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Abstract: Planning the use of electrical energy in a bulk stockyard is a strategic issue due to its
impact on efficiency and responsiveness of these systems. Empirical planning becomes more
complex when the energy cost changes over time. The mathematical models currently studied in the
literature consider many actors involved, such as equipment, sources, blends, and flows. Each paper
presents different combinations of actors, creating their own transportation flows, thus increasing the
complexity of this problem. In this work, we propose a new mixed integer linear programming (MILP)
model for stockyard planning solved by a linear relaxation-based heuristic (LRBH) to minimize the
plan’s energy cost. The proposed algorithm will allow the planner to find a solution that saves energy
costs with an efficient process. The numerical results show a comparison between the exact and
heuristic solutions for some different instances sizes. The linear relaxation approach can provide
feasible solutions with a 3.99% average distance of the objective function in relation to the optimal
solution (GAP) in the tested instances and with an affordable computation time in instances where the
MILP was not able to provide a solution. The model is feasible for small and medium-sized instances,
and the heuristic proposes a solution to larger problems to aid in management decision making.

Keywords: heuristic methods; iron ore stockyard energy planning; linear relaxation-based heuristic;
mixed integer linear programming

1. Introduction

Decisions about raw material distribution, such as that of coal and iron ore, from the mine to
the client are critical strategic issues for global mining industries. An essential link in this logistics
chain is the stockyard, which stands out as a bottleneck and significantly influences the logistic chain
performance [1]. When dealing with solid bulk, planning the allocation of stockpiles and sequencing
the use of long-term resources have a direct impact on the total energy cost. This energy can originate
from different sources, such as the regular power grid, or can be bought from another producer with
different prices each day.

The efficient use of electrical equipment for stockpile allocation according to minimal energy costs
will provide a higher capacity of resources, lower total costs, and a better overall result in this supply
chain. On the other hand, the allocation of electrical machines used in the stockyard without seeking
energy conservation can impair the port processes and may even interrupt the energy supply for a
period of time.
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However, due to the complexity of solid bulk stockyard planning and its required flexibility, using
empirical methods does not guarantee an optimized system and can generate additional costs and
waste in the production process. Due to the full range of production scheduling problems, there are
several approaches for stockyard planning, including manual computer-supported programming
(such as interactive Gantt charts), expert systems, mathematical programming, heuristics, evolutionary
algorithms, and different artificial intelligence methods (e.g., [2–9]). The optimal solution will result
in significant savings through better capacity utilization. In addition, other considerations related to
the system may ensure improvements for the company, such as reducing environmental impact and
energy costs and controlling violations of regulations and operations.

The operations in a port stockyard of iron ore exportation are unique, complex, and dynamic.
The purpose of planning iron ore stockpiles in the port stockyard is to load ships with the quantity and
quality of iron ore requested by customers in the shortest possible time. Moreover, blends of different
iron ore batches to meet the type of iron ore specified by the customer must be produced during the
formation and reclamation of the stockpiles in the stockyard (see Figure 1). Solutions must take into
account that the arrival and departure times of trains and ships are relatively inflexible. An essential
feature of this problem is that the space available in the stockyard can accommodate the ore batches
that arrive from the trail system and allow for changes in alternative plans in the event of equipment
failure, thus ensuring the optimum planning of piles in the yard. There are few problems discussed in
the literature similar to the patio planning problem studied in this paper.

Energies 2020, 13, x FOR PEER REVIEW 2 of 18 

 

and waste in the production process. Due to the full range of production scheduling problems, there 
are several approaches for stockyard planning, including manual computer-supported programming 
(such as interactive Gantt charts), expert systems, mathematical programming, heuristics, 
evolutionary algorithms, and different artificial intelligence methods (e.g., [2–9]). The optimal 
solution will result in significant savings through better capacity utilization. In addition, other 
considerations related to the system may ensure improvements for the company, such as reducing 
environmental impact and energy costs and controlling violations of regulations and operations. 

The operations in a port stockyard of iron ore exportation are unique, complex, and dynamic. 
The purpose of planning iron ore stockpiles in the port stockyard is to load ships with the quantity 
and quality of iron ore requested by customers in the shortest possible time. Moreover, blends of 
different iron ore batches to meet the type of iron ore specified by the customer must be produced 
during the formation and reclamation of the stockpiles in the stockyard (see Figure 1). Solutions must 
take into account that the arrival and departure times of trains and ships are relatively inflexible. An 
essential feature of this problem is that the space available in the stockyard can accommodate the ore 
batches that arrive from the trail system and allow for changes in alternative plans in the event of 
equipment failure, thus ensuring the optimum planning of piles in the yard. There are few problems 
discussed in the literature similar to the patio planning problem studied in this paper. 

 
Figure 1. Diagram of the iron ore stockyard. 

The management of port stockyard operations involves the effective interaction of the port’s 
subsystems. Management comprises a vector of activities and sequential processes, from the 
unloading of cargo onto land to its loading onto ships. In real situations, the equipment or 
participants must be considered, such as the flows between the machines, the amount of cargo loaded 
on the ships, and the number of ships served, thereby increasing the complexity. Planning a 
stockyard–port system considering a variety of products is made more complicated by the emergence 
of new flows and variables that measure the equipment or changes in their characteristics [9]. 

The main processes considered in the planning of iron ore stockpiles are the arrival of the 
wagons at the car-dumpers, the routes that assist in stacking and reclaiming, the stacking and 
recovery process and loading the ships. In stockpile planning, a ship sends a notice of when it will 
arrive at the port. A time of arrival is then estimated, and the required demand in each berth is 
determined. Train wagons transport the iron ore batches removed from the mine to the reception 
system for the order to be met. Throughout the planning process, there are various subtypes of iron 

Figure 1. Diagram of the iron ore stockyard.

The management of port stockyard operations involves the effective interaction of the port’s
subsystems. Management comprises a vector of activities and sequential processes, from the unloading
of cargo onto land to its loading onto ships. In real situations, the equipment or participants must
be considered, such as the flows between the machines, the amount of cargo loaded on the ships,
and the number of ships served, thereby increasing the complexity. Planning a stockyard–port system
considering a variety of products is made more complicated by the emergence of new flows and
variables that measure the equipment or changes in their characteristics [9].

The main processes considered in the planning of iron ore stockpiles are the arrival of the wagons
at the car-dumpers, the routes that assist in stacking and reclaiming, the stacking and recovery process
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and loading the ships. In stockpile planning, a ship sends a notice of when it will arrive at the
port. A time of arrival is then estimated, and the required demand in each berth is determined.
Train wagons transport the iron ore batches removed from the mine to the reception system for the
order to be met. Throughout the planning process, there are various subtypes of iron ore, hereafter
called “products”. After the batches arrive at the unloading terminal (reception) system, they are
unloaded by the car-dumpers onto conveyor belts, which will take them to the stockyard.

Then, a stockpile starts to be built to meet demands. Once a ship’s designated stockpile has been
built, the stocks can remain at rest until their destination is determined. Vessels arriving at the port go to
their respective berths, and the reclamation of stockpiles begins. The removal of stockpiles on the patios
by a bucket-wheel reclaimer (BWR) is called stockpile reclaiming. After reclaiming, the transportation
of the stockpile to the berth starts immediately. The ship’s loading time is determined according to
berth capacity, the types of reclaiming equipment, and the amount of the product. After finishing the
shipment, the ship will leave the system immediately.

An essential factor in this sector is the product’s availability at the appropriate time for it to serve
the customers. A mining company that handles a great deal of cargo must be concerned with the process
details to seek an efficient distribution plan. With a high volume, any savings can have a significant
impact on the planning and business results. In this way, energy efficiency is an essential factor in
evaluating planning. Due to the high volume of iron ore being commercialized, these companies may
have parallel contracts with local energy companies, produce their energy or, even buy power from
alternative sources. Global efficiency will be at its optimum after choosing the best mix of periods to
use the machine according to the available energy price.

Contribution

This paper aims to propose a new mathematical model based on mixed integer linear programming
(MILP) and linear relaxation-based heuristic (LRBH) for iron ore stockyard energy planning (IOSEP).
This model considers the flows between the stockyard’s electrical equipment and the raw material
supply with different types of ore. The objective is to propose a solution for the IOSEP problem using
a problem definition with the main objective of minimizing the energy cost in the planning horizon
(or time window). Therefore, this work’s contributions include the following:

(I) The development of an MILP model to minimize the energy costs of an iron ore stockyard
including the production from mines and the demands of the berth; (II) an LRBH with a proposal
using a lower bound to choose the relaxed variables applied where the heuristic process will be faster,
and; (III) considering the variable cost of energy along the horizon planning.

The main highlights of this study are its contribution of a mathematical model for use in a
stockyard planning problem from action determined by the minimization of energy costs, and the
proposal of an alternative method to determine a solution with good quality that can be achieved
within limited computational time. The simulations were performed using random values from the
literature or estimated using information without a source. The GAP (distance) between the objective
functions of the LRBH and LP models reached an average of 3.99%. If we consider only the largest
dimension of the IOSEP using the GAP between the LRBH and the linear programming (LP), the GAP
is even smaller and reaches a feasible solution to large instances.

Section 2 presents a code-based systematic literature review of works related to the theme of this
paper. Section 3 describes the mathematical model and the LRBH algorithm for the IOSEP. In Section 4,
we validate the mathematical model and the LRBH from computational experiments using CPLEX
12.5 [10]. Finally, the conclusions of this work are presented in Section 5.

2. Literature Review

A proper management of stockyards is essential to ensure global performance with a strategic
balance between maximizing planning accuracy and throughput while minimizing cost. This is
especially relevant nowadays, as the demand is slowing down, inhibiting investment in new facilities,
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and the competition between exporting companies is increasing. Thus, the most common approach
today involves optimizing the usage of available assets to reach the best results without the need to
buy new equipment or facilities. In this environment, the use of optimization tools and techniques
becomes an excellent option to generate low-cost and practical solutions to existing problems.

The solution to the stockyard planning problem is not trivial, with different alternatives and
objectives available to fit each model to the problem in order to propose and build the most effective
and potential use. This problem is NP-hard, i.e., it requires exponential time to obtain an optimal
global solution [11]. It is also essential to look for alternatives with good quality local solutions that can
be employed by stockyard operators and managers in the decision-making process. A nomenclature
is presented in Table 1 with the main features and highlights of the literature on dry bulk stockyard
planning reviewed in this section.

Table 1. Nomenclature used for classification of stockyards planning problems in the literature.

Problem Definition Objectives
SPr Single Period Age Minimize average age of stockpile
Mpr Multi-Period Cost Minimize the total cost
SP Single Product Del Minimize the delay of planning
MP Multi-Product Dev Minimize the deviation of planning
D Deterministic Etime Minimize the sum of the reclaim end times
S Stochastic MS Minimize the makespan
CF Capacitated Flow Pen Minimize penalties for not meet the planning
UCF Uncapacitated Flow Ships Maximize the amount of ships served
Ca Capacitated Facility Thro Maximize the throughput
UCa Uncapacitated Facility Time Minimize the end time of reclaimers

Modelling Wait Minimize the waiting time of cargo trains
LP Linear Programming Solution Method
MILP Mixed Integer Linear Programming CAP Cargo Assembly Planning Algorithm
MINLP Mixed Integer Non-Linear Programming CG Column Generation
MIP Mixed Integer Programming GA Genetic Algorithm
SMIP Stochastic Mixed Integer Programming GH Greedy Heuristic

According to the nomenclature established in Table 1, Table 2 presents these features in stockyard
planning problem papers and shows that the models most commonly proposed are mixed integer
programming (MIP) and mixed integer linear programming (MILP). Some papers planned coal
(e.g., [12,13]), solid bulk [14] and iron ore [15] stockyards, and the papers may consider one or more
product and period, as well as different objectives.

Table 2. Summary of reviewed articles in this paper.

Reference Papers Problem Definition Type of Stockyard Modelling Objectives Solution Method

[12] MPr, MP, D, CF, UCa Coal MIP Pen Exact and GH
[13] SPr, MP, D, UCF, Ca Coal MILP Del Exact and GH
[14] SPr, SP, S, CF, Ca Solid Bulk - - Simulation
[15] SPr, SP, D, UCF, Ca Iron Ore MIP MS Exact and GA
[16] SPr, SP, S, CF, Ca Solid Bulk - - Simulation
[17] MPr, MP, D, UCF, Ca Coal LP Del/Age Exact and Heuristic
[18] SPr, MP, D, UCF, UCa Coal MINLP Dev Exact
[19] Mpr, MP, D. CF, Ca Coal - Time Approximation Algorithm
[20] SPr, SP, S, CF, Ca Solid Bulk - - Simulation
[21] SPr, SP, S, CF, Ca Dry Bulk - Wait- Simulation
[22] MPr, SP, D. UCF, Ca Coal - Thro CAP
[23] MPr, SP, D, UCF, UCa Coal MIP Etime Exact
[24] MPr, MP, D, CF, Ca Iron Ore MILP Costs Exact and CG
[25] SPr, SP, D, UCF, Ca Biomass MILP Costs Exact
[26] MPr, SP, D, CF, Ca Dry Bulk MIP Time Exact
[9] MPr, MP, D, CF, Ca Iron Ore MILP Ships Exact
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The work in [12] studied the planning of a solid bulk stockyard for the coal chain in Australia,
focusing on train schedules. Both problems were separated into several modules with each solved
through a greedy heuristic. For the same type of stockyard, the authors in [13] developed a planning
technique based on an improved greedy construction with the use of the entire schedule to increase
the flow of raw materials and decrease the average time that the ships spend in the berth.

The research in [14] described the modeling of stockpiles and BWR for simulation studies in
a virtual reality environment. In [15], the authors presented stacker–reclaimer (S–R) scheduling
to minimize the makespan for a given set of handling operations using a genetic algorithm (GA).
The authors in [16] developed a decision-support system (dynamic planner) for a dry bulk terminal.
After an extensive interview with the operators to understand the selection of routes for each order
of products reaching the stockyard, the authors coded the information to feed the decision-support
system. The studies in [14] and [16], however, did not present mathematical models or comparison
with an exact technique to evaluate the solutions of their proposals.

The authors in [17] proposed a heuristic for planning stockpiles and scheduling resources to
minimize delays in production and the coal age in the stockyard with two reclaimers in a time window
in a two-hour range. A model of stockyard operations within a coal mine was described, and the
problem was formulated as a bi-objective optimization problem (BOOP).

The authors [18] address a hierarchical optimization model via a bi-objective LP model for a coal
stockyard system in Hunter Valley, Australia, as a mechanism for planners to control the shipping
stem characteristics. The work in [19] presents a series of comparisons between different techniques
developed using algorithms such as the heuristics of SPLIT and PARTITION, along with their variations.
In this study, random instances were developed to compare the results. The evaluation parameters
were defined according to processing time and the parameters for the stockpile and stockyard, but a
comparison with an exact technique was not performed to evaluate these algorithms.

The authors in [20,21] applied the reschedule S–R operations to increase the performance of
the stockyard system. The authors used a simulation-based approach with queuing models fed by
historical data to find scenarios where the system performance would increase by avoiding a delay in
the arrival of trains to and the departure of ships from a dry bulk and coal stockyard, respectively.
The authors in [22] developed an algorithm for stockyard management by maximizing the system
throughput. This study compared the efficacy of the algorithm in different instances and analyzed the
rules of stockyard management.

In [23], the authors focused on reclaimer scheduling in a limited stockyard (NP-complete)
with stockpile replacement and reclamation sequencing using approximation algorithms and a
branch-and-bound algorithm to find an exact solution to the proposed instances of the problem.
For planning an iron ore stockyard, the work in [24] presents a proposal for mathematical modeling to
control the stockyard–port system, including receipt through a system of rails, stockyard equipment,
allocation and availability at the port, considering the quantities to be produced, and the prices and
demands, according to the achievement of goals defined by higher levels. The technique used to solve
the problem was the column generation (CG) with branch-and-price.

The work in [25] defined an MILP model to optimize a biomass terminal by minimizing the total
operational and material cost of this terminal and analyzed the output of the proposed model according
to real word data instead of only the experiences of employers. The authors in [26] developed a
monolithic mixed integer programming (MIP) for a dry bulk stockyard including the subproblems
such as berth allocation, stockpile allocation, and S–R scheduling.

Lastly, the work in [9] presented a bi-objective MILP model to determine the ships that will be
served by each berth in a given queue of customers. The authors used objective functions separately
and evaluated their behavior in the studied instances.

Table 2 classifies the stockyard planning problems according to the following specifications:
the problem definition, modeling, the objectives and the solution method. Table 2 also outlines the
literature review of the stockyard planning problem to help identify research gaps. The majority of the
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literature focused on coal stockyards with different objectives, and the various problems have been
solved via optimizing methods such as heuristics, metaheuristics, and exact techniques.

In this paper, we developed an MILP mathematical model based on [24] to plan an iron ore
stockyard according to the energy cost of equipment usage and considering a variable cost over time.
We solve this model using an exact technique with CPLEX [10] and a linear relaxation-based heuristic
(LRBH) via Python language and CPLEX.

3. Problem Description

In the stockyard–port system studied in this paper, we assume that the iron ore is transported
through a set of routes, interconnecting the unload terminals (car-dumpers), stockyards and berths for
ships. Figure 2, shows the different routes in the stockyard used to transport iron ore to the vessel.
Equipment such as the stacker, reclaimer, conveyor belt and ship loader can share different routes.
For example, in Figure 3, the conveyor belt shares routes 1 and 2, while the ship loader in the berth
shares routes 1 and 3.
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Figure 2. Schematic of the stockyard–port routes. Rx are the routes from the unloading terminal to the
stockyard (S). Ry is the routes that start in the unloading terminal and reach the berths (N ). Rz links
the stockyard to the berths.

Iron ore comes from the mines to the unloading terminals (car-dumpers), situated at the
stockyard–port, using railways. At these unloading terminals, the wagons unload their contents onto
conveyor belts to transport this material to the stackers. This machine deposits the ore into stockpiles
located at different positions of the yard for storage, as shown in Figures 1 and 2. The construction
of all piles to serve a single vessel can take several days. These stockpiles will remain at rest until
the ship arrives at berth. When this event occurs, the reclaimer machine places the stockpiled ore
onto the conveyor belts to send this product immediately to the ships. This study considers a set of
stockpiles for each ship that arrives at the port’s berth. A ship cannot arrive at the berth before its
previously estimated time. The ship’s loading time is directly proportional to the loading and recovery
equipment involved.
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The present study considers a variety of products between the stockpiles, even though the primary
mining sector and product is iron ore. This ore can be differentiated according to the levels of quality
and purity required by the customers and thus separated into products that are allocated into different
stockpiles. The composition of each product is made from a combination (or blend) of raw material in
the stockpiles. When the product is not available or it is necessary to construct the stockpile in another
stockyard previously scheduled for a different product, there will be penalties related to expense of
transforming one quality of iron ore into another to meet the demands. Another type of penalty is
related to delays in loading trains from the mine or in unloading the wagon at the reception terminal.

Stackers and reclaimers move freely to the stockpile position. For the stackers and reclaimers to
function properly, they must remain at a distance to avoid collisions. In this work, the movement of
stackers and reclaimers is considered to be synchronized, disregarding any interference from each
other in their operations.

3.1. Problem Formulation

The following nomenclature is used to formulate the IOSEP model:

Sets
T Set of periods;
P Set of products;
M Set of equipment;
S Set of storage sub-areas;
N Set of available mooring berths;
R Set of routes;
Rx Set of routes (receptions / stockyards);
Ry Set of routes (receptions / piers);
Rz Set of routes (stockyards / piers);
Rx

s Subset of routes r ∈ Rx that reach subarea s;
Rz

s Subset of routes r ∈ Ry that from subarea s;
Ry

n Subset of routes r ∈ Ry that reach pier n;
Rz

n Subset of routes r ∈ Rz that reach pier n;
Rx

m Subset of routes x that use equipment m;
Ry

m Subset of routes y that use equipment m;
Rz

m Subset of routes z that use equipment m.
Parameters

Cer
t Energy cost to use the route r in period t;

Css
pt Energy cost to keep in the product p in storage sub-area s during period t;

Cirpt Energy cost for not meeting the supply and keeping product p at the reception in period t;
crx Capacity (in tons/hour) of route r ∈ Rx;
cry Capacity (in tons/hour) of route r ∈ Ry;
crz Capacity (in tons/hour) of route r ∈ Rz;
βpp′ Energy cost associated with replacing product p with product p′ to meet the demand of product p;
jmt Available time (in hours) for the use of equipment m in period t;
bm Capacity of equipment m (in tons/hour);
apt Supply of product p at the beginning of period t;
dnpt Demand of product p for a ship moored at berth n at the beginning of period t
lspt Storage capacity of subarea s for product p in period t.

Variable
Xr

pt Time taken in period t to transport product p from the reception to the stockyard using route
r ∈ Rx.

Yr
p′pt Time taken to transport product p′ to meet the demand of product p in period t using route

r ∈ Ry. When p′ is equal to p, the product delivered is the same as what was requested.
Zr

pp′t Time taken to transport product p′ to meet the demand of product p in period t using route
r ∈ Rz. When p′ is equal to p, the product delivered is the same as what was requested.

IRpt Represents the amount of product p in the reception subsystem that was not delivered at the end
of period t.

es
pt Amount of product p stored in subarea s during period t.

f s
pt f s

pt = 1 when subarea s is allocated to product p in period t; f s
pt = 0 otherwise.
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Giving the nomenclature and the schematic stockyard structure (Figures 1–3), the IOSEP problem
can be modelled as follows:

minimize∑
p∈P

∑
t∈T

∑
r∈Rx

Cer
tX

r
pt +

∑
p∈P

∑
p′∈P

∑
t∈T

∑
r∈Ry

Cer
tY

r
pp′t +

∑
p∈P

∑
p′∈P

∑
t∈T

∑
r∈Rz

Cer
tZ

r
pp′t

+
∑

p∈P

∑
t∈T

∑
s∈S

Css
pte

s
pt +

∑
p∈P

∑
t∈T

CirptIRpt +
∑

p∈P

p′, p∑
p′∈ P

∑
t∈T

∑
r∈Ry

βpp′Yr
pp′t

+
∑

p∈P

p′, p∑
p′∈ P

∑
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∑
p∈P

∑
r∈Rx

m

Xr
pt +

∑
r∈Ry

m

∑
p′∈ P

Yr
p′pt +

∑
r∈Ry

m

∑
p′∈ P
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pp′t

 ≤ jmt ∀ m ∈M, t ∈ T (2)

∑
p∈P

∑
r∈Rx

m

crxXr
pt +

∑
r∈Ry

m

∑
p′∈ P

cryYr
p′pt +

∑
r∈Ry

m

∑
p′∈ P

crzZr
pp′t

 ≤ bm jmt ∀ m ∈M, t ∈ T (3)

∑
r∈Rx

crxXr
pt +

∑
r∈Ry

∑
p′∈ P

cryYr
pp′t +

(
IRpt − IRp(t−1)

)
= apt ∀ p ∈ P, t ∈ T (4)

IRp0 = 0 ∀ p ∈ P, (5)∑
r∈Rz

n

∑
p′∈ P

crzZr
p′pt +

∑
r∈Ry

n

∑
p′∈ P

cryYr
p′pt = dnpt ∀ p ∈ P, n ∈ N, t ∈ T (6)

es
p(t+1) = es

pt +
∑
r∈Rx

s

crxXr
pt −

∑
r∈Rz

s

∑
p′∈ P

crzZr
pp′t ∀ p ∈ P, s ∈ S, t ∈ T (7)

es
p0 = 0 ∀ p ∈ P, s ∈ S (8)

lspt f s
pt − es

pt ≥ 0 ∀ p ∈ P, s ∈ S, t ∈ T (9)∑
p∈P

f s
pt ≤ 1 ∀ s ∈ S, t ∈ T (10)

f s
pt ∈ {0, 1} ∀ p ∈ P, s ∈ S, t ∈ T (11)

Xr
pt, Yr

p′pt, Zr
pp′t, IRpt, IPpt, es

pt ≥ 0 ∀ r ∈ R, p ∈ P, p′ ∈ P, t ∈ T, s ∈ S (12)

The objective function (1) minimizes the total energy cost in the various stages of moving the
ore within the stockyard along a planning horizon. The first three terms minimize the energy cost
of using each route in a determined time. The fourth is the energy cost to keep the ore stored in the
stockyard. The fifth is the wasted energy cost to retain the metal at the unloading terminal. The last
two are the energy cost to change a product to meet unexpected demands. The decision variables are
the following: the transportation times of products through the different routes of the stockyard at
each period, considering a set of routes shared by some stockyard equipment; the amount of product
in the unloading terminal not delivered at the end of each period; the amount of products stored in the
stockyard subareas; and an indication of the empty or busy status of these subareas.

Constraint (2) ensures that the sums of the iron ore transportation times in all routes shared by
each stockyard equipment are lower than the available time to serve this set of routes in a given period.
In the same way, Constraint (3) ensures that the total flow of the iron ore transported in all routes
shared by each item of stockyard equipment is lower than its flow capacity in a given period.
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Equations (4) and (6) ensure the mass balance between the supplier and the demand in the unload
terminal and berth in each period, respectively. The amount of product not unloaded in the reception
terminal measures the system’s efficiency. Constraint (5) indicates that the unloading terminal is empty
in the initial planning period.

Constraint (7) is the mass balance equation in the stockyard, i.e., the stockpile volume in the next
period will be equal to the volume of the current stockpile plus the flow of staked products minus the
flow of reclaimed products in the same stockpile during the actual period. Equation (8) guarantees
that the initial stockpile is empty.

Equation (9) limits the capacity of the stockpile by the stockyard subarea capacity of each product.
Equation (10) indicates that each stockpile will receive only the designated product in a given period.
Finally, Constraints (11) and (12) enforce the binary and nonnegativity restrictions on the corresponding
decision variables.

3.2. Linear Relaxation-Based Heuristic

The LRBH algorithm is based on the proposal in [27] and involves successive relaxations to
determine a possible solution for the model. The proposal consists of linear relaxation by replacing the
integrality constraint with its continuous counterpart. This technique can find a near-optimal solution
after some iterations of solving. It is possible to reach a fractional solution after each round and the
technique will not stop without finding an integer solution. Between iterations, constraints with new
bounds for the changed variables will be added to the model. In this paper, the algorithm works in two
phases (see Figure 4). In the first phase, the mathematical model is relaxed, excluding constraints (11),
which includes the binary constraints. Moreover, it includes Equation (13) as a limit for the decision
variables that were previously binary:

0 ≤ f s
pt ≤ 1 ∀ p ∈ P, s ∈ S, t ∈ T (13)

Energies 2020, 13, x FOR PEER REVIEW 9 of 18 

 

using each route in a determined time. The fourth is the energy cost to keep the ore stored in the 
stockyard. The fifth is the wasted energy cost to retain the metal at the unloading terminal. The last 
two are the energy cost to change a product to meet unexpected demands. The decision variables are 
the following: the transportation times of products through the different routes of the stockyard at 
each period, considering a set of routes shared by some stockyard equipment; the amount of product 
in the unloading terminal not delivered at the end of each period; the amount of products stored in 
the stockyard subareas; and an indication of the empty or busy status of these subareas. 

Constraint (2) ensures that the sums of the iron ore transportation times in all routes shared by 
each stockyard equipment are lower than the available time to serve this set of routes in a given 
period. In the same way, Constraint (3) ensures that the total flow of the iron ore transported in all 
routes shared by each item of stockyard equipment is lower than its flow capacity in a given period. 

Equations (4) and (6) ensure the mass balance between the supplier and the demand in the 
unload terminal and berth in each period, respectively. The amount of product not unloaded in the 
reception terminal measures the system's efficiency. Constraint (5) indicates that the unloading 
terminal is empty in the initial planning period. 

Constraint (7) is the mass balance equation in the stockyard, i.e., the stockpile volume in the next 
period will be equal to the volume of the current stockpile plus the flow of staked products minus 
the flow of reclaimed products in the same stockpile during the actual period. Equation (8) guarantees 
that the initial stockpile is empty. 

Equation (9) limits the capacity of the stockpile by the stockyard subarea capacity of each 
product. Equation (10) indicates that each stockpile will receive only the designated product in a 
given period. Finally, Constraints (11) and (12) enforce the binary and nonnegativity restrictions on 
the corresponding decision variables. 

3.2. Linear Relaxation-Based Heuristic 

The LRBH algorithm is based on the proposal in [27] and involves successive relaxations to 
determine a possible solution for the model. The proposal consists of linear relaxation by replacing 
the integrality constraint with its continuous counterpart. This technique can find a near-optimal 
solution after some iterations of solving. It is possible to reach a fractional solution after each round 
and the technique will not stop without finding an integer solution. Between iterations, constraints 
with new bounds for the changed variables will be added to the model. In this paper, the algorithm 
works in two phases (see Figure 4). In the first phase, the mathematical model is relaxed, excluding 
constraints (11), which includes the binary constraints. Moreover, it includes Equation (13) as a limit 
for the decision variables that were previously binary: 0 ≤ 𝑓௣௧௦ ≤ 1  ∀  𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (13) 

 
Figure 4. The linear relaxation-based heuristic. In the first phase, the algorithm rewrites the model as 
LP and solves it. In phase two, the code fixes the model to indicate after the iterations an integer and 
possible solution to the problem. (the largest variable without a product designated to stockpile the 
variable has to be higher than 0). 

During phase 2, an inappropriate set variable may result in infeasible solutions [27]. After 
relaxation, the model is solved as an LP; then, the solution found is analyzed to determine the values 
reached for 𝑓௣௧௦ . This analysis consists of checking how many 𝑓௣௧௦  were given values greater than the 
limit. In turn, this limit will indicate how fast this technique will run. According to [27], the limit is 

Figure 4. The linear relaxation-based heuristic. In the first phase, the algorithm rewrites the model as
LP and solves it. In phase two, the code fixes the model to indicate after the iterations an integer and
possible solution to the problem. (the largest variable without a product designated to stockpile the
variable has to be higher than 0).

During phase 2, an inappropriate set variable may result in infeasible solutions [27]. After relaxation,
the model is solved as an LP; then, the solution found is analyzed to determine the values reached for
f s
pt. This analysis consists of checking how many f s

pt were given values greater than the limit. In turn,
this limit will indicate how fast this technique will run. According to [27], the limit is the highest value
among all f s

pt values. In this case, the technique will be set only one variable for the iteration and the
LRBH is too slow. However, we overcame this problem by proposing a new parameter as a limit. If the
limit is near to 0.5 (but never less than 0.5), the number of iterations could be less, but the solution may
be too far from the optimal solution. After some rounds of calibration, we chose to use the value of
0.7 as the limit. If the limit is less than 0.5 in the first round, the constraint set by Equation (10) could
be violated.
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In the second phase, if the variables f s
pt are higher or equal to the limit, it will be set as designated

stockpile—that is, in the next iteration, they will be added into the model as constraints, as shown in
Equation (14):

f s
pt = 1 ∀ f s

pt ≥ limit (14)

Then, an iterative process is performed until all the stockpiles required are allocated. In this phase,
we check the last linear programming (LP) model solution and set (variable assumes 1) the largest
variable lower than the limit as used. In this step, it is necessary to simultaneously verify if any product
is designated in the stockpile. The reason that the highest value lower than the limit is also set as used
is that the model determines that its occupation will be less than the limit that the stockpile requires to
be allocated to meet the demand from the berths. It is important that all demands be attempted, so this
stockpile should be formed regardless. Then, the technique will perform the same procedure for the
largest value of the variables lower than the limit (see Figure 5).
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If after the model is solved, and at end of the iteration, all variables f s
pt are 0 or 1 (that is, an existing

solution or feasible solution occurs), then the heuristic stops and presents that solution. If there are
some fractional variables, then the process returns to the beginning of phase 2. Algorithm 1 presents
the basic structure of the LRNH for this IOSEP problem.

Algorithm 1. Setting binaries variables for stacking a stockpile.

Rewrite the model
Relax all variables f s

pt
Solve (LP)
while there are some f s

pt > 0 or f s
pt < 1 do

if f s
pt ≥ limit do
f s
pt ← 1

end if
for largest empty stockpile f s

pt < limit do
f s
pt ← 1

end for
Rewrite the model with set variables.
Solve (LP)

end while

In this IOSEP problem, the most important feature is the presence of the energy cost as the
main strategy to achieve the efficiency of this system. In the same way as in Table 1, this problem is
summarized in Table 3.
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Table 3. Coding this paper (see Nomenclature in Table 1).

Problem Definition Type of Stockyard Modelling Objectives Solution Method

MPr, MP, D, CF, Ca Iron Ore MILP Energy Exact and LBRH

4. Computational Tests and Discussion

4.1. Physical Characteristics of the Iron Ore Stockyard Proposal

The verification and validation procedures for the model proposed in this study were performed
with the aid of the commercial solver—CPLEX 12.5 [9]. Random values were used to define the
demand of each ship and create simulated instances using parameters based on those in [9,24].

The experiments were performed on an Intel Core i5, 3.2 GHz processor with 8 Gb of RAM.
Tables 4 and 5 present information about the parameters and sets of instances created for the purpose
of comparisons between them.

Table 4. Distribution of model parameters for generating instances.

Parameter Range

Total demand Uniform (3–4)
Berth capacity Uniform (100–200)

Equipment capacity Uniform (100–200)
Stockpile capacity Uniform (1000–1800)

Car-dumper capacity Uniform (40–60)
Supply capacity Uniform (500–800)

Conveyor belt capacity Uniform (80–120)
Amount of equipment by route Uniform (2–4)

Available time Uniform (2–5)
Energy cost by period Uniform (1–3)

Cost of not transferring the ore from reception Uniform (20–30)
Cost of keeping the ore in stockyard Uniform (1–2)

Cost due to change in the quality of the ore Uniform (10–20)

Each parameter of the instances lies in a range whose maximum and minimum values are
determined from a uniform random choice. In turn, the instances are defined based on the size of the
problem. By increasing the planning horizon and the different types of iron ore or products stored in the
stockyard, it is expected that the complexity will increase until the methodology is no longer practical.

Table 5. Size of the sets used to generate the instances.

System Features Amount

Stockyards 2
Berths 3
Routes 10

Routes X 4
Routes Z 4
Routes Y 2

Equipment in the system 20
Equipment in Routes X 9
Equipment in Routes Z 6
Equipment in Routes Y 5

We separated the instances according to their sizes. First, we increased the number of products
and periods over the short term; in turn, for instances 6–16 we increased the amount of products and
periods to be evaluated until the MILP mathematical model and the LRBH could feasibly solve this
IOSEP (See Table 6).
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Table 6. Instances.

Instance Product Types Planning Horizon (Periods)

1 2 3
2 3 6
3 4 12
4 7 18
5 10 24
6 10 48
7 10 72
8 12 168
9 12 240
10 15 336
11 15 720
12 20 720
13 25 1440
14 30 1800
15 30 2160
16 30 2400

The authors in [27] did not stipulate a minimum value of iterations for the convergence of the
solutions, making only one change in the heuristic at each iteration in the largest value found, or when
the LP solution assumes 1 to the previous binary variable. Despite being a viable technique and
indicating a greater possibility of proximity with the optimal solution, the number of iterations becomes
even greater as the problem increase by number of periods.

Thus, we included the possibility of using a lower bound to set the stockpile used after each LP
round. After some tests with small instances, we selected the limit value of 0.7 which will improve the
LRBH efficiency (computational effort) after the first round by shrinking the number of iterations that
are needed for only the full stockpile ( f s

pt = 1) or the largest values of these variables.

4.2. Computational Results

From this analysis and considering MILP mathematical model (1)–(10) and the LP mathematical
model (deleting (11) and adding (13)), the information contained in Tables 4 and 5 was used to create
the various instances. For this purpose, that, we wrote a code in the Python programming language to
generate the input data, and we wrote the model in an adequate format for the CPLEX [9] to perform
the optimization of each of the scenarios, using the standard settings of this solver. This code in the
Python language applies the library package CPLEX to run the LP and MILP and also to facilitate the
procedures of the LRBH that use the CPLEX and its functions as part of the code.

Table 7 shows the computational effort measured in seconds (or fraction of seconds) for the CPLEX
solver to indicate the optimal solution or the proposal of a solution using LRBH for each instance using
the GAP (as set in Equation (15)) to compare two different optimization techniques, where technique 1
has an objective function larger than technique 2.

GAP =
Objective FunctionTechnique 1 −Objective FunctionTechnique 2

Objective FunctionTechnique 1
(15)

Table 7 shows the column GAP–LRBH/MILP, where Equation (15) was used to compare the LRBH
solution with the optimal solution for each instance proposed.

Considering a restricted planning horizon limited to the number of ships and the equipment
capacity, the mathematical model was sufficient to solve the problem in an optimal way via CPLEX
12.5 [9] for instances 1–13. Thus, MILP can solve this problem size, although real cases present a greater
horizon of planning and a large number of request products.
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Starting from instance 14, the commercial solver was not sufficient to find a solution due to
out of memory. It is recommended that the planner use a more robust machine to obtain this
solution or consider other techniques that may indicate a solution to the problems or even for more
complex instances.

Table 7. Computational Tests.

Instance TIME-MILP (s) TIME-LP (s) TIME-LRBH (s) TOTAL
TIME-LRBH (s)

GAP-LRBH /MILP
(%) Iterations

1 0.000 0.000 0.015 0.015 46.292000 1
2 0.000 0.000 0.125 0.125 5.165446 4
3 0.047 0.032 0.172 0.204 0.039728 1
4 0.266 0.125 1.812 1.937 0.170065 4
5 1.469 0.359 5.251 5.61 0.217760 7
6 1.079 0.532 3.969 4.501 0.000983 3
7 1.172 0.907 7.14 8.047 0.003256 4
8 6.672 4.031 23.098 27.129 0.000000 2
9 9.407 5.734 21.785 27.519 0.000552 4

10 34.021 13.814 115.655 129.469 0.000396 5
11 145.24 32.54 114.401 146.941 0.000046 2
12 321.92 67.418 422.914 490.332 0.000030 4
13 5031.883 313.684 854.06 1167.744 0.000003 2
14 2 1127.522 3378.492 4506.014 - 3
15 2 1060.815 4249.165 5309.98 - 3
16 2 - - 3 - -
1 TIME is the processing time. 2 The CPLEX stopped due to being out of memory. 3 The Algorithm stopped due to
exceeding 20,000 s.

In turn, LRBH achieved solutions to the problem up to instance 15, although the computational
effort up to instance 13 was greater than that for MILP. The LRBH technique allowed us to find solutions
with significant proximity to the optimal solution, especially for larger instances. This is an important
factor for enabling the use of the technique in larger problems that cannot be solved by MILP.

The stockyard scheme used in all instances can be observed in Figure 6. The routes and subsets of
routes are designated with the source and are also labeled with a number.
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Figure 6. Stockyard scheme used in all instances; 1x means that route 1 is in subset of routes X that
will bring to the stockpile products from reception; then, the subset of routes X contains routes 1, 2,
3 and 4. The same happen for the subsets of routes Y and Z. In this scheme, the authors have two
stockpiles in the stockyard and three berths. When f 1

pt = 1, the authors indicate that stockpile will be

used, otherwise f 1
pt = 0.

Figure 7 shows the product designation (1 or 2) for each stockpile during the three periods of
instance 1. After designating the product, the flows upstream and downstream will be limited only for
this product or a changed blend using this product.
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Figure 7. The values inside the boxes are the solution of the binary variables from MILP model.
When product 1 is designated to stockpile, the variable is blue, otherwise, if product 2 is designated to
stockpile, the variable is red.

For a visual comparison, the LRBH starts by relaxing the MILP model and including a lower and
upper bound to the binary variables. After these procedures, the LP is solved, and the solution is
reached for this first LP round for the instance illustrated in Figure 8. This step shows how to set these
variables to 1.
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After setting the binary variables to 1, the model is updated with this information and the LP
model is solved again. For instance 1, a solution for the IOSEP problem is found in this iteration
(see Figure 9). In Figure 8, all stockpiles have a designated product in this round, so it is expected to
find a solution in the next round. If there were another product designated to the stockpile 2 in period
2, it would be impossible to ensure the solution in the next iteration, because the constraint (10) would
not be satisfied.
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solution of this IOSEP problem was found. When product 1 is designated to stockpile, the variable is
blue, otherwise, if product 2 is designated to stockpile, the variable is red.

In problems where the object function is minimization, solving the linear relaxation gives a lower
bound of the optimal value of the MILP [27]. The values from instance 1 to instance 13 indicate that
the optimal solution for each instance is always between the LP solution and LRBH. The cases from
instance 14 onwards can evaluated using Equation (15) to compare the solutions from MILP and LRBH
with the LP solution (See Table 8).
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Table 8. Comparison between the techniques with the LP solution.

Instance GAP-MILP/LP (%) GAP-LRBH/LP (%)

1 5.622750 55.007652
2 2.819756 8.216897
3 0.634561 1.038426
4 0.190741 0.361495
5 0.107536 0.325647
6 0.030696 0.040535
7 0.007023 0.010280
8 0.001033 0.001033
9 0.000407 0.000959

10 0.005030 0.005426
11 0.000052 0.000098
12 0.000355 0.000385
13 0.000008 0.000011
14 - 0.000008
15 - 0.000004

The solution quality assessment can be verified with the LRBH using the GAP between the
heuristic and the LP solutions, because this metric assumes an even lower value over the course
of increasing the size of the instances. In this way, if the GAP between LRBH and LP decreases,
the solution from LRBH will always tend to be closer to the MILP solution. In instances 14 and 15,
the optimal solutions have GAPs of up to 0.000008% and 0.000004%, respectively, guaranteeing the
good quality of the solution, since the technique finishes by a possible solution to the problem.

Instance 1 also presents different behavior to the others when the GAP is larger than the other
instances; for a very small instance, it does not present satisfactory results. In the other instances,
the results achieved gradually approached the optimal solution, indicating a convergence with the use
of the technique (see Figure 10).
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An important observation for the verification of the results is that the planning must be done
properly in order to avoid waiting for the receipt of excess inputs with the related energy expenditures
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for maintenance at reception or energy expenditures due to an alteration of the characteristics of a
product to meet demand.

Likewise, these results highlight periods of the planning horizon that are more favorable for the
procedures to be carried out, indicating the feasibility of using this model for small problems and
LRBH for large problems, such as instances 14 and 15, that cannot be resolved using MILP.

In general, analysis of the use of MILP or LRBH considers the possibility that a company will
carry out planning and re-planning with a reduced time horizon to maintain an optimal solution at
all times or with good quality, considering any changes that may occur during a period. In this way,
these techniques could be used by the planner to make decisions in the short, medium, or long term.

5. Conclusions

Due to the importance of defining the energetic planning and scheduling of activities for an iron ore
stockyard–port system including various types of ore with different characteristics, this paper presented
an MILP model adapted to the energy sector and an LRBH to solve this problem. In addition, this model
considers the minimization of energetic costs, thus preventing this system from becoming inefficient.

For the complexity of the problem to be considered, variations between instances were addressed
along with increase in products and the planning horizon for the problem. The performance of the
exact technique was assessed by comparing these different sizes of instances and techniques.

A technique was developed by relaxing and setting the variables to solve the problem as fast as
possible. This method was adapted to the IOSEP problem in the context of supply chain design and
focused on finding a feasible solution to problems that the MILP cannot solve due to computational
limitations. Two different rules were used to reach the solution: the minimum value of the limit and
the largest fractional value lower than the limit.

The mathematical model adapted from [24] to solve stockyard planning problem while minimizing
the energy cost allowed this problem to be solved optimally for instances 1 to 13. Despite the LRBH
reaching a solution, for these instances, the mathematical model was able to find the optimal solution
for this problem. In other words, the decision maker can be assured that a decision with this technique
would propose planning with the minimum energy costs for the problem. In this way, for some cases
(Instances 1 to 13) commercial solvers such as CPLEX 12.5 [9] are able to solve the problem with
satisfactory computational time, considering the complexity of the decision making that must be made.
The LRBH was able to solve instances 1 to 15 and reach solutions close to the optimal solution of the
problem in instances 2 to 13, showing that this technique provides a satisfactory result.

On the other hand, for instances 1 to 13, the LRBH found a solution with a 3.99% average GAP with
respect to the MILP solution. If one considers only instances 2 to 13, this value reaches approximately
0.47%. Further, considering Tables 7 and 8, the values of GAP shrink as the instances become larger.
Instances 14 and 15 were not solved using MILP. For this reason, we compared using the GAP between
the LP model and the LRBH. Even though the MILP was not able to reach the optimal solution, it is
possible to ensure that the GAP between MILP and LP is equal to or smaller than the GAP between LP
and LRBH once the MILP objective function is equal to or larger than the LP objective function and
less than or equal to the LRBH objective function.

The solution reached by LRBH for instances 14 and 15 presented a 0.000012% average GAP.
Since the objective function of this problem is related to the energy cost, it is able to ensure that the
energy cost of the planning using LRBH will not be larger than the GAP of each instance. Thus, the extra
cost of using LRBH for larger instances is a value close to 0—that is, the solution reached will be close
to the optimal solution and indicate a low-cost solution for the decision makers.

Thus, this work presented a mathematical model and a linear relaxation-based heuristic as tools
that can help decision-making agents find a solution quickly with information on the patio-port
system. However, even larger problems (instance 16) can be solved using specific techniques, as the
CPLEX process was interrupted due to being out of memory, and the heuristic was interrupted due to
exceeding 20,000 s. In these cases, future research may focus on techniques such as other heuristics
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and metaheuristics, e.g., simulated annealing, the genetic algorithm or column generation, to provide
adequate solutions to the problem, or even a computer with more memory and a more robust processor.
Furthermore, the LRBH could be employed as a technique to find an initial solution using sophisticated
procedures with heuristics and metaheuristics to solve instance 16 and even larger instances. With these
improvements, the largest instances from instance 16 could be solved efficiently, and we could also
consider the uncertainty of demand under a multi-objective approach that promotes research with
both business interests and practical relevance.

Moreover, more robust models could be developed that consider changing organizational
objectives during a company’s journey alongside important characteristics such as inventory turnover,
in addition to adding different types of ore to the mix in the mine to form different products (types of
ore) in the stockyard.

In addition, future studies could include an analysis of the performance of the solver by evaluating
changes in the settings of the solver as options for reducing the memory usage to expand the size of
the instances and improve the process.
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