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Abstract: A task for new power generation technologies, interfaced to the electrical grid by power
electronic converters, is to stiffen the rate of change of frequency (RoCoF) at the initial few milliseconds
(ms) after any variation of active power balance. This task is defined in this article as fast active
power regulation (FAPR), a generic definition of the FAPR is also proposed in this study. Converters
equipped with FAPR controls should be tested in laboratory conditions before employment in
the actual power system. This paper presents a power hardware-in-the-loop (PHIL) based method
for FAPR compliance testing of the wind turbine converter controls. The presented PHIL setup is
a generic test setup for the testing of all kinds of control strategies of the grid-connected power
electronic converters. Firstly, a generic PHIL testing methodology is presented. Later on, a combined
droop- anFd derivative-based FAPR control has been implemented and tested on the proposed PHIL
setup for FAPR compliance criteria of the wind turbine converters. The compliance criteria for
the FAPR of the wind turbine converter controls have been framed based on the literature survey.
Improvement in the RoCoF and and maximum underfrequency deviation (NADIR) has been observed
if the wind turbine converter controls abide by the FAPR compliance criteria.

Keywords: FAPR; power hardware-in-the-loop; inertia emulation; wind turbine; converter control

1. Introduction

A gradual decommissioning of the fossil-fuel fired generation plants and their controls is
a challenge to the stable operation and control of the electric power system. Without implementation
of necessary mitigation measures to tackle the reduction of system inertia and the absence of robust
conventional primary frequency control attached to synchronous generations, future electric power
systems may face a high RoCoF and NADIR [1].

In this context, advanced controllers for fast active power-frequency control are needed to quickly
and effectively adjust the active power at the alternative current (AC) side of the power electronic
converters (e.g., voltage source converters) used to interface renewable energy-based generation
systems and responsive loads (e.g., electrolysers) [2,3].

FAPR enables the controlled source to modulate its output power rapidly to arrest the frequency
deviation. Depending on the system requirements, the recovery time may be bounded to be
within a relatively short period [4,5]. A detailed discussion on the limits and possible trade-off

between the consumed energy from the FAPR controller and the recovery time can be found in
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the work by Dreidy et al. [4]. FAPR controllers are mainly grouped into three categories, namely,
proportional/droop-based controllers [6–9], derivative-based controllers [10–13], and other methods,
which are mainly based on the swing equation of synchronous generators, thus trying to emulate
inertia through Virtual Synchronous Machine (VSM) [14–18]. Frequency regulation during sudden load
variations requires a series of control actions to be performed. Hence, the combined actions of FAPR
controllers offer an attractive option for the PE-based wind generation units. The first implemented
controller is the droop-based approach, which is known as one of the most common and easy to
implement controls. The droop-based controller by itself can mainly contribute to the improvement of
NADIR value, and not to mitigate changes of RoCoF. This is because the droop-based controller takes
the frequency error as input, which is multiplied by a gain (tuned on a system-dependent case). Since
the droop-based controller modulates the active power injection in a slow fashion, it cannot cause
an impact during the inertial response stage. However, the derivative controller can impact RoCoF since
the output becomes a high sloped ramp signal, which stimulates earlier and activates control action
during the inertial response stage, thus improving the frequency of RoCoF. The droop and the derivative
controllers can operate in parallel at different time zones once the frequency deviation is detected.
The last approach implemented within the FAPR controller package is the virtual synchronous power
(VSP) controller. This controller is much versatile compared to the droop and derivative controllers.
The objective of the VSP controller still remains the same as that of the droop and derivative controller,
which is to improve the frequency of NADIR and RoCoF. However, this controller provides a single
solution, simultaneously influencing both NADIR and RoCoF. This is possible due to the 2nd order
characteristics of the VSP approach, which gives access to quickly control both overshoot and damping.
Moreover, VSP has a power deviation as an input, which is more dynamic compared to frequency.

The above-mentioned characteristic of power electronic converters along with the substantial
developments in digital communication networks and protocols last a few years, made possible by wind
converters control testing in laboratory conditions. Adopting the PHIL testing methodology entails
a precise reproduction of the wind generators’ actual operating responses, as a necessary step before
large-scale deployment of such converters’ controls in actual power systems. Traditionally, testing
of converters control strategies has been conducted directly on physical equipment in the field or on
a power testbed in a lab. While offering testing accuracy, this method can be very inefficient, expensive,
and dangerous. A feasible option is PHIL based compliance testing which offers an excellent alternative
to traditional testing methods. PHIL simulation has become the standard for many industries due to
its advantages such as highly efficient, repeatability, safety, scalability, and cost effectiveness.

In this paper, FAPR control strategies are tested through a generic PHIL based test bench. The PHIL
test setup has been developed at TU Delft. The test setup consists of a real-time target (RTT), grid
emulator (back-to-back converter), NovaCor real-time digital simulator (RTDS), and a DC-AC converter
(DUT). The detailed discussion on PHIL testing has been presented in Section 3.

The sections of the paper are organised as follows. The proposed generic definition of FAPR is
presented in Section 2. In Section 3, the PHIL test setup description and generic test methodology are
discussed. Section 4 presents the FAPR compliance criteria of wind turbine converter controls. Testing
of the FAPR converter controls through PHIL is discussed in Section 5. Section 6 concludes the paper.

2. Proposed Generic Definition of FAPR

Fast active power regulation (FAPR) is a control action applied to power electronic converters
used to interface renewable generation, storage, or responsive demand. It involves a continuous
measurement of grid frequency and/or active power deviation within very small-time frames, followed
by a given action of a given controller scheme to regulate the injection/absorption of instantaneous active
power to mitigate the frequency deviation caused by an imbalance. FAPR considers technical limitations
or boundaries determining the capability of the controller to provide a fast frequency response.

Figure 1 illustrates the time frame of different frequency control tasks. The time frame of
operation of FAPR may ideally be concurrent with the typical time frame of the generator’s response of
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inertial (e.g., 500 ms from the disturbance of active power). According to [19], the period highlighted
with dark orange corresponds to the action of inertial response, as a consequence of a variation of
the electromagnetic coupling between synchronous generators of an interconnected power system,
due to a perturbation of the system’s active power balance. According to [20], FAPR can support
the primary frequency response in Zone A, as shown in Figure 1.
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The description of the PHIL test setup components are as follows.
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3.1.1. NovaCor Real-Time Digital Simulator

NovaCor is the latest technology of the RTDS simulator, its previous version was the PB 5 card [21].
NovaCor is based on a multicore processor, which makes it the fastest real-time simulator. Various
power system nodes can be evaluated on a single NovaCor. RTDS is one of the most important
components of the PHIL test setup. It provides a function of connecting external physical devices to
the power system running on it. By connecting the physical equipment/devices to the RTDS real-time
simulation, the behaviour of the device and its impact on the simulated power system can be analysed.
In this test setup, RTDS communicates with an external device through the aurora communication
protocol. The aurora firmware is installed at one of the RTDS racks. RTDS and the external devices are
connected through an optical fibre and exchange the information through an aurora protocol.

3.1.2. Real-Time Target

The Triphase, real-time target has an operating system based on the Linux/Xenomai. The real-time
inter-PC interface assists the real-time target to connect in real-time to other real-time simulators such
as the RTDS, OPAL-RT OP5600, and external control units. This enables the creation of PHIL setups, as
well as the supervisory control of clusters of power module (PM) systems.

3.1.3. Grid Emulator Power Module

It is a back-to-back (B2B) converter, consisting of an active front-end converter and a voltage
source converter. The front-end converter is connected to the grid. Its main function is to keep the dc
link voltage constant, while the voltage source converter produces the desired voltage and frequency
at its terminals.

3.1.4. Device under Test

It is a dc-ac converter. It has an active and reactive power current reference as a set-point.
The active and reactive power injection into the power grid depend on the control strategy and grid
operating parameters (voltage and frequency). The reference current can be set locally or from other
real-time processors.

3.2. Generic Converters Control PHIL Testing Methodology

The steps adopted for the control methods testing on PHIL of the grid connected converters are as
follows. For the better understanding of the terms used in the methodology, an illustrative figure is
provided in Figure 3.

1. Development of the power system model on an EMT based software RSCAD [22] and the power
system model is compiled to execute on the RTDS NovaCor. RTDS facilitates the connection of
external devices to the simulated power system.

2. The MATLAB/Simulink environment has been used for the software model development of
the DUT and grid emulator. These models are compiled and executed on a real-time target (RTT).
The output of DUT and grid emulator are controlled through set-points. The set-points of DUT
and grid emulator are Id, Iq, voltage, frequency, and harmonics, respectively.

3. The set-points for the DUT and grid emulator are obtained from the RTDS through
an aurora protocol.

4. The RTDS and external device, as well as the RTT are physically connected by an optical
fiber and exchange the information through an aurora communication protocol. The RTT uses
a circular inter-process communication (CIPC) buffer. CIPC is a shared memory strategy based
on ring-buffers to allow MATLAB/Simulink models to communicate with each other and other
processors. A standard Simulink model using buffers as a communication infrastructure has
a write functionality and/or a read functionality. To interpret the data in the buffers correctly,
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the read and write blocks in Simulink make use of bus definitions. In this developed test setup,
there can be an exchange of 256 signals between RTDS and RTT.

5. In order to emulate the simulated grid running in RTDS by the external device grid emulator,
the voltage and frequency of the bus of the simulation network where external devices are to be
connected, are sent from RTDS to RTT. RTT controls the grid emulator and generates the simulated
grid behaviour at the output terminal of the grid emulator.

6. FAPR control strategies can be implemented either on MATLAB or the RSCAD software.
The implemented FAPR control strategies generate a current reference for active power generation.
The DUT, which is a mock-up VSC, is virtually connected to the grid (which is running on
RTDS), and injects active power towards the grid emulator depending on the applied FAPR
control strategy.
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4. Criteria for Compliance Testing

The FAPR control methods should satisfy the following conditions, defined here based on
requirements given in [23–26]. These requirements can be adjusted depending on the type and size
(e.g., kW or MW wind generator) of the source of active power, and the properties of the transmission
grid to which it will be connected.

1. The frequency of ROCOF and NADIR should comply with the grid code requirement (e.g., 0.5 Hz/s
for ROCOF, 49.2 Hz for NADIR) for the outage of the biggest generation unit.

2. The FAPR control should respond according to the controller gain to inject the amount of power.
The gain is tuned depending on the amount of the available active power.

3. At all times the control will be able to increase or decrease the active power injected into
the network within a range of ∆Pmax from the steady state active power output value prior
to the disturbance. The value of ∆Pmax depends on the technology of a specific manufacturer.
According to the existing literature, as an indicative reference value, it may be considered that
the value of ∆Pmax can be adjusted between 0 and 10% of the maximum capacity of the grid
interfacing power electronic converter.



Energies 2020, 13, 5203 6 of 12

4. If the FAPR controller is implemented separately with the storage, then, the injected active power
depends on the storage capacity and power requirements to the grid.

5. After triggering FAPR, the response speed should be 500–700 ms (the rise time of injected active
power, which is illustrated later with an actual simulation in Section 5). The installation can
increase or decrease the active power in at least a value of 10% of the maximum capacity of
the grid interfacing power electronic converter (if the grid interfacing power electronic converter
is operating at its rated output and the same converter is used for power injection by FAPR).

6. Must be able to supply an energy equivalent to 5–10% of the grid interfacing power electronic
converter’s maximum capacity for 8–15 s, as illustrated later with an actual simulation in
Section 5 [27]. After this period, it is expected that the primary frequency containment
reserves operate and depending on the recovery strategy, the FAPR controller can be deactivated.
The duration of FAPR can be adjusted for instance, by using a coordinated strategy [28].

7. Controllers should have a frequency insensitivity band between ±10 to ±50 mHz (depending on
the stiffness of the grid) [29].

8. This control should not contribute negatively to the damping of power oscillations of
the electrical system.

5. Testing of FAPR Converter Control Through PHIL

In this section, a combined droop- and derivative-based FAPR control method is tested on the PHIL
setup presented in Section 3. The combined droop- and derivative-based FAPR is a control strategy,
which modulates injected active power according to the derivative of deviation of the frequency
from its nominal value. The combined droop- and derivative control-based FAPR implementation
in the RSCAD software is depicted in Figure 4. The error in frequency is fed to the derivative
controller as input, which is passed through the dead-band, here the dead-band is of negligible value
because the immediate response of the controller is a priority during the containment period. Further,
the frequency error signal is applied to the derivative block, which has been realized by combining
a low pass Butterworth filter and first-order washout filter. The cutoff frequency of the low pass
Butterworth filter is 0.5 Hz. The time constant and gain of the washout filter are 10−5 s and 8 × 10−5 s,
respectively. The parameters of the combined droop and derivative controller is selected depending on
the amount of power to be regulated.
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Further, this signal is multiplied with a user-defined gain called derivative gain Kd, which shall
define the response sensitivity of the derivative block. However, the derivative control block alone
cannot mitigate the frequency discrepancy, because the derivative block output will only be active
during a large dynamic frequency deviation and for the rest of the time (i.e., for example, when
the frequency is settled at 49.6 Hz due to the load imbalance after the point of NADIR) the result of
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the derivative block shall be zero. Therefore, a cascaded droop and derivative block need to be active
for improvement in both NADIR and RoCoF.

The controller gains kp and kd values are selected by the sensitivity analysis. Figure 5 shows
the frequency dynamics for the various values of the controller gains Kp and Kd of the combined
droop- and derivative-based FAPR controller. It can be observed that at Kp = 0.73 and Kd = 0.68,
the dynamic is oscillatory. For the power system under study, the value of Kp = 0.9 and Kd = 0.4 has
been selected.
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The power system considered under this study is a modified IEEE (Institute of Electrical
and Electronics Engineers) 9-bus system, which is used to test the controllers with the topology
depicted in Figure 6. The conventional IEEE 9-bus system is altered by adding two wind power plants
which contribute 52% of the power share. It is noteworthy that the wind turbine models used here are
full scale not aggregate models. Table 1 describes the load flow results of the modified IEEE 9 bus
system that is given in Table 1. Moreover, it is worth mentioning that the total generation and load
balance has been maintained as the same as a standard IEEE bus system. The penetration of renewables
has not been increased just by increasing the active power from the wind turbines but rather replacing
synchronous generators. At each generation and load bus, the integrity of voltage and active power
balance has been maintained similar to the standard IEEE 9 bus system.
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Table 1. Load flow results of the modified IEEE 9 bus system.

Component G1 G2 WG1 WG2 L5 L6 L8

MW 73.4 78.2 82.6 84 125 90 100
MVAr 33.8 −1.8 0 0 50 30 35

The combined droop- and derivative-based FAPR control strategy has been tested on the PHIL
test setup under the following conditions: (a) Device under test is connected at bus 7 (Figure 6), (b)
the power system is a modified IEEE 9 bus system that has a 52% penetration of type-IV wind power
generation, as given in Figure 6, (c) a 5% sudden increase in the load at bus 8 (Figure 6) and (d) FAPR
controller is active for 10 s. The steps adopted for the testing of FAPR through PHIL are as follows.

1. Development of the power system model (modified IEEE 9 bus system) on an EMT-based software
RSCAD [22] and the power system model is compiled to execute on the RTDS NovaCor.

2. In order to emulate the behaviour of bus 7 at the output terminals of the grid emulator, the voltage
and frequency of bus 7 of the modified IEEE 9 bus system at which the type 4 wind generator
is connected was sent from RTDS to RTT through an aurora protocol, as depicted in Figure 7.
The active power for the DUT is taken from the local grid at 400 V and 50 Hz RMS. The grid
emulator is a back-to-back (B2B) converter. The output of grid emulator is connected to the AC
side of the DUT, as shown in Figure 7. The DC side of the DUT is connected to the dc bus of
the B2B link of grid emulator.

3. As RTDS and the real-time target both are running in real-time, the combined droop-
and derivative-based FAPR control method was implemented in RSCAD. The current reference
generated by the FAPR controller for the injection of active and reactive power are Id_ref and Iq_ref.
These current references were fed to the device under test, as shown in Figure 7. The device under
test output power depends on the value of the current reference. The signals corresponding to
the three phase output current of the DUT is fed to the simulated grid, as shown in Figure 7.
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From Figures 8 and 9, the dynamics of the active power injection by the combined droop-
and derivative-based FAPR control method and its counter effect on the frequency can be seen.
In addition, the active power injection and frequency curves are complying with the compliance
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criteria for FAPR, as discussed in Section 4. The frequency NADIR and RoCoF are within the defined
limit. NADIR is improved from 49.64 to 49.82 Hz. While ROCOF is improved from 0.28 Hz/s to
0.04 Hz/s. The gain of the controller is tuned (K = 1 pu) to inject 10% of the rated power. It is injecting
10% of the rated power. After a few seconds, the power injection decreases due to a decrease in
the requirement of power and improvement in the frequency. The rise time of active power is 510 ms,
which is within the specified limit. The FAPR controller is active for 10 s. The frequency insensitivity
band of ±30 mHz has been considered. The power system is stable and the implemented FAPR has not
contributed negatively to the damping of power oscillations of the electrical system.
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6. Conclusions

In this study, a power hardware-in-the loop (PHIL) based method for FAPR compliance testing
of the wind turbine converter controls has been presented. The test setup consists of a real-time
target (RTT), grid emulator (back-to-back converter), NovaCor real-time digital simulator (RTDS),
a dc-ac converter (device under test), and an aurora communication protocol. Based on the literature
survey, the compliance criteria for the FAPR of the wind turbine converters have been outlined.
The developed PHIL based test method is applicable for all kinds of the grid connected converter
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control. There is flexibility in the implementation of control strategies. It can be implemented in
RSCAD or the MATLAB/Simulink software. It is safer, as there is no electrical connection between
RTDS and the converters. They are connected through an optical fiber. Multiple converters can be
tested, as it has 256 signals exchange at a time. Furthermore, it is extendable. The rise time of active
power injected by the real converter (device under test) is 510 ms, which is within the specified limit of
FAPR. The improvement in RoCoF and NADIR was observed due to the power injected by the FAPR
control of the wind turbine.

Therefore, the presented PHIL testing method of converter controls is an efficient method for
testing in laboratory conditions before employment in the actual power system. An analysis from
the pure device point-of-view, involving for instance, the time varying current injection, harmonic
distortion, and grid synchronization technique will be reported in the future publication.
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