, 2, u(t) ∈ <m are the state variables and control variables, respectively.
ε is a small positive singular perturbation parameter that indicates system separation into slow and fast
time scales. We assume that the singularly perturbed system (19) has the standard singular perturbation
form [1]. Hence, the fast subsystem matrix A4 is nonsingular, which is a standard assumption in the
singular perturbation theory [1]. The corresponding linear-quadratic optimal control problem of (19) is
defined by:

ẋ1(t) = A1x1(t) + A2x2(t) + B1u(t), x1(0) = x10

εẋ2(t) = A3x1(t) + A4x2(t) + B2u(t), x2(0) = x20
(20)

where the control vector u ∈ <m, has to be chosen such that the following performance criterion, J,
is minimized

min
u

J = min
u

1
2

∫ ∞

0

{[
x1(t)
x2(t)

]T

Q

[
x1(t)
x2(t)

]
+ uT(t)Ru(t)

}
dt (21)
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where R > 0 and Q ≥ 0 are the weighting matrices. The optimizing performance criterion (21)
of the closed-loop optimal control problem, subject to the singularly perturbed system differential
Equation (20), has the solution

u(t) = −R−1BT Prx(t) = −F1x1 − F2x2 (22)

where Pr is the positive semidefinite solution of the regulator algebraic Riccati equation given by [17]

0 = Pr A + AT Pr + Q− PrZPr, (23)

with

A =

[
A1 A2

1
ε A3

1
ε A4

]
, Q =

[
Q1 Q2

QT
2 Q3

]
(24)

B =

[
B1

1
ε B2

]
, Pr =

[
P1r εP2r

εPT
2r εP3r

]
, Z = B1R−1BT

2

The optimal regulator gains F1 and F2 are given by

F1 = R−1(BT
1 P1r + BT

2 PT
2r)

F2 = R−1(εBT
1 P2r + BT

2 P3r)
(25)

The solution of the algebraic Riccati Equation (23) will be found in term of solutions of the
reduced-order, pure-slow and pure-fast algebraic Riccati equation. For this purpose, a nonsingular
transformation T [18,19] is applied for the state-costate equations such that they become completely
decoupled as independent slow and fast subsystems in the form

ζ̇s(t) = (a1 + a2Prs)ζs(t)

εζ̇ f (t) = (b1 + b2Pr f )ζ f (t)
(26)

where Prs and Pr f are the unique solutions of the exact pure-slow and exact pure-fast completely
decoupled algebraic regulator Riccati equations

0 = Prsa1 − a4Prs − a3 + Prsa2Prs

0 = Pr f b1 − b4Pr f − b3 + Pr f b2Pr f
(27)

Matrices ai, bi, i = 1, 2, 3, 4, can be found in [18,19]. The nonsingular transformation T is given by:

T = (Π1 + Π2Pr) (28)

The slow and fast subsystems in the new coordinate are related by:[
ζs(t)
ζ f (t)

]
= T

[
x1(t)
x2(t)

]
(29)

Even more, the global solution Pr can be obtained from the reduced-order exact pure-slow and
pure-fast algebraic Riccati equations, that is

Prs f =

(
Ω3 + Ω4

[
Prs 0
0 Pr f

])(
Ω1 + Ω2

[
Prs 0
0 Pr f

])−1

(30)

Known matrices Ωi, i = 1, 2, 3, 4, and Π1, Π2 are given in terms of solutions of the Chang
decoupling equations [18,19].
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3.1. Optimal Performance Invariance to Similarity Transformation

It has been shown in [20] that similarity transformation preserves the optimal performance criteria
for the linear quadratic regulator LQR, such that its optimal values in the two coordinate systems are
equivalent. This results can be derived briefly as follows:

The similarity transformation for the linear quadratic optimal control problem can be derived
as follows:

ẋ = Ax + Bu, ,
x(0) = x0,

J = 1
2

∫ ∞
0

(
xTQx + uT Ru

)
dt

Jopt =
1
2 x0Px0

AT P + PA + Q− PBR−1BT P = 0


x̄ = Tx−−−−→



˙̄x = Āx̄ + B̄u,
x̄0 = Tx0,

J̄ = 1
2

∫ ∞
0

(
x̄TQ̄x̄ + uT Ru

)
dt

J̄opt =
1
2 x̄0P̄x̄0

ĀP̄ + P̄Ā + Q̄− P̄B̄R−1B̄T P̄ = 0

Derivations:
˙̄x = Tẋ = TAx + TBu = TAT−1 x̄ + TBu (31)

Ā = TAT−1, B̄ = TB, Q̄ = T−TQT (32)

ĀP̄ + P̄Ā + Q̄− P̄B̄R−1B̄T P̄ = 0 (33)

T−T ATTT P̄ + P̄TAT−1 + Q̄− P̄TBR−1BTTT P̄ = 0 (34)

Multiplying by TT from the left and by T from the right we get

ATTT P̄T + TT P̄TA + TTQ̄T − TT P̄TBR−1BTTT P̄P = 0 (35)

define P = TT P̄T, P̄ = T−T PT−1, then

AT P + PA + Q− PBR−1BT P = 0 (36)

J̄opt =
1
2

x̄0P̄x̄0 =
1
2

xT
0 TTT−T PT−1Tx0 =

1
2

xT
0 Px0 (37)

J̄opt = Jopt (38)

3.2. Slow and Fast Decomposition of the Optimal Performance Criteria

In this section, we calculate the minimized optimal performance Jopt for the slow and
fast subsystems of the LQR problem. As stated in the previous section, using the nonsingular
transformation defined in (28) does not change the value of the optimal performance. Therefore,
by adding the slow and fast performance indices, we get the total optimal performance Jopt obtained
in the original coordinates. The quadratic performance criterion to be minimized, calculated in the
new coordinates, is given by:

J =
1
2

∫ ∞

0

{
xTQx + uT Ru

}
dt =

1
2

∫ ∞

0

{
xT(t)(Q + PSP)x(t)

}
dt (39)

x(t) = (Π1 + Π2P)−1

[
η1(t)
ζ1(t)

]
= T−1

[
η1(t)
ζ1(t)

]
(40)

J =
1
2

∫ ∞

0

[
η1(t)
ζ1(t)

]
T−1(Q + PSP)T

[
η1(t)
ζ1(t)

]
=

1
2

∫ ∞

0

[
η1(t)
ζ1(t)

] [
Q1 Q2

QT
2 Q3

] [
η1(t)
ζ1(t)

]
dt (41)



Energies 2020, 13, 287 8 of 22

ζ̇1(t) = (a1 + a2Ps)ζ1(t)

εζ̇2(t) = (b1 + b2Pf )ζ2(t)
(42)

J =
1
2

[
η1(0)
ζ1(0)

]T

V

[
η1(0)
ζ1(0)

]
, ATV + VA + θ = 0 (43)

J =
1
2

[
ηT

1 (0) ζT
1 (0)

] [ v1 εv2

εvT
2 εv3

] [
η1(0)
ζ1(0)

]
(44)

J =
1
2
[ηT

1 (0)v1 + εζT
1 (0)v

T
2

... εηT
1 (0)v2 + εζT

1 (0)v3]

[
η1(0)
ζ1(0)

]
(45)

J =
1
2

ηT
1 (0)v1η1(0) +

1
2

εζT
1 (0)v

T
2 η1(0) +

1
2

εηT
1 (0)v2ζ1(0) +

1
2

εζT
1 (0)v3ζ1(0) (46)

J =
1
2

ηT
1 (0)v1η1(0)︸ ︷︷ ︸

Js−opt

+ εηT
1 (0)v2ζ1(0)︸ ︷︷ ︸

Js f−opt

+
1
2

εζT
1 (0)v3ζ1(0)︸ ︷︷ ︸

J f−opt

(47)

Jopt = Js−opt + Js f−opt + J f−opt (48)

Js−opt =
1
2

ηT
1 (0)v1η1(0) =

1
2

tr{v1η1(0)ηT
1 (0)} (49)

J f−opt =
ε

2
ζT

1 (0)v3ζ1(0) =
ε

2
tr{v3ζ1(0)ζT

1 (0)} (50)

Js f−opt = εηT
1 (0)v2ζ1(0) = εtr{v2ζ1(0)ηT

1 (0)} (51)

Formula (47) constitutes an exact decomposition for the optimal performance criterion into slow
and fast components. It can be concluded from (47) that the contribution the slow subsystem makes
to the performance criterion is O(1), whereas that the fast subsystem makes is only O(ε). Note also
that Js f−opt can be negative since v2 is generally not a square matrix, and in the case it is, it would still
be indefinite.

4. Kalman Filtering Time Scale Analysis

In this section, an optimal Kalman filter is designed to estimate the state variables of the wind
energy systems with DFIG. Using the duality property between the optimal filter and regulator,
the same decomposition method presented in previous section can be applied here so that the optimal
Kalman filter is completely decoupled into the pure-slow and pure-fast local filters both driven by
the system measurements [17]. Consider the linear continuous-time invariant singularly perturbed
stochastic system

ẋ1(t) = A1x1(t) + A2x2(t) + B1u(t) + G1w1(t), E{x1(0)} = x10

εẋ2(t) = A3x1(t) + A4x2(t) + B2u(t) + G2w1(t), E{x2(0)} = x20

y(t) = C1x1(t) + C2x2(t) + w2(t)

(52)

with the performance criterion

J = lim
t f→∞

1
t f

{ ∫ t

0

[
zT(t)z(t) + uT(t)Ru(t)

]
dt

}
, R > 0 (53)

where x1(t) ∈ <n
1 , and x2(t) ∈ <n

2 , are slow and fast state variables, respectively. u(t) ∈ <m is
the control input, y(t) ∈ <p are system measurements. w1(t) ∈ <r and w2(t) ∈ <p are zero-mean
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stationary, white Gaussian noise stochastic process with intensities W1 > 0 and W2 > 0, respectively.
z(t) ∈ <s, is the controlled system output given by:

z(t) = D1x1(t) + D2x2(t) (54)

All matrices are of appropriate dimensions and assumed to be constant. The optimal control law
for (52) with the performance criterion (53) is given by:

uopt(t) = −F1 x̂1(t)− F2 x̂2(t) (55)

where x̂1(t) and x̂2(t) are the optimal estimates of the state vectors x1(t) and x1(t) obtained from the
Kalman filter

˙̂x1(t) = A1 x̂1(t) + A2 x̂2(t) + B1u(t) + K1v(t)

ε ˙̂x2(t) = A3 x̂1(t) + A4 x̂2(t) + B2u(t) + K2v(t)

v(t) = y(t)− C1 x̂1(t)− C2 x̂2(t)

(56)

The optimal global Kalman filter (56) can be put in the form in which the filter is driven by the
system measurements and optimal control inputs, that is

˙̂x1(t) = (A1 − K1C1)x̂1(t) + (A2 − K1C2)x̂2(t) + B1u(t) + K1y(t)

ε ˙̂x2(t) = (A3 − K2C1)x̂1(t) + (A4 − K2C2)x̂2(t) + B2u(t) + K2y(t)
(57)

where the optimal filter gains K1 and K2 are obtained from

K1 = (P1FCT
1 + P2FCT

2 )W
−1
2

K2 = (εPT
2FCT

1 + P3FCT
2 )W

−1
2

(58)

matrices P1F, P2F and P3F define the positive semidefinite stabilizing solution of the filter algebraic
Riccati equation

APF + PF AT − PFSPF + GW1GT = 0 (59)

where

A =

[
A1 A2

1
ε A3

1
ε A3

]
, G =

[
G1

1
ε G2

]
, S = CTW−1

2 C, PF =

[
P1F P2F
PT

2F
1
ε P3F

]
(60)

Using duality, the following matrices have to be formed (see [18,19])

T1F =

[
AT

1 −CT
1 W−1

2 C1

−G1W1GT
1 −A1

]
, T2F =

[
AT

3 −CT
1 W−1

2 C2

−G1W1GT
2 −A2

]
,

T3F =

[
AT

2 −CT
2 W−1

2 C1

−G2W1GT
1 −A3

]
, T4F =

[
AT

4 −CT
2 W−1

2 C2

−G2W1GT
2 −A4

]
,

(61)

The partitions and scaling have to be used here, xT(t) = [xT
1 (t) εxT

2 (t)] and pT(t) = [pT
1 (t) pT

2 (t)].
Since matrices T1F, T2F, T3F, and T4F correspond to the system matrices of a singularly perturbed linear
system, the slow-fast decomposition is achieved by using the Chang decoupling equations

T4F M− T3F − εM(T1F − T2F M) = 0

−N(T4F + εMT2F) + T2F + ε(T1F − T2F M)N = 0
(62)
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Using the following permutation matrices,

E1F =


In1 0 0 0
0 0 In1 0
0 1

ε In2 0 0
0 0 0 In2

 , E2F =


In1 0 0 0
0 0 In1 0
0 In2 0 0
0 0 0 In2

 (63)

we can define

ΠF =

[
Π1F Π2F
Π3F Π4F

]
= ET

2F

[
I2n1 − εNM −εN

M I2n2

]
E1F (64)

Then, the desired transformation is given by:

T2 = (Π1F + Π2FPF) (65)

where PF is the solution of the ARE (59). M and N are the solution of the Chang decoupling algebraic
Equations (62). The transformation T2 is applied to the filter variables as:[

η̂s(t)
η̂ f (t)

]
= T−T

2

[
x̂1(t)
x̂2(t)

]
(66)

Kalman Filter Under Similarity Transformation

To determine the gain of Kalman filter in the new coordinates under a similarity transformation,
the same strategy used in Section 3.1 is applied here

ẋ(t) = Ax(t) + Gw1(t), x(0) = x0

y(t) = Cx(t) + w2(t)
(67)

˙̂x = (A− KC)x̂ + Ky, K = PFCTW2, E{x̂(0)} = x0 (68)

APF + PF AT + GW1GT − PFCW−1
2 CT PF = 0 (69)

˙̄x(t) = Āx̄(t) + Ḡw1(t), x(0) = x0

y(t) = C̄x̄(t) + w2(t),
(70)

Ḡ = TG, C̄ = CT−1, in the new coordinates K̄ = P̄FC̄TW2 and

ĀP̄F + P̄F ĀT + ḠW1ḠT − P̄FC̄TW−1
2 C̄P̄F = 0 (71)

TAT−1P̄F + P̄FT−T ATTT + TGW1GTTT − P̄FT−TCTW−1
2 CT−1P̄F = 0 (72)

Multiplying by T−1 from the left and by T−T from the right we get:

AT−1P̄FT−T + T−1P̄FT−T AT + GW1GT − T−1P̄FT−TCTW−1
2 CT−1P̄FT−T = 0 (73)

K̄ = TPFTTT−TCTW2 = TPFCTW2 = TK (74)

where PF = T−1P̄FT−T , P̄ = TPFTT

5. Optimal Linear-Quadratic Gaussian Control

In order to obtain the solution of the linear-quadratic Gaussian LQG control problem of
a singularly perturbed DFIG wind turbine system, it is necessary to obtain gain matrices of the the
optimal LQR and Kalman filters. In this section, the results of Sections 3 and 4 are utilized by solving
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the pure-slow and pure-fast, reduced-order AREs and by implementing the pure-slow and pure-fast,
reduced-order Kalman filters. Using the separation principle for linear stochastic control, an optimal
LQG controller can be designed for slow and fast subsystems independently, thus, achieving complete
separation and parallelism in the design process. The structure of a LQG controller with a decoupled
slow and fast subsystems of the LQR and Kalman filter is shown in Figure 3. The decoupled pure-slow
and pure-fast local Kalman filters driven by system measurements and system control inputs are
given by:

˙̂ηs(t) = (a1F + a2FPsF)
T η̂s(t) + Bsu(t) + Ksy(t)

ε ˙̂η f (t) = (b1F + b2FPf F)
T η̂ f (t) + B f u(t) + K f y(t)

(75)

where PsF and Pf F are the solutions of the following AREs

0 = PsFa1F − a4FPsF − a3F + PsFa2FPsF

0 = Pf Fb1F − b4FPf F − b3F + Pf Fb2FPf F
(76)

The pure-slow and pure-fast filter gains, Ks, K f are defined by[
Ks

1
ε K f

]
= T−T

2

[
K1

1
ε K2

]
(77)

and the remaining matrices are given by:[
a1F a2F
a3F a4F

]
= (T1F − T2F M),

[
b1F b2F
b3F b4F

]
= (T4F + εMT2F) (78)

In addition, the pure-slow and pure-fast system input matrices are[
Bs

1
ε B f

]
= T−T

2

[
B1

1
ε B2

]
(79)

Figure 3. Slow-fast LQG controller structure for DFIG wind turbine system.

The feedback control in the new coordinates is given:

uopt(t) = −Fx̂(t) = −FT−T
2

[
η̂s(t)
η̂ f (t)

]
= −

[
Fs Ff

] [ η̂s(t)
η̂ f (t)

]
(80)
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where Fs and Ff are obtained from:[
Fs Ff

]
= FT2

T = R−1BT P(Π1F + Π2FPF)
T (81)

5.1. LQG under Similarity Transformation

The optimal performance index Jopt of the LQG follows from the known formula

Jopt = tr
{

PKW2KT + PFDT D
}

= tr
{

PGW1GT + PFFT RF
} (82)

Under the similarity transformation, the performance criteria can be derived as follows. Starting
with the second line of (82)

J̄opt = tr
{

P̄ḠW1ḠT + P̄F F̄T RF̄
}

(83)

J̄opt = tr
{

T−T PT−1TGW1GTTT + TPFTTT−T FT RFT−1
}

(84)

where PF = T−1P̄FT−T , P̄ = TPFTT , F = F̄T

J̄opt = tr
{

T−T(PGW1GT)TT + T(PFFT RF)T−1
}
6= Jopt (85)

Similarly, for the first line in (82), we have

Jopt = tr
{

PKW2KT + PFDT D
}

(86)

where DT D = Q, K̄ = TK
J̄opt = tr

{
P̄K̄W2K̄T + P̄FQ̄

}
(87)

J̄opt = tr
{

T−T PT−1TKW2KTTT + TPFTTT−TQT−1
}

(88)

J̄opt = tr
{

T−T(PKW2KT)TT + T(PFQ)T−1
}
6= Jopt (89)

Hence, the similarity transformation does not preserve the optimal performance criteria of the LQG.

5.2. LQG Slow Fast Optimal Performance Criteria

Based on the method proposed in [19], the optimal performance index for the slow and fast
subsytems of the LQG controller can be obtained separately as follows:

Jopt = tr
{

PKW2KT + PFDT D
}

(90)

where DT D = Q; Q =

[
Q1 Q2

QT
2 Q3

]

P =

[
P1 εP2

εPT
2 εP3

]
, K =

[
K1

1
ε K2

]
, PF =

[
P1F P2F
PT

2F
1
ε P3F

]
(91)

Jopt = tr
{ [ P1 εP2

εPT
2 εP3

] [
K1

1
ε K2

]
W2

[
KT

1
1
ε KT

2

]
+

[
P1F P2F
PT

2F
1
ε P3F

] [
Q1 Q2

QT
2 Q3

] }
(92)
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Jopt = tr
{ [ P1 εP2

εPT
2 εP3

] [
K1w2KT

1
1
ε K1w2KT

2
1
ε K2w2KT

1
1
ε

2
K2w2KT

2

]
+

[
P1FQ1 + εP2FQT

2 εP1FQ2 + εP2FQ3

PT
2FQ1 + P3FQT

2 PT
2FQ2 + P3FQ3

]
(93)

Jopt =tr
{ [ P1K1W2KT

1 + P2K2W2KT
1

1
ε P1K1W2KT

2 + 1
ε P2K2W2KT

2
εPT

2 K1W2KT
1 + P3K2W2KT

1 PT
2 K1W2KT

2 + 1
ε P3K2W2KT

2

]
+[

P1FQ1 + εP2FQT
2 εP1FQ2 + εP2FQ3

PT
2FQ1 + P3FQT

2 PT
2FQ2 + P3FQ3

] } (94)

Jopt =tr
{

P1K1W2KT
1 + P2K2W2KT

1 + P1FQ1 + εP2FQT
2

}
+

tr
{

PT
2 K1W2KT

2 +
1
ε

P3K2W2KT
2 + εPT

2FQ2 + P3FQ3

} (95)

Jopt = tr
{

P1K1W2KT
1 + 2P2K2W2KT

1 + P1FQ1 + 2εP2FQT
2 ++εP3FQ3 +

1
ε

P3K2W2KT
2

}
(96)

Jopt = tr
{

P1K1W2KT
1 + P1FQ1

}
︸ ︷︷ ︸

Js−opt

+ 2tr
{

P2K2W2KT
1 + εP2FQT

2

}
︸ ︷︷ ︸

Js f−opt

+
1
ε

tr
{

P3K2W2KT
2 + εP3FQ3

}
︸ ︷︷ ︸

J f−opt

(97)

Js−opt = tr
{

P1K1W2KT
1 + P1FQ1

}
(98)

J f−opt =
1
ε

tr
{

P3K2W2KT
2 + εP3FQ3

}
(99)

Js f−opt = 2tr
{

P2K2W2KT
1 + εP2FQT

2

}
(100)

The formula for the optimal performance criterion (97) exactly decomposes the optimal
performance criteria of the LQG controller into slow and fast components and it shows that in the
optimal LQG, the performance criterion is dominated by the fast subsystem.

6. Simulation Results

6.1. Slow-Fast Decomposition of the WT with DFIG System

Using the wind turbine state space matrices defined in (18), the linearized system, control,
and output matrices A, B, and C of the considered fifth-order WT-DFIG, evaluated at the system’s
operating points (see Appendices A.1–A.3 for the corresponding values), are given as:

A =


0.0260 −17.4194 0.0285 16.824 0.538
17.419 0.026 −16.824 0.028 −5.308
0.0253 −16.794 0.029 16.2094 0.551
16.795 0.0253 −16.209 0.029 −5.432
0.207 −0.129 −0.197 −0.014 0



B =


5.320 0 −5.189 0 0

0 5.320 0 −5.189 0
5.189 0 −5.311 0 0

0 5.189 0 −5.311 0
0 0 0 0 −0.187
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C =

[
0 0 1 0 0
0 0 0 1 0

]
, D =

[
0 0 0 0 0
0 0 0 0 0

]
This DFIG system model is not expressed in the explicit standard singular perturbation form

given in (19), where it can be noticed that ε, a small positive singular perturbation parameter, multiplies
the derivatives of some states. Therefore, a rearrangement for the rows of matrix A is necessary to
ensure the nonsingularity of sub-matrix A4 and that the system conforms to the explicit standard
singular perturbation form (19). As described in [21], such can be established through the use of the
Schur transformation. Algebraically [22], for any given square matrix there exists a unitary similarity
transformation known as the Schur’s form, where

ASchur = UT AU, UT = U−1 (101)

where the left-hand side constitutes an upper quasi-triangular matrix, such that the real eigenvalues
reside on the main diagonal while pairs of complex conjugate eigenvalues constitute 2 × 2 blocks on
the diagonal. MATLAB’s implementation of the Schur’s form sorts the eigenvalues in a decreasing
order, i.e., with the magnitudes of the real parts from the largest to the smallest. When employing U as
a similarity transformation for the DFIG system, we also get

BSchur = UT B, CSchur = CU (102)

For the singularly perturbed form to conform to (19), the order of the eigenvalues needs to be
reversed, i.e., the following permutation matrix need to be employed

P =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 (103)

The singularly perturbed form (19) can be established through the relations

ASP = PT AP, BSP = PT B, CSP = CP, DSP = D = 0 (104)

From the wind turbine state space matrices defined in (18), the system matrices A, B, and C are
given by:

ASP =


0.860 0 0 0 0
0.252 0.050 0 0 0
−1.390 −1.007 −0.839 0 0
14.552 −30.084 −8.485 0.019 −0.606
−29.236 −10.565 −12.575 1.674 0.019



BSP =


−0.144 −0.143 0.064 0.290 −0.063
−0.093 −0.044 0.253 0.117 −0.032
0.433 −0.021 −0.432 0.089 0.173
0.778 −7.39 −0.777 7.378 −0.0003
7.377 0.777 −7.368 −0.776 −0.0118


CSP =

[
0.305 −0.649 0.039 0.071 0.691
−0.607 −0.299 −0.273 −0.680 0.072

]
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The initial conditions of the original system, mapped into the new coordinates, are given by

xSP(0) = PTUTx(0),= PTUTx (105)

The closed-loop eigenvalues of the original system are shown in Table 1. Since all eigenvalues are
in the left half plane, this indicates that the system is asymptotically stable. Furthermore, the system
has two time-scales (three slow and two fast eigenvalues).

Table 1. Eigenvalues of the considered WT with DFIG system.

Original System Eigenvalues

−7.4441 + 0.5867i
−7.4441 − 0.5867i
−0.3806 + 0.6293i
−0.3806 − 0.6293i

−0.2411

The singular perturbation parameter can be calculated as the ratio between the real part of the
fastest slow eigenvalue and the real part of the slowest fast eigenvalue. Here, this ratio is equal to
(ε = 0.05). The slow and fast subsystems can be obtained using the criteria explained in Section 3.
Using wind turbine system matrices (18), the controllability of the original system has been tested
using MATLAB. A full rank controllability matrix was obtained (rank= 5), which guarantees the
controllability of the original system. The partitioned matrices A1 − A4, B1 − B2, Z, and Pr were
obtained as in (24), where A4 is nonsingular. Matrices (ai, bi, i = 1, 2, 3, 4), Π1 and Π2 were calculated
as in [18,19]. The nonsingular transformation T is then formulated using (28). Additionally, the Newton
recursive algorithm was used to obtain the solutions Ps and Pf of the AREs (27). The solution Prs f of
the ARE was reconstructed again using the obtained slow and fast solutions, Ps and Pf , respectively,
as in (30). The obtained Prs f is found to be identical to Pr, with the accuracy of EPr = 7.4247× 10−13,
where EPr is the absolute maximum error between Pr and Prs f . Finally, the slow and fast subsystems
were obtained as in (26). The corresponding eigenvalues of the slow and fast subsystems are shown
in Table 2. Notice that, the eigenvalues in Table 2 are equal to those in Table 1, which indicates that
the method proposed in Section 3 successfully decomposed the original system into pure-slow and
pure-fast subsystems.

Table 2. Eigenvalues of the slow and fast decomposed subsystems.

Slow Subsystem Fast Subsystem

−0.3806 + 0.6293i −7.4441 + 0.5867i
−0.3806 − 0.6293i −7.4441 − 0.5867i

−0.2411

6.2. Optimal LQR Design for the WT with DFIG System

In order to obtain the optimal gain that minimizes the performance criteria in (21), Equation (23)
should be solved. The weighting matrices R and Q were chosen as identity matrices with the
appropriate dimensions as follows:

R = I5, Q = CT
SPCSP (106)
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The solution of the ARE (23) gives the matrix Pr, from which the optimal LQR controller gain Kr

for the full-order original system can be obtained as:

Kr = R−1BT Pr =


−2.5026 0.7102 −0.7276 0.1007 0.5132
0.0660 2.2973 1.1863 −0.5426 0.0176
0.4879 3.2873 0.7781 −0.1288 −0.4588
3.6358 −0.4617 0.0295 0.4194 −0.0303
−0.6583 −0.2721 0.5250 −0.0094 −0.0456

 (107)

with the optimal control input uopt given by (22). The optimal performance index Jopt for the full-order
WT with DFIG system is calculated as:

Jopt =
1
2

xT
sp(0)Prxsp(0) = 1.9799 (108)

where xsp(0) is the initial condition of the full-order WT with DFIG system given by (105) and
calculated as:

xsp(0) =
[
27.8963 12.4845 −84.7021 −120.1073 165.7279

]T
(109)

In this section, an optimal LQR is designed for the slow and for the fast subsystems, independently.
Having obtained the slow and fast solutions Ps and Pf , respectively, from their corresponding AREs (30),
the optimal LQR controller gain for the slow subsystem can be obtained, as follows:

Ksr = R−1
s BT

s Ps =


−1.5209 −4.3229 2.6228
−8.6553 −2.7713 −2.5414
−0.4911 8.3930 −2.5882
12.5216 4.7245 3.7339
−0.6138 −0.2921 0.5316

 (110)

where Rs is the weighting positive definite matrix for the slow subsytem, chosen as an identity matrix,
i.e., Rs = I5. The optimal performance index for the slow subsystem Js−opt can be calculated using (49),
derived in Section 3.2.

Js−opt = 1.9122 (111)

Similarly, the optimal LQR controller gain for the fast subsystem can be obtained as follows:

K f r = R−1
f BT

f Pf =

[
0.1453 −0.4403 −0.1477 0.4209 0.0096
0.4693 0.0565 −0.4558 −0.0606 −0.0029

]T

(112)

where R f is the weighting positive definite matrix for the slow subsytem, chosen as an identity matrix,
i.e., Rs = I5. The optimal performance index for the fast subsystem J f−opt can be calculated using (50),
derived in Section 3.2.

J f−opt = 0.0785 (113)

Moreover, the slow-fast term of the optimal performance index is calculated using (51), and is
equal to Js f−opt = −0.0108. Adding up all three values of Js−opt, J f−opt, and Js f−opt, we get

Jtotal = Js−opt + Js f−opt + J f−opt = 1.9799 (114)

which is equal to the exact value of the optimal performance index Jopt of the full-order WT with DFIG
system obtained in (108).
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6.3. Optimal Kalman Filter Design for the WT with DFIG System

Based on the duality property exhibited by the linear-quadratic optimal filters, on one hand,
and the regulators, on the other, the exact decomposition of the singularly perturbed ARE, presented
in Section 3, is applied here to design an optimal Kalman filter for the slow and fast subsystems
of the WT with DFIG. The design takes into account that the slow and fast filters are completely
decoupled and that both of them are driven by the system measurements, as demonstrated in
Section 4. After calculating the matrices in (61)–(64), the similarity transformation T2 can be obtained
using (65). Using the wind turbine system matrices (18), with the weighting matrices chosen as
R = I5, Q = CT

SPCSP, and the white noise intensity (spectral density) matrices chosen as
W1 = I5, W2 = I2, the completely decoupled Kalman filters are obtained with pure-slow and
pure-fast optimal filter gains Ks and K f given by:

Ks

 0.0292 −0.0395
0.0165 −0.0344
−0.0285 0.1238

 , K f

[
0.0067 −0.0255
0.0262 0.0028

]
(115)

6.4. Optimal Linear-Quadratic Gaussian Design for the WT with DFIG System

In this section, a reduced-order optimal LQG controller is applied to the DFIG wind turbine,
by combining the closed-loop regulator with Kalman filter. The inputs to the closed-loop system
are the noise of the WT system w1(t) and the measurements noise w2(t). All the controllers were
implemented using MATLAB/Simulink. Figure 4 shows the original and estimated slow and fast
states of the considered system, and the performance of the Kalman filter.

In Section 5.1 we showed that the similarity transformation does not preserve the value of the
optimal performance criteria for the LQG controller. Therefore, the values of the optimal performance
indices for the decomposed slow and fast subsystems do not add up to the same exact value of the
optimal performance index before decomposition. The optimal performance index for the full-order
LQG controller can be calculated using (82) as follows:

Jopt = 37.3785 (116)

Using the derivation in Section 5.2, the optimal performance index for the slow subsystem Js−opt

can be calculated using the Equations (98) as:

Js−opt = 10.0060 (117)

whereas, the optimal performance index for the fast subsystem J f−opt can be calculated using (99)

J f−opt = 22.3614 (118)

Moreover, the slow-fast term of the optimal performance index is calculated using (100), and is
equal to Js f−opt = −10.0845. Adding up all three values of Js−opt, J f−opt, and Js f−opt, we get

Jtotal = Js−opt + Js f−opt + J f−opt = 22.2829 (119)

Since, in the case of the LQG problem, the optimal performance at steady state is averaged
over an infinite length of time, the initial conditions do not affect the optimal performance value.
The original system output, i.e., before filtering, and the estimated output of the LQG controller of the
DFIG WT system after filtering are shown in Figures 5 and 6 for the rotor current output in the d-axis
idr and q-axis iqr, respectively. It can be observed from Figures 5 and 6 that the effect of the input white
Gaussian noise is reduced successfully by the LQG regulator and its Kalman filter implementation.
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(a) First slow state (b) Second slow state

(c) Third slow state (d) First fast state

(e) Second fast state

Figure 4. The original and reduced-order estimated states of the WT-DFIG.

(a) Before filtering. (b) After filtering.

Figure 5. Original and reduced-order rotor current output idr of the LQG-controlled DFIG WT system.
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(a) Before filtering. (b) After filtering.

Figure 6. Original and reduced-order rotor current output iqr of the LQG-controlled DFIG WT system.

6.5. Wind Speed Variations

Here, we test the performances of the slow and fast subsystems of the reduced-order DFIG WT
under the effects of wind turbulences and gust. The considered wind turbulence and gust are shown in
Figure 7. In order to model the total variation in wind speed, the normal turbulence model (NTM) was
evaluated at an average of 9 m/s. A wind gust, shaped as a hamming dip, of width 30 s was added.
The total variance, as suggested by the aforementioned NTM, was broken between the turbulence
and gust with the ratios of 1/3 and 2/3, respectively. The output responses of the rotor current in
d-axis idr and q-axis iqr of the original and reduced-order of the considered DFIG WT system to wind
turbulence and gust are shown in Figures 8 and 9. These figures show the robustness of the designed
LQG controller to wind speed variations.

Figure 7. Wind turbulence and wind gust.

(a) Before filtering. (b) After filtering.

Figure 8. Output responses of the rotor current idr of the original and reduced-order system for wind
turbulence and gust.
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(a) Before filtering. (b) After filtering.

Figure 9. Output responses of the rotor current iqr of the full- and reduced-order system for wind
turbulence and gust.

6.6. Voltage Sag

For the evaluation of the dynamic performance of the slow and fast subsystems of the
reduced-order DFIG WT, we study the effect of a large-signal disturbance voltage sag as well. We apply
a voltage drop of 50% lasting for 1 sec to both the full- and reduced-order models. The output responses
of the rotor current in d-axis, idr, and q-axis, iqr, of the original and reduced-order DFIG WT system are
shown in Figures 10 and 11, respectively, which show the robustness of the designed LQG controller.

(a) Before filtering. (b) After filtering.

Figure 10. Output responses of the rotor current idr of the original and reduced-order system for
voltage sag.

(a) Before filtering. (b) After filtering.

Figure 11. Output responses of the rotor current iqr of the original and reduced-order system for
voltage sag.
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7. Conclusions

Optimal control techniques are applied to the DFIG wind turbine by decomposing the algebraic
Riccati equation of the singularly perturbed wind turbine system into two reduced-order algebraic
Riccati equations that correspond to the slow and fast time scales. The optimal regulator gains,
with respect to the optimal pure-slow and pure-fast, reduced-order Kalman filters, and LQG controllers,
are obtained. This decomposition allows the design of linear controllers for the slow and fast
subsystems independently, thus, achieving the complete and exact separation of the linear-quadratic
stochastic regulator problem. Kalman filter was able to accurately track the slow and fast states of
the wind turbine system. The response of the reduced-order system was compared to that of the
full-order system for the purpose of validating the performance of the proposed method. The effect of
the applied white Gaussian noise is reduced successfully by the LQG regulator and its Kalman filter
implementation. Moreover, the designed LQG controller showed good performance and robustness
when wind turbulence and a large-signal disturbance are applied to the system. Additionally, we
showed that the similarity transformation does not preserve the performance index value in the case
of Kalman filter and the corresponding LQG controller.
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Appendix A

Appendix A.1. System Parameters

VSC = 16 MVA , X/R = 10, Ze = 0.125, Re = 0.0124, Xe = 0.1244, Rt = 0.0173, Xt = 0.1744.

Appendix A.2. DFIG Parameters in p.u. (Unless Stated)

v=9 m/s, Cp = 0.48, Pnom= 2 MVA, Ht = 3.5, kopt = 0.56,
C1 = 0.5176, C2 = 116, C3 = 0.4, C4 = 5, C6 = 0.0068, vp = 690 V, Tsp = 0.8064,
Xss = Xls + Xm = 4.0452, Xrr = Xlr + Xm = 4.0452, Xls = 0.09241, Xlr = 0.09955
Xm = 3.95279, Xtr = 0.05, Rr = 0.00549, Rs = 0.00488, ωs = 1, Sb = 2, Fb = 50, ωb= 2π Fb

Appendix A.3. Operating Conditions

ids0 = −0.035, iqs0 = 0.343, idr0 = 0.217, iqr0 = 0.367
vds0 = −0.06, vqs0 = 0.998, vdr0 = −0.025, vqr0 = 0.206, vs0 = 0.9998, ωr0 = 0.8, s0 = 0.2
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