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Abstract: Demand response (DR) can offer a wide range of advantages for electrical systems by
facilitating the interaction and balance between supply and demand. However, DR always requires a
central agent, giving rise to issues of security and trust. Besides this, differences in user response cost
characteristics are not taken into consideration during incentive pricing, which would affect the equal
participation of users in DR and increase the costs borne by the electricity retail company. In this
paper, a blockchain-enabled DR scheme with an individualized incentive pricing mode is proposed.
First, a blockchain-enabled DR framework is proposed to promote the secure implementation of
DR. Next, a dual-incentive mechanism is designed to successfully implement the blockchain to DR,
which consists of a profit-based and a contribution-based model. An individualized incentive pricing
mode is adopted in the profit-based model to decrease the imbalance in response frequency of users
and reduce the costs borne by the electricity retail company. Then, the Stackelberg game model is
constructed and Differential Evolution (DE) is used to produce equilibrium optimal individualized
incentive prices. Finally, case studies are conducted. The results demonstrate that the proposed
scheme can reduce the cost borne by the electricity retail company and decrease the imbalance among
users in response frequency.

Keywords: demand response; incentive pricing; Stackelberg game

1. Introduction

Demand response (DR) has been recognized as a powerful tool to better balance supply and
demand by influencing the behavior of the demand side in electrical grid [1–3]. Specifically, due to the
uncertainty of renewable energy, electricity market prices and the cumulation of prediction errors [4],
the pressure to ensure stable electricity supply continues to increase. When there is a shortage of
electricity, DR becomes an effective alternative solution to absorb the gap between electricity supply
and demand as well as to control the demand for electricity.

Various incentive mechanisms have been used in DR programs to motivate users to adapt their
loads to supply availability [4–6]. An incentive-based DR program with an advanced reward system
was proposed in [7] to aggregate residential demand. An effort-based reward approach was proposed
in [8] for the allocation of load shedding amount in microgrids. An extended multi-energy DR scheme
for an integrated energy system was established in [9] with the objective of shaving peak load and
minimizing total costs. Nevertheless, the incentive prices in these studies are mostly set as constants
and less on a theoretical basis. Considering the utility and elasticity of customers, an incentive-based
DR model was built in [10], and the optimal incentive price was obtained by solving the model.
A novel incentive pricing mechanism was proposed in [11], and the optimal pricing factor was
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decided by solving a two-stage Stackelberg game. These studies have provided methods of incentive
pricing. However, the incentive prices offered to different users are unified, which means that the
relationship between user response cost characteristics and incentive prices are not well integrated,
leading potentially to increased costs for the electricity retail company.

In incentive pricing, due to the difference in user response cost characteristics, offering unified
incentive prices to all users would not only make the response frequency of users significantly
imbalanced, which would affect the equal participation of users in DR, but would also increase costs
borne by the electricity retail company. Therefore, to decrease the imbalance and make the costs
borne by the electricity retail company as low as possible, the individualized incentive pricing mode
should be adopted. Considering that user behavior is time-dependent, a time-correlated user response
behavior model was established in [12], and thus, the differentiated incentive mechanism was adopted.
However, this model still fails to set different incentive prices for different users.

DR always requires a central agent to collect information and dispatch optimal solutions [2,13],
which would give rise to issues of security and trust [14]. Hence, a secure DR scheme needs to be
adopted. As a decentralized database, blockchain technology has demonstrated their potential for
secure operations [15,16] due to their characteristics of security, reliability and tamper-proofing [17–19].
These features correspond with the appeal of DR and have received increasing attention in recent research.
In low/medium voltage smart grids, a blockchain-based model for distributed management, control
and validation of DR events was established in [20]. A privacy-preserved and incentive-compatible DR
mechanism based on blockchain was developed in [21].

Despite the fact that blockchain technology has the advantages of trust and security, it is still
problematic to apply it to DR. For various reasons which are explained in detail in Section 3, electricity
retail companies and profit sensitive users may hold opposite attitudes regarding participation in
blockchain-based solutions. Beyond this, electricity retail companies and users still face other problems.
The electricity retail company adopts a profit-based model to motivate users and bears the incentive
payment independently in DR; when the electricity market fluctuates wildly [22], the incentive payment
may be even more. The demands of users for revenue can be met by the profit-based model, but users
still expect contributions which are closely related to the reward in the blockchain environment. Thus,
to successfully apply blockchain to DR, a dual-incentive mechanism considering the demands for
both the revenue and contribution of users should be constructed. Blockchain contains an incentive
layer, which usually encourages participants to contribute computing power [23,24] and rational
operation [25]. Consequently, it is suitable for building a contribution-based model on such a platform.
A blockchain-based incentive mechanism was proposed in [26]. An incentive mechanism based on
blockchain was designed in [27] to provide accurate and secure services. However, the contribution of
users in DR is not taken into consideration in these studies.

Aiming at promoting the secure implementation of DR, decreasing the imbalance among users
in response frequency and reducing the costs borne by the electricity retail company, a secure
blockchain-enabled DR scheme with individualized incentive pricing mode is proposed in this paper.
The major contributions of this paper are as follows.

1. To promote the secure implementation of DR, a blockchain-based DR framework is proposed and
the benefits of the use of blockchain technology are illustrated and specified.

2. Considering the difference in user response cost characteristics, an individualized incentive
pricing mode is adopted and optimal individualized incentive prices are produced by solving the
constructed Stackelberg game model.

3. To successfully apply blockchain technology to DR, a dual-incentive mechanism considering the
demands for both revenue and contribution of users is designed.

The rest of this paper is organized as follows. Section 2 describes the system framework and the
operation mechanism of the blockchain-enabled DR. Section 3 introduces the dual-incentive mechanism.
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Section 4 illustrates the Stackelberg game model and its solution algorithm. Section 5 provides the
results of the simulations. A conclusion is given in Section 6.

2. System Framework

2.1. System Framework Description

This paper focuses on a system which contains a single electricity retail company and multiple
users. The electricity retail company purchases electricity from the electricity market and sells it
to users. When there is a shortage of electricity supply, the electricity company announces a set of
individualized incentive prices which contains different prices for different users, while blockchain
announces contribution prices to users. Then, users decide the volume of load shedding under such a
context of dual-incentive mechanism The blockchain is responsible for the analysis and calculation of
these parameters collected from the electricity retail company and users. Using the Stackelberg game
model, the above process was executed repeatedly until the iteration reached its upper limit. Thus,
equilibrium solutions are obtained.

The electricity retail company and users execute the equilibrium solutions such as optimal
incentive prices and optimal volume of load shedding to achieve optimal operations. The overall
framework of the blockchain-enabled DR scheme is illustrated in Figure 1. The TOU price is given.
The contribution price is agreed by the electricity retail company and the blockchain. The optimal
individualized incentive prices and the optimal volume of load shedding are determined by the
equilibrium solutions.
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2.2. The Network of Blockchain-Enabled DR

The consortium blockchain is a “permissioned” blockchain, which is suitable for power grid
and other scenarios with high authority requirements. Thus, a consortium chain is adopted to
carry the electricity retail company and users under the blockchain-enabled DR. There are many
consensus mechanisms for the blockchain, such as proof of work (PoW), proof of stake (PoS) and
practical byzantine fault tolerance (PBFT). The PoW and PoS consensus mechanisms are used in
public blockchain environments [28]; these are not suitable for the consortium blockchain adopted
in this paper. The PBFT consensus mechanism, which the consortium blockchain mostly adopts,
is relatively loose. It can shorten the time for consensus and shows superiority in throughput and
energy consumption compared with PoW and PoS [29]. Thus, it is more suitable for DR efficiency
requirements, and is utilized in this paper.

As the blockchain network is attached to nodes, the electricity retail company and users are
regarded as nodes in the blockchain network. Peer-to-peer energy trading and transaction settlements
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can be conducted between the nodes of the electricity retail company and those of users, and verification
information can be sent and fed back between all nodes. Taking user i as an example, the information
flow between i and the electricity retail company, as well as other users in blockchain network, is shown
in Figure 2.Energies 2020, 13, x FOR PEER REVIEW 4 of 17 
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2.3. Operation Mode

All nodes work according to the following rules.

(1) When a certain user enters the network, relevant identity authentication is required. After the
authentication is passed, a new node is formed. The blockchain returns to the user a pair of public
and private keys. The public key is used as the user’s account address on the blockchain, and the
private key is used as a unique key to operate the account.

(2) The user broadcasts the predicted electricity demand and parameters related to response cost
characteristics in the whole network, together with the public key, while also downloading other
users’ parameters. During each scheduling period, each user re-uploads the predicted electricity
demand and updates other users’ parameters.

(3) Each node creates an empty block every time interval.
(4) The blockchain checks the current operating status every time interval to determine whether

the contract has been reached. If it is reached, the DR, based on a dual-incentive mechanism,
is automatically conducted to obtain the equilibrium solutions, which will be broadcast to the
verification nodes in the blockchain and then wait for consensus.

(5) The verification node first performs signature verification to ensure the validity of the information;
the verified information then enters the waiting consensus set. After most verification nodes
reach consensus, all nodes automatically execute equilibrium solutions, conduct energy trading
and carry out transaction settlements.

(6) Each node forms a data block with its own information and the received transaction data using a
timestamp. The block will be connected to the current longest blockchain, forming the latest block.

2.4. Security Illustration of Blockchain-Enabled DR

The security of the blockchain-enabled DR can be guaranteed by two aspects: asymmetric
encryption and the consensus mechanism.

To avoid information being modified and tampered with in transmissions between the electricity
company and users, a cryptographic hash function and signature are used in asymmetric encryption.
PBFT consensus mechanism is used to reach consensus among the nodes composed of the electricity
company and multiple users. Each node in the blockchain network acts as a primary node in turn,
and the remaining nodes become backup nodes. PBFT can tolerate no more than one-third of the total
number of malicious nodes in the system; therefore, there is little chance that the information and
transaction records could be modified or tampered with.
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However, the use of the blockchain does not mean that the final execution information is exactly
correct. There are still some challenges in blockchain due to the various threats of malicious attack
including intelligent contract and reply attacks. This is a focus for the improvement of blockchain
technology, but is not within the scope of this paper. Relevant research can be found in [30,31].

3. Dual-Incentive Mechanism Modeling

To meet the demands of users for both revenue and contribution, a dual-incentive mechanism
which consists of a profit-based model and a contribution-based model was designed.

3.1. Profit-Based Model

In the case of electricity shortages, the electricity retail company hopes to ensure economical
operation as much as possible on the premise of guaranteeing an uninterrupted supply of critical
loads. Therefore, a profit-based model needs to be adopted in DR to motivate users to respond to the
electricity retail company. Users respond to the electricity company by load shedding for incentive
revenue. The costs borne by the electricity retail company consist of the incentive payments for users,
the reduced electricity purchase costs from the electricity market and loss of revenue. The revenue of
users consists of incentive revenues, response costs and reduced electricity purchase costs from the
electricity retail company.

3.1.1. Electricity Retail Company Modeling in DR

Incentive payments are offered by the electricity retail company to motivate users to adapt their
electricity loads to supply availability. If the electricity retail company offers unified incentive prices
to all users, due to the differences in users’ response cost characteristics and sensitivity, the response
frequency of each user will vary greatly, making it impossible for each user to have equal trading
initiatives and equally participate in DR. In addition, the costs borne by the electricity retail company
are not the lowest that they can be. To illustrate, the response frequency of each user can be expressed
as the sum of the response times in all scheduling periods within a 24-h period. The response frequency
of user i in 24-h is shown as Equation (A1) in the Appendix A.

Therefore, to motivate less frequent users to reach more frequent responses and make the costs
borne by the electricity retail company as low as possible, the individualized incentive pricing mode is
adopted. The incentive payments offered by the electricity retail company are expressed as follows.

Cgrid,COM,t =
∑
i∈N

ci,COM,tPi,LC,t, N = {1, 2, 3, . . . , n} (1)

where ci,COM,t is the individualized incentive price for user i at time interval t, whose optimal value
is determined by the equilibrium solutions; Pi,LC,t is the volume of load shedding of user i at time
interval t; and N is the set of users.

As the electricity retail company incentivizes users to reduce their loads, its costs for purchasing
electricity will be reduced, as will its revenue from electricity sales. The price of electricity sold by the
electricity retail company to users adopts TOU pricing. The reduced purchase cost from the electricity
market and the loss of revenue can be expressed as follows.

Cgrid,be,t =
∑
i∈N

cbe,tPi,LC,t (2)

Cgrid,se,t =
∑
i∈N

cse,tPi,LC,t (3)

where cbe,t is the electricity purchase price of the electricity retail company; and cse,t is the TOU price at
time interval t.
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In conclusion, the costs borne by the electricity retail company can be expressed as follows.

fgrid,t= Cgrid,COM,t −Cgrid,be,t + Cgrid,se,t

=
∑
i∈N

ci,COM,tPi,LC,t −
∑
i∈N

cbe,tPi,LC,t +
∑
i∈N

cse,tPi,LC,t
(4)

3.1.2. User Modeling in DR

The main revenue of users participating in the DR program comes from the incentive payments
offered by the electricity retail company. The incentive revenue of user i can be expressed as follows.

Ci,COM,t = ci,COM,tPi,LC,t (5)

The differences in user response cost characteristics are mainly reflected in the different response
costs of different users. In this paper, the response costs of user i participating in DR refer mainly to the
load shedding cost, and can be expressed as follows.

Ci,DR,t = ai,LCP2
i,LC,t + bi,LCPi,LC,t (6)

where ai,LC and bi,LC are the load shedding cost coefficients of user i.
User i responds to the electricity retail company by load shedding, and thus, the electricity

purchase costs from the electricity retail company are reduced. The reduced electricity purchase cost
from the electricity retail company can be expressed as follows.

Ci,RC,t = cse,tPi,LC,t (7)

3.2. Contribution-Based Model

Despite the fact that blockchain technology has the advantages of security and trust, there may
be a disagreement between the electricity retail company and users over whether or not to apply the
blockchain to DR. On the one hand, the security of blockchain technology has varying degrees of
beneficial effects on the electricity retail company and users. The electricity retail company engages in
transactions more frequently than any other user, and thus, is well placed to recognize the economic
benefits from secure information, while users are not. On the other hand, certain threshold fees will
be charged when the electricity retail company and users enter the blockchain network. As a result,
the electricity retail company and profit sensitive users may hold opposing attitudes regarding the
application of blockchain technology to DR. Additionally, the electricity retail company and users
face other problems. The electricity retail company bears the incentive payment independently in
DR, especially when the electricity market fluctuates wildly. A mere profit-based model can meet the
demand of users for revenue, but it may not be enough to meet the demand for contributions, which is
an important index by which to measure the benefits of a node in the blockchain environment.

To successfully apply blockchain technology to DR, the electricity retail company and the
blockchain must reach an agreement, i.e., that the electricity retail company pays threshold fees to
the blockchain for users to apply blockchain technology to DR, and correspondingly, the blockchain
provides a contribution-based model to distribute incentive payments and to meet the demands of
users for contributions in the blockchain environment. Consequently, a contribution-based model is
designed in the blockchain environment.

Users who make contributions to the operation of the system can be rewarded by the blockchain.
The reward of user i for contributions is expressed as follows.

Ci,contrib,t = ci,contrib
Pi,LC,t

Psh,t
(8)
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where ci,contrib is the contribution price which is agreed upon by the electricity retail company and the
blockchain; and Psh,t is the volume of electricity shortage at time interval t.

At the end of each trading day, the cumulative contribution of user i on that day will be used as
an important indicator to determine its parameters in the next trading day, such as contribution prices
and transaction fees. Since the contribution of users is directly related to their rewards, some users may
tamper with transaction records to increase their contributions for more rewards. It is worth noting that
the proposed DR runs on the blockchain and adopts the PBFT consensus mechanism for bookkeeping
under the principle of the majority. The malicious behavior of a few irrational nodes is not enough to
affect the final consensus equilibrium solutions, guaranteeing the security of the transaction.

From the above, the revenue of users based on the dual-incentive mechanism is expressed
as follows.

fi,t= −Ci,DR,t + Ci,RC,t + Ci,COM,t + Ci,contrib,t

= −ai,LCP2
i,LC,t + (−bi,LC + cse,t + ci,COM,t +

ci,contrib

Psh,t
)Pi,LC,t

(9)

4. Stackelberg Game Modeling and Solution

4.1. Optimization Model of Electricity Retail Company

In the process of DR, both the electricity retail company and users aim to maximize their profits.
The purpose of the electricity retail company is to find the optimal individualized incentive prices for
users to minimize costs that must be borne by the company. The electricity retail company is in the
upper layer of the Stackelberg game model, and the objective function is as follows.

min fgrid,t =
∑
i∈N

ci,COM,tPi,LC,t −
∑
i∈N

cbe,tPi,LC,t +
∑
i∈N

cse,tPi,LC,t (10)

Since the electricity retail company needs to absorb the supply gap with the response of users,
constraint (11) needs to be met. Constraints (12)–(13) limit the range of incentive prices and the volume
of load shedding. As users are in the electricity network, the volume of load shedding needs to meet
the constraints as follows, which include power balance, node power and branch power constraints.
These constraints are shown as Equation (A2)–(A6) in the Appendix A.

∑
i∈N

−bi,LC + cse,t + ci,COM,t +
ci,contrib

Psh,t

2ai,LC
≥ Psh,t (11)

0 ≤ ci,COM,t ≤ cCOM,max (12)

0 ≤ Pi,LC,t ≤ Pi,LC,t,best (13)

where cCOM,max is the upper limit of incentive price; and Pi,LC,t,best is the maximum volume of load
shedding for user i; its formula is shown as Equation (15).

4.2. Optimization Model of Users

The purpose of users is to decide the corresponding optimal volume of load shedding to maximize
their revenue according to individualized incentive prices, the contribution-based model and user
response cost characteristics. Users are in the lower layer of the Stackelberg game model. The objective
function of user i is as follows.

max fi,t = −ai,LCP2
i,LC,t + (−bi,LC + cse,t + ci,COM,t +

ci,contrib

Psh,t
)Pi,LC,t (14)

When the electricity retail company issues a set of individualized incentive prices, users will
calculate the corresponding maximum volume of load shedding with the purpose of maximizing their
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revenue by the analytic method. The maximum volume of load shedding will be set as the upper limit
of load shedding. The calculated maximum volume of load shedding can be expressed as follows.

Pi,LC,t,best =


0 ci,COM,t ≤ bi,LC − cse,t −

ccontrib,t
Psh,t

−bi,LC+cse,t+ci,COM,t+
ccontrib,t

Psh,t
2ai,LC

, ci,COM,t > bi,LC − cse,t −
ccontrib,t

Psh,t

(15)

The maximum volume of load shedding of each user will affect the costs borne by the electricity
retail company, prompting the company to adjust its individualized incentive prices until an equilibrium
is reached.

4.3. Solution Algorithm

According to the literature [32], it is easy to prove that the Stackelberg game model constructed
in this paper has equilibrium solutions. The upper layer model of the Stackelberg game is a linear
programming model, and the solver is directly used based on CPLEX platform. In each iteration,
Differential Evolution (DE) [33] is applied to the mutation, crossover and selection of individualized
incentive prices. The lower layer model of the Stackelberg game is a quadratic convex function, and the
maximum volume of load shedding of each user for any set of individualized incentive prices can be
calculated by the analytic method.

Each set of individualized incentives prices is an individual in the population. The initial
population is X0 = (x0

1, x0
2, x0

3, . . . , x0
np), and np is the population size. The initialization formula of the

individualized incentive prices is expressed as follows.

x0
j = ones(1, Dim)xmin + rand(1, Dim)(xmax − xmin), j = 1, 2, 3, · · · np (16)

where Dim is the individual dimension, that is, the number of users; ones(1, Dim) is a 1 × Dim matrix
of ones; rand(1, Dim) is a 1 × Dim matrix uniformly distributed between [0, 1].

The mutation is based on the differences between randomly sampled individuals in a contemporary
population. Individuals after mutation can be expressed as follows.

vG+1
j = xG

r1 + F(xG
r2 − xG

r2) (17)

where G is the iteration of evolution; vG+1
j

is the individual after mutation; xG
r1

is the parent basis

vector; (xG
r2
− xG

r3
) is the parent difference vector, and satisfies the inequality r1 , r2 , r3 , j; and F is the

scaling factor, which is set as 0.3 in this paper.
To maintain the diversity of the population, a binomial crossover operator is used to generate

cross individuals. Individuals after crossover can be expressed as follows.

uG+1
j,k =


vG+1

j,k , rand(1, 1) ≤ CR

xG
j,k, else

, k = 1, 2, · · ·Dim (18)

where CR is crossover probability.
To ensure a better individual level in the population, selection should be carried out. Individuals

after selection can be expressed as follows.

xG+1
j =


uG+1

j , f (uG+1
j ) ≤ f (uG+1

j )

xG
j , else

(19)

The flowchart for solving the equilibrium solutions of the Stackelberg game is shown in Figure 3.
First, the set of individualized incentive prices is initialized according to Equation (16). Next, the analytic
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method is used to calculate the maximum volume of load shedding for each user under the current
set of incentive prices according to Equation (15). Then, according to the objective function set in
Equation (10), the volume of load shedding for each user and the costs borne by the electricity retail
company under the current set of incentive prices are solved based on the CPLEX solver. Next,
mutation, crossover and selection are carried out according to Equations (17)–(19) to update the set of
individualized incentive prices. Finally, the above process can be repeated until the iteration reaches its
upper limit Gmax to obtain the equilibrium solutions which contain optimal individualized incentive
prices, the optimal cost for the electricity retail company and the optimal response volume of each user.
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5. Case Studies

5.1. Parameters Setting

In this section, a 14-node, receiving-end electricity network [34] and an electricity retail company
are used to verify the effectiveness of the proposed scheme. The nodes of the electricity network are
renumbered, and its topology is shown in Figure A1. Take the moment when t = 18 as an example,
the electricity load of each node is shown in Table A1. The predicted electricity load profile is shown in
Figure A2, in which 20% of total demand at each node is considered critical.

Taking the case where all imbalances between the supply and demand are electricity shortages as
an example, due to the influence of the cumulation of prediction errors on a large time scale, there is an
electricity shortage on an hour time scale; its profile is shown in Figure A2. When applied to practical
problems, the proposed scheme can be applied in the time period when an electricity shortage occurs.

The TOU price is provided in [35]. The ci,contrib is set as $60. The Gmax is set as 150. Assume
that each node corresponds to a user and the user number is the node number. The parameters of
the response costs of all users are adopted from [35], and some changes were made to accommodate
for the number of users in this paper. The parameters are shown in Table A2. The research methods
(equations) used in this paper and corresponding references are shown in Table 1.
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Table 1. Research method description.

Equation Based on Equation Based on

(1)–(5) own elaboration (A1) own elaboration
(6) [36] (A2)–(A4) [37]

(7)–(15) own elaboration (A5)–(A6) own elaboration
(16)–(19) [38]

5.2. Simulation Results

According to the proposed scheme and parameter settings, the simulation results are as follows
when the proposed dual-incentive mechanism is adopted in the blockchain environment. By solving
the Stackelberg game model, the optimal individualized incentive prices are produced, as indicated in
the box chart shown in Figure 4a. Users with higher load shedding cost coefficients, such as users 4, 5,
9 and 13, have higher response costs in response to the same load shedding compared to other users.
This kind of user is only willing to participate in DR when they are motivated by higher incentive
prices. Therefore, to encourage this kind of user to participate in DR, the electricity retail company
needs to offer them higher incentive prices compared to those offered to other users. The relationship
between user response cost characteristics and their incentive prices are well reflected.
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Figure 4. Equilibrium results of optimal individualized incentive price (a) as well as cumulative 
volume of load shedding and response frequency (b) when the proposed dual-incentive mechanism 
is adopted. 

The cumulative volume of load shedding and response frequency of each user over a 24-h period 
is shown in Figure 4b. In the process of the operation, the electricity retail company expects to 
minimize its costs while absorbing the gap between the supply and demand. This prompts the 
electricity company to give priority to users with lower incentive prices when choosing response 
users. Consequently, users requiring lower incentive prices have a higher cumulative volume of load 
shedding and response frequency, while users requiring higher incentive prices have a lower 
cumulative volume of load shedding and response frequency, e.g., users 4, 5, 9 and 13. Take typical 

Figure 4. Equilibrium results of optimal individualized incentive price (a) as well as cumulative volume
of load shedding and response frequency (b) when the proposed dual-incentive mechanism is adopted.

The cumulative volume of load shedding and response frequency of each user over a 24-h period is
shown in Figure 4b. In the process of the operation, the electricity retail company expects to minimize its
costs while absorbing the gap between the supply and demand. This prompts the electricity company
to give priority to users with lower incentive prices when choosing response users. Consequently,
users requiring lower incentive prices have a higher cumulative volume of load shedding and response
frequency, while users requiring higher incentive prices have a lower cumulative volume of load
shedding and response frequency, e.g., users 4, 5, 9 and 13. Take typical users 1, 2, 11, and 13 as an
example; their optimal individualized incentive prices and corresponding volume of load shedding
over a 24-h period are shown in Figure 5. The actual volume of load shedding and response frequency
can indirectly reflect user response cost characteristics.
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Figure 5. Optimal individualized incentive prices and corresponding volume of load shedding over 
a 24-h period for users 1, 2, 11 and 13. 
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5.3. Analysis on Security of Blockchain 

When the DR between the electricity retail company and users does not operate in the blockchain 
environment, there is a possibility that the information broadcast between them may be tampered 
with. The probability that the information received by a node has been tampered with is shown in 
Table A3. There is no contribution-based model launched by the blockchain in such a case. The 
response of users to the electricity retail company is only motived by the incentive mechanism of the 
profit-based model, and individualized incentive pricing mode is adopted.  

Figure 5. Optimal individualized incentive prices and corresponding volume of load shedding over a
24-h period for users 1, 2, 11 and 13.

The variation trends of the costs borne by the electricity retail company with the number of
iterations in each time interval are shown in Figure 6. It can be seen from the figure that the solution
results in each time interval reach convergence within 150 iterations.

Energies 2020, 13, x FOR PEER REVIEW 11 of 17 

 

users 1, 2, 11, and 13 as an example; their optimal individualized incentive prices and corresponding 
volume of load shedding over a 24-h period are shown in Figure 5. The actual volume of load 
shedding and response frequency can indirectly reflect user response cost characteristics.  

The variation trends of the costs borne by the electricity retail company with the number of 
iterations in each time interval are shown in Figure 6. It can be seen from the figure that the solution 
results in each time interval reach convergence within 150 iterations. 

(a) User 1

(c) User 11

(b) User 2

(d) User 13

Time (h)

In
ce

nt
iv

e 
pr

ic
e 

($
/M

W
)

V
ol

um
e 

of
 lo

ad
 s

he
dd

in
g 

(M
W

)

1 5 9 13 17 21 240

5

10

15

20

25

30

35

0
1
2
3
4
5
6
7
8
9

Time (h)
1 5 9 13 17 210

5

10

15

20

25

30

35

0
1
2
3
4
5
6
7
8
9

24

In
ce

nt
iv

e 
pr

ic
e 

($
/M

W
)

V
ol

um
e 

of
 lo

ad
 s

he
dd

in
g 

(M
W

)

In
ce

nt
iv

e 
pr

ic
e 

($
/M

W
)

Time (h)
1 5 9 13 17 210

5

10

15

20

25

30

35

0
1
2
3
4
5
6
7
8
9

24 V
ol

um
e 

of
 lo

ad
 s

he
dd

in
g 

(M
W

)

1 5 9 13 17 210

5

10

15

20

25

30

35

0
1
2
3
4
5
6
7
8
9

24

In
ce

nt
iv

e 
pr

ic
e 

($
/M

W
)

Time (h)

V
ol

um
e 

of
 lo

ad
 s

he
dd

in
g 

(M
W

)

 

Figure 5. Optimal individualized incentive prices and corresponding volume of load shedding over 
a 24-h period for users 1, 2, 11 and 13. 

0 50 100 150
200

400

600

800

1000

1200

1400 t=1

C
os

t o
f g

ri
d 

co
rp

or
at

io
n 

($
)

Iterations

t=2

t=3

t=4

t=5

t=12

t=11

t=10

t=9

t=8

t=7

t=6

t=24

t=23

t=22

t=21

t=20

t=19

t=18

t=17

t=16

t=15

t=14

t=13

0 50 100 150
1020

1035

1050

1065

1080

0 50 100 150455
460
465
470
475
480
485
490

t=5

t=24

Iterations

Iterations

C
os

t o
f g

rid
 co

rp
or

at
io

n 
($

)
C

os
t o

f g
rid

 co
rp

or
at

io
n 

($
)

 

Figure 6. The variation trends of the cost borne by the electricity retail company with the number of 
iterations in each time interval. 

5.3. Analysis on Security of Blockchain 

When the DR between the electricity retail company and users does not operate in the blockchain 
environment, there is a possibility that the information broadcast between them may be tampered 
with. The probability that the information received by a node has been tampered with is shown in 
Table A3. There is no contribution-based model launched by the blockchain in such a case. The 
response of users to the electricity retail company is only motived by the incentive mechanism of the 
profit-based model, and individualized incentive pricing mode is adopted.  

Figure 6. The variation trends of the cost borne by the electricity retail company with the number of
iterations in each time interval.

5.3. Analysis on Security of Blockchain

When the DR between the electricity retail company and users does not operate in the blockchain
environment, there is a possibility that the information broadcast between them may be tampered with.
The probability that the information received by a node has been tampered with is shown in Table A3.
There is no contribution-based model launched by the blockchain in such a case. The response of users
to the electricity retail company is only motived by the incentive mechanism of the profit-based model,
and individualized incentive pricing mode is adopted.

The cost profiles of the electricity retail company without and with the blockchain over a 24-h
period are shown in Figure 7a. Due to the lack of both asymmetric encryption and consensus
mechanisms in the absence of the blockchain, the incentive prices received by users from the electricity
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retail company and the volume of load shedding received by electricity retail company from users
may be tempered with. The increased costs borne by the electricity retail company caused by insecure
information are shown as the filled area B in Figure 7a. Due to the lack of a contribution-based
model offered by the blockchain, the DR incentive payment is borne by the electricity retail company
independently; these costs are shown as the filled area A in Figure 7a. This shows that the costs borne
by the electricity retail company are significantly increased without the blockchain.
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The revenue profiles of users without and with the blockchain are shown in Figure 7b. Because 
of the insecure information, there are slight differences between the revenues of users without and 
with the blockchain. The insecure information in the individualized incentive prices received by users 
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Figure 7. Comparison of the costs borne by the electricity retail company (a) and revenue of users
(b) without and with the blockchain.

The revenue profiles of users without and with the blockchain are shown in Figure 7b. Because
of the insecure information, there are slight differences between the revenues of users without and
with the blockchain. The insecure information in the individualized incentive prices received by
users and the volume of load shedding received by electricity retail company result in the unreliable
and inaccurate revenue of users. As Figure 7 shows, the security of blockchain has varying degrees
of beneficial effects for the electricity retail company and users. Therefore, the points in Section 3
support the hypothesis that the electricity retail company will regularly benefit enough to recognize
the economic value of secure information, while users may not.

5.4. Analysis of Incentive Prices

The simulation results are as follows when a unified incentive pricing mode is adopted that offers
the same incentive prices to different users. By solving the Stackelberg game model, the equilibrium
results are shown in Figure 8. The optimal incentive price in each time interval is shown in Figure 8a,
and the cumulative volume of load shedding and response frequency of each node over a 24-h period
are shown in Figure 8b. A comparison of the costs borne by the electricity retail company and the
revenue of users under the unified and individualized incentive pricing modes is shown in Figure 9.Energies 2020, 13, x FOR PEER REVIEW 13 of 17 
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The costs borne by the electricity retail company when the individualized incentive pricing mode
is adopted are lower than when a unified incentive pricing mode is adopted, because the former
allows individualized incentive pricing for different users. In terms of the volume of load shedding
and revenue, compared with the case when the individualized incentive pricing mode is adopted,
the response situation and revenue of each user are obviously different when the unified incentive
pricing mode is adopted. Users with lower load shedding cost coefficients, such as users 1, 6 and 10,
have a higher cumulative volume of load shedding, response frequency and revenue. Meanwhile,
users with a higher load shedding cost coefficient, such as users 4, 5, 9 and 13, are not selected by the
electricity retail company to respond at any time. The response frequency and revenue of each user are
imbalanced greatly when the unified incentive pricing mode is adopted, while the imbalance among
users is moderately reduced when individualized incentive pricing mode is adopted.

6. Conclusions

A secure blockchain-enabled DR scheme with individualized incentive pricing mode is proposed
in this paper. According to the simulation results, the main conclusions are as follows.

1. The scheme proposed in this paper can minimize the costs borne by the electricity retail company
and maximize the revenue of users while absorbing the gap and maintaining the balance between
supply and demand.

2. Compared with offering unified incentive prices to all users, providing individualized incentive
prices for different users can significantly reduce the costs borne by the electricity retail company
and moderately decrease the imbalance among users in terms of response frequency and revenue.

3. The application of blockchain technology in DR, on the one hand, can promote secure
implementation and ensure that the scheduling results are reliable. On the other hand,
the contribution-based model offered by blockchain reduces the incentive payments for the
electricity retail company and meets the demand of users for contribution.

The proposed scheme revealed that further study in the following directions would be worthwhile.

1. Improve the contribution-based model by studying other aspects, such as contribution pricing,
voting weight determination and specific influence research. Do verification on the blockchain
simulation platform to capitalize upon the transactions between the electricity retail company
and users.

2. Consider more market-realistic situations such as more than one electricity retail company
participating in DR and a larger number of users. Explore game and solution models, which are
suitable for this type of market-realistic situations.
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3. Consider the potential issue with scaling the proposed scheme and simulate user opinions
regarding the use of blockchain technology in DR with a more effective/convincing method,
such as explainable artificial intelligence (XAI).
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Appendix A

The response frequency of user i in 24-h can be expressed as follows.

RFi =
∑
t∈T

xi,t (A1)

where, xi,t is the state of response of user i; If user i responses to the electricity retail company at time
interval t,xi,t = 1, otherwise, xi,t = 0; T is the set of time intervals.

Constraints (A2)–(A4) reflect the power balance of the whole network, nodes and branches,
respectively. Constraints (A5)–(A6) limit the power of branches and load nodes, respectively.∑

i∈N

Pi,S,t −
∑
i∈N

Pi,L,t −
∑
i∈N

Pi,LC,t = 0 (A2)

PS,t − PL,t + PLC,t = Bθ (A3)

P0 = Bb,eReθ (A4)∣∣∣Pl,m
∣∣∣ ≤ Pl,m,max (A5)

0 ≤ Pi,LC,t ≤ Pi,LC,max (A6)

where, Pi,S,t and Pi,L,t are received power and load of user i, respectively; PS,t, PL,t and PLC,t are vectors
of received power, load and load shedding, respectively; P0 is the vector of branch power; B and Bb,e

are node susceptance matrix and node susceptance diagonal matrix, respectively; θ is the vector of
node phase angle; Re is the node-to-branch incidence matrix of electricity subsystem; Pl,m and Pl,m,max

are the active power and the upper limit of the active power of branch m, respectively; Pi,LC, max is the
upper limit of load shedding of user i related to critical load.
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Table A1. The electricity load of each node at t = 18.

User Number Electricity Demand (MW) User Number Electricity Demand (MW)

1 14.9 8 /
2 13.5 9 11.2
3 6.1 10 7.6
4 3.5 11 47.8
5 9 12 94.2
6 29.6 13 21.7
7 / / /
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Figure A2. Profiles of predicted electricity load and electricity shortage.

Table A2. Parameters of response cost of all users.

User Number ai,LC bi,LC User Number ai,LC bi,LC

1 0.25 36 8 / /
2 0.25 41 9 0.25 44
3 0.25 40 10 0.25 36
4 0.25 46 11 0.25 40
5 0.25 43 12 0.25 38
6 0.25 38 13 0.25 42
7 / / / / /

Table A3. The probability that the information received by a node is tampered with.

Node Number Probability Node Number Probability

1 0.8675 8 /
2 0.9035 9 0.9409
3 0.9035 10 0.9799
4 0.9035 11 0.9409
5 0.8675 12 0.9409
6 0.9035 13 0.9799
7 / / /
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