
energies

Article

Electricity Price Forecasting Based on Self-Adaptive
Decomposition and Heterogeneous Ensemble Learning

Matheus Henrique Dal Molin Ribeiro 1,2 , Stéfano Frizzo Stefenon 3 ,
José Donizetti de Lima 1,4,* , Ademir Nied 3 , Viviana Cocco Mariani 5,6

and Leandro dos Santos Coelho 2,5

1 Department of Mathematics (DAMAT), Federal Technological University of Parana (UTFPR),
Pato Branco (PR) 85503-390, Brazil; mribeiro@utfpr.edu.br

2 Industrial and Systems Engineering Graduate Program (PPGEPS), Pontifical Catholic
University of Parana (PUCPR), Curitiba (PR) 80215-901, Brazil; leandro.coelho@pucpr.br

3 Electrical Engineering Graduate Program, Department of Electrical Engineering,
Santa Catarina State University (UDESC), Joinvile (SC) 80215-901, Brazil;
stefano.stefenon@udesc.br (S.F.S.); ademir.nied@udesc.br (A.N.)

4 Industrial and Systems Engineering Graduate Program (PPGEPS),
Federal Technological University of Parana (UTFPR), Pato Branco (PR) 85503-390, Brazil

5 Department of Electrical Engineering, Federal University of Parana (UFPR),
Curitiba (PR) 80060-000, Brazil; viviana.mariani@pucpr.br

6 Department of Mechanical Engineering, Pontifical Catholic University of Parana (PUCPR),
Curitiba (PR) 80215-901, Brazil

* Correspondence: donizetti@utfpr.edu.br

Received: 4 August 2020; Accepted: 4 September 2020; Published: 5 October 2020
����������
�������

Abstract: Electricity price forecasting plays a vital role in the financial markets. This paper proposes a
self-adaptive, decomposed, heterogeneous, and ensemble learning model for short-term electricity
price forecasting one, two, and three-months-ahead in the Brazilian market. Exogenous variables,
such as supply, lagged prices and demand are considered as inputs signals of the forecasting model.
Firstly, the coyote optimization algorithm is adopted to tune the hyperparameters of complementary
ensemble empirical mode decomposition in the pre-processing phase. Next, three machine learning
models, including extreme learning machine, gradient boosting machine, and support vector
regression models, as well as Gaussian process, are designed with the intent of handling the
components obtained through the signal decomposition approach with focus on time series forecasting.
The individual forecasting models are directly integrated in order to obtain the final forecasting prices
one to three-months-ahead. In this case, a grid of forecasting models is obtained. The best forecasting
model is the one that has better generalization out-of-sample. The empirical results show the efficiency
of the proposed model. Additionally, it can achieve forecasting errors lower than 4.2% in terms of
symmetric mean absolute percentage error. The ranking of importance of the variables, from the
smallest to the largest is, lagged prices, demand, and supply. This paper provided useful insights for
multi-step-ahead forecasting in the electrical market, once the proposed model can enhance forecasting
accuracy and stability.

Keywords: complementary ensemble empirical mode decomposition; electricity price forecasting;
ensemble learning models; exogenous variables; short-term forecasting

1. Introduction

The electricity power market is an important research topic, which has been receiving much
attention from research over the last years [1–3]. The high interest in this field is due to the forecasting
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prices allowing for managers (short, medium, or long-term horizon) to use the forecasting information
to adjust their finances, as well as develop strategic planning to support the decision-making system.
The development of high accuracy forecasting models is hard, due to the data presenting high
frequency, volatility, non-linearity, and seasonality [4]. Moreover, climatic variables, energy demand,
power supply capacity, and the impact of renewable energy sources [5–7] make the forecasting process
a challenging task. The incorporation of exogenous variables in the forecasting models could help the
models to understand the data dynamics and allow for them to obtain more accurate results.

In Brazil, the electricity price can be approached as an optimization problem that assesses the
level of the reservoirs of large hydroelectric plants. If the level of the reservoirs is low, water may be
scarce in the future, depending on an analysis of stochastic forecasting [8]. When there is a tendency to
reduce the level of the reservoir, the price of electricity is increased, both for industries in the short-term
market and homes through the implementation of higher tariff flags. This procedure is used, because,
in Brazil, there is a greater source of hydraulic generation, which requires adequate planning and
control of the energy price to guarantee the supply of electricity reliably [9].

To develop accurate forecasting models, there is a trend that involves using combined or hybrid
forecasting methods such as pre-processing (decomposition), optimization (single and multi-objective
approaches), and artificial intelligence models [10–13]. Within this context, each methodology can
add to the forecasting model its own expertise to deal with different signals characteristics. In this
aspect, pre-processing approaches, especially decomposition methods, have the objective of filtering
data noise and non-linearities, by decomposing the original signal into different kinds of frequencies
(namely components) [14].

Each component can represent the trend, seasonality, high, and low frequencies. In this respect,
in the forecasting field, a different class of models (heterogeneous ensemble learning of components) or
the same model (homogeneous ensemble learning of components) regarding learning structure can be
used to train and predict each decomposed component of the evaluated signal. Through this process,
the diversity is enhanced and, when a final efficient forecasting model is obtained by aggregation
(directly aggregation), an efficient model is obtained. Alongside this, evolutionary computation
and swarm intelligence algorithms can be used to tune the hyperparameters of machine learning
models [15] or the time series decomposition methods [16], aiming to make the model more accurate.

1.1. Related Works

When considering electricity price forecasting, previous studies have given attention to hybrid
forecasting models. Firstly, Yang et al. [17] combined the decomposition methods variational mode
decomposition (VMD) and improved complete ensemble empirical mode decomposition with adaptive
noise. Subsequently, each component was trained and predicted by Elman partially recurrent neural
network optimized by a multi-objective grey wolf optimizer. In the same way, Zhang et al. [18] used
VMD with hyperparameters defined by self-adaptive particle swarm optimization. In order to forecast
the modes in a one-step-ahead system, seasonal autoregressive integrated moving average and deep
belief network were adopted to forecast regular and irregular modes, respectively.

Adjacent to the previous studies, Qiao and Yang [19] adopted wavelet transform coupled with
stacked autoencoder model and long short-term memory (LSTM) to forecast residential, commercial,
and industrial electricity prices. In its turn, Zhang et al. [20] proposed a cuckoo search-based feature
selection integrated to singular spectrum analysis and support vector regression (SVR). The LSTM
can have high accuracy for predicting chaotic time series, and can be superior to classic forecasting
algorithms. In addition to the electricity price forecast, the application of LSTM has a good performance
for photovoltaic forecasting, among other applications [21].

Yang et al. [22] adopted VMD algorithm, improved multi-objective sine cosine algorithm,
and regularized extreme learning machine for multi-step electricity price forecasting. In this approach,
the VMD approach is employed to extract the data features, such as high and lower frequency,
but did not perform discussions about the feasibility of other features in the forecasting system.
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Zhou et al. [23] coupled LSTM and ensemble empirical mode decomposition (EEMD) to forecasting
electricity markets of Pennsylvania, New Jersey, and Maryland. Khalid et al. [24] proposed
an optimized deep neural network framework to conduct electricity price forecasting based on the
Jaya optimizer and LSTM approach. The main drawback of this proposed approach is related to the
lack of the use of exogenous variables and use of decomposition approaches to cap the data variability.
The use of artificial intelligence models, as well as non-linear models are attractive tools to make the
forecasting system more robust, as observed in Ribeiro and Coelho [12] and Ribeiro et al. [13].

Many papers related to electricity forecasting are based on energy consumption. As exposed by
Alipour et al. [25] renewable energy resources have an uncertainty of electric power generation, which can
lead to problems in the electrical power systems. As presented by Kazemzadeh et al. [26] load forecast,
it is one of the main base studies for the planning and operation of the expansion of the electric power
system. In [27], an evaluation of the forecast is made for a project up to 2030, many models are covered in
this work in order to show that there is a better performance depending on the algorithm.

Heydari et al. [28] proposed a composed model based on VMD, feature selection (selection of
features related to hours of the day) in the Pennsylvania-New Jersey-Maryland and Spanish electricity
markets. This paper lacks the discussion about the feasibility of the use of other features related to
the electricity market. The authors argued that the obtained results outperform the results of some
benchmarks, such as generalized regression and radial basis function neural networks.

In addition to electricity price and load forecasting, the use of artificial intelligence is powerful to
assess the development of possible failures in the electrical system [29]. As presented by Stefenon et al. [30],
the use of the wavelet transform reduces signal noise, improving the analysis of chaotic time signals.
The results using the wavelet group method of data handling proved to be superior to well-consolidated
algorithms as LSTM and adaptive neuro fuzzy inference system. Additionally, pre-processing techniques
of time series are robust approaches that are widely used to de-noise the raw signal, and then enhance the
forecasting accuracy, as approached in da Silva et al. [31].

Focused on the analysis of the electrical system about electricity generation in Brazil, many works
evaluated the generation capacity concerning a hydroelectric source, as presented in Brito et al. [32]
and Fredo et al. [33], or as a hydrothermal problem as discussed by Finardi et al. [34] and
van Ackooij et al. [35]. Moreover, according to Silveira Gontijo and Azevedo Costa [36] in Brazil,
there is a predominance of hydroelectric generation (73%), which makes the analysis of hydroelectric
energy price forecasting an important field of study.

According to the above-related papers, there is no consensus about which decomposition method
to employ in price forecasting analysis. Based on this, a different kind of decomposition, named
complementary ensemble empirical mode decomposition (CEEMD), can be considered. In this context,
the CEEMD, an extension of the EEMD method, has been applied in several fields of knowledge,
such as crude oil price forecasting [37], short-term photovoltaic power generation forecasting [38],
and detecting epileptic seizures in electroencephalogram [39].

Yeh et al. [40] proposed the CEEMD, in which the paired noises are perfectly anti-correlated
and have an exact cancellation of the residue noise in the reconstruction of the signal. The CEEMD
split the original signal in a set of components named intrinsic mode functions (IMFs) and one
residue component, which are designed to represent a trend, seasonality, high and lower frequency.
When considering the aforementioned, due to the use of the CEEMD approach, two questions emerge.
The first one lies in which algorithm should be employed to train and forecast each component.
The second refers to the selection of CEEMD’s hyperparameters, namely the number of components,
ensemble, and amplitude of standard deviation.

Alongside this, especially in Brazil, the evaluation of the energy price forecast is very important,
when considering that the price of electricity has great influence due to the level of the large
water reservoirs of hydroelectric plants. As the system is hydrothermal, when the reservoir level
is low, thermoelectric plants are activated, depending on energy planning. The cost of generating
thermoelectric plants is higher than that of hydroelectric plants, as there is a variable cost due to the
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inputs that are needed to produce energy, so there can be a wide range of higher prices in dry periods.
For this reason, evaluating the forecast of the future price, based on seasonal market and climate
factors, generate greater reliability for the energy market.

1.2. Objective and Contribution

Therefore, this paper proposes a self-adaptive decomposed heterogeneous ensemble learning
model. The methods CEEMD, coyote optimization algorithm (COA) [41] and machine learning
are combined to develop a heterogeneous ensemble learning model, to forecasting commercial and
industrial electricity prices in Brazil for multi-step-ahead (one, two, and three months-ahead) horizons.
Exogenous variables, including energy generation (supply), energy prices lagged, and consumption
(demand) are considered to be inputs by the forecasting model. Firstly, the COA optimizer is applied to
define the CEEMD’s hyperparameters and, subsequently, CEEMD decomposes the series of electricity
energy prices (commercial and industrial). Thereafter, the components obtained in the previous step
(IMFs and one residue component) are trained using extreme learning machines (ELM) [42], SVR [43],
Gaussian process (GP) [44], and gradient boosting machines (GBM) [45]. These individual models are
chosen due to the effects already observed for regression and time series forecasting tasks, as described
in [46–48].

The hyperparameters of each model are obtained by grid-search during leave-one-out
cross-validation time slice (LOOCV-TS). Finally, the prediction results of different components
are directly integrated to generate the final electricity price. Afterwards, by the grid of models,
the most adequate model is the one with the best generalization out-of-sample capacity in terms
of coefficient of determination (R2), symmetrical mean absolute percentage error (sMAPE), root
mean squared error (RMSE), and overall weight average (OWA). The proposed framework is
compared with COA-CEEMD homogeneous based methods, i.e., approaches which consider the
same model to handle all components, as well as with homogeneous ensemble learning models
that adopted maximal overlap discrete wavelet transform (MODWT) [49] for data pre-processing.
Moreover, the autoregressive integrated moving average (ARIMA) [50], naïve [51], and theta
models [52,53] are used as additional benchmarks.

The contributions of this paper are described, as follows:

• Firstly, this paper contributes to the field of time series pre-processing by coupling the CEEMD
with metaheuristic approach named COA to tune its hyperparameters;

• Second, based on the literature review gap, exogenous variables related to supply and demand are
used as inputs for each evaluated model, and their importance is assessed. The inputs associated
to supply are the generation of hydraulic, nuclear, and thermal energy. Thus, the variables related
to demand are the monthly consumption for each area (commercial and industrial). Through the
use of these variables is intended to giving additional information for the models to learn the data
behavior, so that they achieve high forecasting accuracy;

• Third, with the combination of the different non-linear models (ELM, SVR, GP, and GBM) to train
and predict each component of the decomposed stage, the developed model can learn the data
patterns and reflect the high-frequency of electricity price data; and,

• Also, this paper contributes for the literature of models used to forecasting electricity prices
by investigating the performance of decomposed homogeneous and heterogeneous ensemble
learning models.

The organization of the remainder of this paper is as follows: Section 2.1 presents the datasets that
were adopted in this paper. Section 2.2 brings a brief description of the adopted methods in the forecasting
framework. Section 3 details the procedures of the research methodology. Afterwards, Section 4 describes
the results and discussions. Finally, Section 5 concludes the paper with final considerations, limitations of
the study, and proposals of research directions.
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2. Material & Methods

This Section presents the description of the data (Section 2.1) and methods applied in this paper
(Section 2.2).

2.1. Material

The datasets analyzed in this paper refer to Brazil’s commercial and industrial electricity prices
(Brazilian currency—Real—R$) by megawatt-hour (MWh). Additionally, exogenous variables, such as
energy generation (supply) and consumption (demand) (MWh), are considered. The datasets consist
of 289 monthly observations from April 1996 to December 2019. These data were obtained from the
website of the Institute of Applied Economics Research (IPEA) (Instituto de Pesquisa Econômica Aplicada,
in Portuguese) available in http://www.ipeadata.gov.br/Default.aspx.

The datasets were split into training and testing sets in the proportion of 70% and 30%, respectively.
The first 70% of them were used to train the adopted models and the remaining 30% of them were used
to test the effectiveness of evaluated forecasting models. This range is commonly used in the literature,
such as observed in Ribeiro and Coelho [12], and used in this paper. This proportion adopted to split
the datasets into training and test sets allows for us to give the models more information to the adopted
models learn the prices’ dynamic, as well as to have a sufficient amount of the data to evaluate the
effectiveness of the proposed model.

Figure 1 illustrates the electricity energy prices series, and the time series for the exogenous
variables are shown in Figures 2 and 3. According to the Shapiro–Wilk normality test, the output
variables for commercial and residential cases do not present a normal distribution (W = 0.9130 − 0.9215,
p-value < 0.05). In Table 1, a summary of the statistical indicators of commercial and industrial electricity
prices is shown. Moreover, previous prices are used as inputs signals by the forecasting system, and more
details are described in the methodology section. However, to avoid repetition, the statistical indicators
are not addressed in Table 1 for this variable.
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Figure 1. Brazilian electricity prices.
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Table 1. Descriptive measures for Brazilian commercial, industrial electricity price, and exogenous variables.

Variable Set Dataset Statistical Indicator

Minimun Median Mean Maximum Standard Deviation

Output
(Price)

Whole
Commercial

95.63 276.62 274.83 570.80 123.04
Training 95.63 254.01 215.50 314.14 75.74

Test 254.58 441.55 414.16 570.80 97.69

Whole
Industrial

53.13 217.03 215.70 500.05 125.31
Training 53.13 160.81 152.52 265.07 73.22

Test 208.54 391.88 364.10 500.05 92.58

Input
(Demand)

Whole
Commercial

2647.00 5068.00 5312.33 8198.00 1629.53
Training 2647.00 4214.00 4429.82 7037.00 1039.63

Test 6454.00 7380.50 7385.21 8198.00 460.02

Whole
Industrial

8753.00 13,602.00 12,914.72 15,886.00 2036.33
Training 8753.00 12,017.00 12,329.83 15,853.00 2138.43

Test 12,538.00 14,122.50 14,288.53 15,886.00 681.88

Input
(Supply)

Whole
Hydraulic

20,593.00 31,434.50 31,300.98 43,604.00 4520.99
Training 20,593.00 29,586.50 30,197.74 42,429.00 4441.69

Test 27,940.00 33,484.00 33,892.31 43,604.00 3560.08

Whole
Thermal

265.00 1833.00 3888.18 13181.00 3721.82
Training 265.00 1462.50 1654.18 7158.00 1046.48

Test 4569.00 9119.00 9135.48 13,181.00 2112.50

Whole
Nuclear

0 1172.50 1003.05 1504.00 450.61
Training 0 1068.00 880.25 1480.00 464.16

Test 515.00 1395.00 1291.49 1504.00 236.90
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Figure 2. Brazilian electricity demand.
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Figure 3. Brazilian electricity supply.

2.2. Methods

This subsection describes the methods employed in this paper.

2.2.1. Coyote Optimization Algorithm

The COA optimizer is a swarm intelligence algorithm that considers the social relations of the
Canis latrans species and its adaptation to the environment proposed by [41] devoted to solving
optimization problems. Therefore, the COA mechanism has been designed based on the social
conditions of the coyotes, which means the decision variables ~x of a global optimization problem [54].
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The COA’s performance was evaluated under 40 benchmark functions in the optimization field with
different features as multimodality, nonlinearity, separability, and the number of optimized variables.
In most of the benchmarks evaluated, set of 40 benchmark functions, the COA optimizer outperformed
some classical metaheuristics, such as particle swarm optimization, artificial bee colony, symbiotic
organisms search, grey wolf optimizer, bat-inspired algorithm, and firefly algorithm. Through these
results, it is possible to state that COA could be applied in new applications and problems, such as
that proposed in this paper.

This algorithm has recently been applied in several applications, especially to feature selection [54],
tune heavy-duty gas turbine hyperparameters [55], optimal power flow for transmission power
networks [56] define networks reconfiguration [57], and for optimal parameter estimation of a proton
exchange membrane fuel cell [58]. Due to the promising potentials results, a search of the literature
reveals that the COA has not yet been applied for the CEEMD’s hyperparameters definition, then it
is adopted. In the COA approach, there are only two control parameters, the number of packs (Np)
and the number of coyotes per pack (Nc). The population size is defined by multiplying (Np) and (Nc),
both natural numbers, and then the population is divided into packs with coyotes each.

2.2.2. Complementary Ensemble Empirical Mode Decomposition

The empirical mode decomposition (EMD) [59] and its improvements, such as EEMD and
CEEMD [40], were proposed to deal with the non-linearity and non-stationarity of time series.
The EMD separates the original signal into IMFs and one residue component. The main drawback of
this decomposition is named mode mixed problem (MMP). The MMP is characterized by the fact that
disparate scales could appear in one IMF. Next, to overcome this disadvantage, EEMD was proposed,
and in the sequence CEEMD.

Despite the fact that EEMD has effectively resolved the MMP, the residue noise in the signal
reconstruction has been raised, and the noise is independent and identically distributed [60].
To improve EEMD, [40] proposed the CEEMD, in which the paired noises are perfectly anti-correlated
and have an exact cancellation of the residue noise in the reconstruction of the signal. Because of the
effectiveness of CEEMD to de-noise time series, it has been applied for crude oil price forecasting [37],
wind speed forecasting [61], and this paper employs this decomposition approach to pre-process the
Brazilian electricity energy prices.

The CEEMD has three main hyperparameters, named as the number of trials or number of ensembles,
the number of components, and noise amplitude. Especially, the noise amplitude is designed to be some
percentage of the data standard deviation. In most of the cases, these hyperparameters are defined by
trial and error procedure [37,60,62]. However, this paper proposes the use of the COA approach to
minimize the inverse of the orthogonal index (OI) [16]. The OI is used to measure the orthogonality of the
EMD numerically, and a value close to zero is desirable. A smaller OI indicates the best decomposition
result [59].

The OI can be computed, as follows:

OI =
T

∑
t=0

(
k

∑
i=1

k

∑
j=1

IMFi(t) IMFj(t)/x2(t)

)
, (1)

in which T is the number of time-series observations, IMFi and IMFj are the i-th and j-th components,
k is the number of components, and x(t) is the original signal at time t = 0, . . . , T.

2.2.3. Extreme Learning Machine

The ELM is a learning algorithm proposed by [42] designed for single-hidden layer feedforward
neural networks. In this approach, hidden nodes are randomly chosen and outputs are obtained
analytically. Good generalization and fast learning speed are the main advantages of ELM [48].
The input weights and hidden biases are specified arbitrarily and then are fixed. The output weights
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are obtained by solving the multiplication of the Moore–Penrose Generalized inverse matrix of the
output variable matrix [63].

2.2.4. Gradient Boosting Machine

The GBM is an ensemble learning approach that employs a sequential learning process to build
an efficient classification or regression model [45]. A regression tree is initially fitted to the data and,
on this basis, predictions and the initial residue are computed. A new model is fitted to the previous
residue, a new prediction, to which the initial forecast is added, and then a new residue is obtained.
This process is iteratively repeated until a convergence criterion is obtained. In each iteration, a new
model is fitted to the data, aiming to compensate for the weaknesses of the previous model [12].

2.2.5. Gaussian Process

A GP is a stochastic process, in which every set of the random variable is multivariate normally
distributed. In this respect, a GP is entirely specified by its statistical orders mean and covariance or
kernel function. Through kernel function, it is possible to maps the similarity between observations of
the training set with the purpose of predicting new observations [44].

2.2.6. Support Vector Regression

The SVR consists in determining support vectors close to a hyperplane that maximizes the margin
between two-point classes obtained from the difference between the target value and a threshold.
To deal with non-linear problems, SVR takes into account kernel functions, which calculates the
similarity between two observations. In this paper, the linear kernel is adopted. The main advantages
of the use of the SVR lie in its capacity to capture the predictor non-linearity and then use it to improve
the forecasting cases. In the same direction, it is advantageous to employ this perspective in this
adopted case study, once the samples are small [64].

2.3. Performance Indicators

To check the forecasting models’ performance, the sMAPE (2), R2 (4), and RMSE (3) criteria
are used. Additionally, a criterion which combines the sMAPE and RMSE, named OWA (5) is
introduced to evaluating the accuracy of the proposed model against benchmark compared models.
According to Makridakis et al. [65], the use of OWA would help to achieve a higher level of objectivity.
These measures are described in the following.

sMAPE =
2
n

n

∑
i=1

|yi − ŷi|
|yi|+ |ŷi|

, (2)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2, (3)

R2 = 1−

n

∑
i=1

(yi − ŷi)
2

n

∑
i=1

(yi − y)2
, (4)

OWA =
1
2

[
sMAPEp

sMAPEc
+

RMSEp

RMSEc

]
. (5)

where n is the number of observations, yi and ŷi are the i-th observed and predicted values, respectively.
additionally, the Criteriac and Criteriap represent the performance measure of compared and proposed
model, respectively.
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By considering the criteria sMAPE, and RMSE, lower values are desired, while, for R2, a value
closest to one indicates better performance. Additionally, the Diebold–Mariano (DM) test [66] is applied
in this paper to compare the forecasting errors of proposed versus compared forecasting models.

3. The Proposed Self-Adaptive Decomposed Heterogeneous Ensemble Learning Model

This section presents the steps adopted to develop the self-adaptive decomposed heterogeneous
ensemble learning model.

Step 1: The COA is coupled with CEEMD to tune the CEEMD’s hyperparameters. For COA
optimizer, the number of coyotes and packs are defined as 5 and 10, respectively. These values
are selected by the trial and error, once that there is no guideline for the definition of COA’s
hyperparameters [41]. Moreover, if the increase in the number of packs, and/or coyotes is considered,
the optimization time will also increase due to the greater number of evaluations to be carried out.
However, for this problem, it was observed that the accuracy does not improve significantly. In this
way, the initial values adopted for these parameters are fixed, for both problems.

Table 2 shows the CEEMD’s hyperparameters defined by COA, where 50 generations and
population of size equals to 50 is adopted. Finally, the original electricity price is decomposed.

Table 2. Search boundaries of the CEEMD hyperparameters.

Hyperparameter Boundaries Selected Hyperparameters

Lower Bound Upper Bound Commercial Industrial

Number of ensembles 50 100 51 85

Number of Components 2 5 4 4

Noise amplitude 0.2 0.5 0.4049 0.3134

Step 2: Each component obtained in step 1 (three IMFs and one residue) is trained using
ELM, GBM, GP, and SVR. In the training stage, LOOCV-TS IS adopted. The inputs are defined
by auto-correlation and partial auto-correlation analysis. The data are centered by its mean value and
divided by its standard deviation. The training structure is stated, as follows:

y(t+1,k) = f
{

y(t,k), . . . , y(t−ny ,k), X(t+h−nx)

}
+ ε ε ∼ N(0, σ2), (6)

and forecast electricity energy prices one-month-ahead (7), two-months-ahead (8),
and three-months-ahead (9) according to:

ŷ(t+h,k) = f
{

y(t+h−1,k), y(t+h−2,k), y(t+h−3,k), X(t+h−1)

}
(7)

ŷ(t+h,k) = f
{

ŷ(t+h−1,k), y(t+h−2,k), y(t+h−3,k), X(t+h−2)

}
(8)

ŷ(t+h,k) = f
{

ŷ(t+h−1,k), ŷ(t+h−2,k), y(t+h−3,k), X(t+h−3)

}
(9)

in which f is a function that is related to the adopted model in the training stage, ŷ(t+h,k) is the forecast
value for k-th component obtained in the decomposition stage (k = 1,. . . ,4) on time t and forecast
horizon h (h = 1, 2, 3), y(t+h−ny ,k) are the previously prices lagged in ny = 1, . . . , 3 and ε is the random
error which follows a normal distribution N with zero mean and variance σ2. Also, X(t+h−nx) is the
exogenous inputs vector at the maximum lag of inputs (nx = 1 if h = 1, and nx = 3 if h = 3).

The behavior observed in the residue component of both time series is due to the growing
trend in prices. Additionally, for the GP approach, there are no hyperparameters for tuning and the
linear kernel function is used. Moreover, for GBM the shrinkage and minimum number of terminal
node size are held constant equal 0.1 and 10, respectively. Finally, for SVR, the Radial Basis kernel
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function is adopted. The kernels of GP and SVR were defined by grid-search by RMSE minimization
during LOOCV-TS.

Step 3: The forecasts of different models used for each component are directly integrated
(simple sum) to generate final electricity price values. Afterwards, by the grid of models, the most
adequate model is the one with the best generalization out-of-sample capacity in terms of RMSE and
sMAPE. Table 3 describes the models that are used for each component.

Table 3. Models adopted by each component in each dataset.

Dataset Component Forecasting Horizon

One-Month-Ahead Two-Months-Ahead Three-Months-Ahead

Commercial

IMF1 GBM GBM ELM
IMF2 ELM ELM GBM
IMF3 SVR SVR GP

Residue SVR SVR GP

Industrial

IMF1 GBM GBM GP
IMF2 GBM GP GP
IMF3 GP GP GBM

Residue GP GP SVR

The decomposed commercial and industrial electricity prices are illustrated in Figures 4 and 5,
respectively.
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Figure 4. Decomposed series for commercial prices.
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Step 4: Obtaining forecasts out-of-sample (test set), and the performance indicators defined
in Section 2.3 are computed and two kinds of comparisons are conducted. The first is the
comparison of self-adaptive decomposed heterogeneous and homogeneous ensemble learning models.
Second, a comparison of the proposed model and models without decomposition are developed.

Table 4 presents the models’ hyperparameters obtained by grid-search.

Table 4. Hyperparameters selected by grid-search for each adopted approach.

Dataset Component Forecasting
Horizon

ELM SVR GBM

# Neurons Activation
Function

Weights
Initialization Cost Boosting

Interactions
Maximum Tree

Deph

Commercial

IMF1

One-month-ahead 12 Sigmoide Uniform Positive 0.25 50 1
Two-months-ahead 8 Tribas Uniform Negative 1 50 1

Three-months-ahead 8 Satlins Uniform Negative 1 50 1

IMF2

One-month-ahead 8 Relu Uniform Positive 0.25 150 3
Two-months-ahead 5 Hardlin Uniform Negative 0.5 50 3

Three-months-ahead 5 Sigmoide Uniform Negative 0.25 50 3

IMF3

One-month-ahead 3 Radial Basis Uniform Negative 0.25 50 1
Two-months-ahead 8 Hardlin Normal Gaussian 0.25 150 2

Three-months-ahead 12 Sine Uniform Negative 0.25 50 1

Residue
One-month-ahead 8 Sigmoide Uniform Negative 0.5 150 3
Two-months-ahead 12 Sigmoide Uniform Negative 0.5 150 3

Three-months-ahead 12 Sigmoide Uniform Negative 0.5 150 3

Non-Decomposed
One-month-ahead 12 Sigmoide Uniform Negative 1 150 3
Two-months-ahead 12 Sigmoide Uniform Negative 1 150 3

Three-months-ahead 12 Sigmoide Uniform Negative 1 150 3

Industrial

IMF1

One-month-ahead 12 Purelin Uniform Positive 1 50 2
Two-months-ahead 8 Relu Uniform Positive 1 100 3

Three-months-ahead 15 Satlins Uniform Negative 0.25 150 2

IMF2

One-month-ahead 12 Purelin Uniform Positive 0.25 50 2
Two-months-ahead 8 Relu Uniform Positive 0.25 50 2

Three-months-ahead 8 Relu Uniform Positive 0.25 50 2

IMF3

One-month-ahead 8 Sigmoide Uniform Negative 1 50 1
Two-months-ahead 8 Sigmoide Uniform Positive 0.25 50 1

Three-months-ahead 3 Tansig Uniform Negative 0.25 50 1

Residue
One-month-ahead 5 Sigmoide Uniform Positive 1 150 3
Two-months-ahead 5 Sigmoide Uniform Positive 1 150 3

Three-months-ahead 5 Sigmoide Uniform Positive 1 150 3

Non-Decomposed
One-month-ahead 5 Sigmoide Uniform Positive 0.25 150 3
Two-months-ahead 5 Sigmoide Uniform Positive 1 100 3

Three-months-ahead 1 Sigmoide Uniform Positive 1 150 2

Figure 6 summarize the main steps used in data analysis.

Figure 6. Framework of proposed approach.
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The R software [67] is adopted to perform the modeling. The packages caret [68] and forecTheta [69].
The ARIMA modeling is performed through the use of forecast package [70,71] with use of auto.arima
function. To define the ARIMA order, grid-search is adopted, and the most suitable order is that reach lower
Akaike and Bayesian Akaike criteria information.

4. Results

This section describes the results of the developed experiments in three ways in forecasts
out-of-sample (test set). First, Section 4.1 is designed to compare the results of the proposed model and
self-adaptive decomposed homogeneous ensemble learning models. In the sequence, Section 4.2 is
used to compare the performance of developed approaches and non-decomposed models. To finish,
Section 4.3 presents the DM test to statistically evaluate the errors of the proposed approach versus
other models. Additionally, Figure 7 presents the variables importance, Figures 8 and 9 illustrate the
relation between the observed and predicted values. Additionally, Figure 10 shows the magnitude of
the sum of standardized squared errors. In Tables 5 and 6, the best results are presented in bold.
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Figure 7. Variables Importance for the proposed model in each dataset.
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Figure 8. Predicted and observed Brazilian commercial electricity prices.
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Figure 9. Predicted and observed Brazilian industrial electricity prices.

(a) Commercial (b) Industrial

Figure 10. Radar plot for standardized sum of squared errors.

Table 5. Performance Measures of proposed and homogeneous ensemble learning models.

Dataset Model
Forecasting Horizon

One-month-Ahead Two-Months-Ahead Three-Months-Ahead

RMSE R2 sMAPE RMSE R2 sMAPE RMSE R2 sMAPE

Commercial

COA-CEEMD–Proposed 13.5556 0.9812 0.0253 16.8360 0.9701 0.0306 20.7988 0.9544 0.0380
COA-CEEMD–GP 14.2734 0.9798 0.0260 17.2289 0.9692 0.0313 21.0945 0.9531 0.0382

COA-CEEMD–SVR 16.1779 0.9774 0.0315 18.7674 0.9652 0.0352 21.5886 0.9516 0.0387
COA-CEEMD–ELM 123.9228 0.6636 0.3032 122.1742 0.7888 0.2660 126.9495 0.7244 0.2871
COA-CEEMD–GBM 143.4820 0.5415 0.2971 143.8438 0.4960 0.3001 143.9894 0.5081 0.3021

MODWT–GP 22.9283 0.965 0.0412 31.4405 0.94 0.0571 35.6375 0.924 0.066
MODWT–SVR 23.6391 0.969 0.0444 29.5238 0.948 0.0571 34.2929 0.92 0.0687
MODWT–ELM 106.667 0.852 0.2512 120.765 0.636 0.2832 151.884 0.638 0.4098
MODWT–GBM 145.605 0.398 0.3055 146.527 0.355 0.3078 145.6 0.367 0.3068

Industrial

COA-CEEMD–Proposed 11.5992 0.9849 0.0256 14.8531 0.9750 0.0327 19.7095 0.9544 0.0418
COA-CEEMD–SVR 12.0007 0.9844 0.0252 15.1032 0.9741 0.0341 20.4148 0.9510 0.0432
COA-CEEMD–GP 16.4187 0.9785 0.0368 16.7976 0.9694 0.0351 28.8510 0.9460 0.0606

COA-CEEMD–ELM 127.7698 0.6352 0.3150 128.7123 0.6397 0.3187 130.8896 0.4547 0.3248
COA-CEEMD–GBM 143.0262 0.4078 0.3467 141.0850 0.4990 0.3420 140.7303 0.4346 0.3443

MODWT–SVR 31.0218 0.964 0.0697 52.2598 0.887 0.1164 52.3042 0.859 0.1159
MODWT–GP 32.647 0.958 0.0732 40.9644 0.915 0.0898 42.0218 0.892 0.0973

MODWT–ELM 93.2804 0.634 0.2387 110.765 0.697 0.2752 123.604 0.496 0.3069
MODWT–GBM 141.895 0.357 0.3503 142.396 0.325 0.3534 143.233 0.227 0.3583
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Table 6. Performance measures of proposed and compared models used to forecasting Brazilian
electricity price with multi-step-ahead

Dataset Model
Forecasting Horizon

One-Month-Ahead Two-Months-Ahead Three-Months-Ahead

RMSE R2 sMAPE RMSE R2 sMAPE RMSE R2 sMAPE

Commercial

COA–CEEMD–Proposed 13.5556 0.9812 0.0253 16.8360 0.9701 0.0306 20.7988 0.9544 0.0380
GP 16.5411 0.9725 0.0294 21.8210 0.9572 0.0388 24.6019 0.9427 0.0438

SVR 17.6207 0.9710 0.0324 25.3748 0.9537 0.0489 23.7418 0.9430 0.0397
ELM 121.6424 0.7708 0.2559 126.6971 0.7882 0.2879 133.8389 0.7073 0.3095
GBM 143.9112 0.5083 0.2978 145.1188 0.4954 0.3034 143.3755 0.5001 0.2986

Industrial

COA–CEEMD–Proposed 11.5992 0.9849 0.0256 14.8531 0.9750 0.0327 19.7095 0.9544 0.0418
SVR 16.8467 0.9692 0.0335 20.4888 0.9507 0.0401 23.6189 0.9374 0.0489
GP 21.0049 0.9642 0.0445 24.6607 0.9417 0.0541 23.2372 0.9404 0.0466

ELM 127.2140 0.6150 0.3146 128.3130 0.6206 0.3166 145.2424 0.0236 0.3718
GBM 148.5723 0.3560 0.3680 145.9830 0.4461 0.3610 142.8180 0.5746 0.3506

4.1. Comparison of Proposed and Self-Adaptive Decomposed Homogeneous Ensemble Learning Model

Table 5 illustrates the performance of developed and self-adaptive decomposed homogeneous
ensemble learning models named COA-CEEMD-GP, COA-CEEMD-ELM, COA-CEEMD-SVR,
and COA-CEEMD-GBM, as well compared MODWT-based homogeneous models.

By investigating the improvement on the errors of the proposed model regarding compared
COA-CEEMD homogeneous ensemble learning models, it is possible to infer that the OWA criterion
is ranged between 2.51–45.28%, 2.23–89.05%, and 0.87–86.48%, for commercial electricity price on
one, two and three-months-ahead forecasting, respectively. In the comparison of COA-CEEMD
heterogeneous ensemble learning model with MODWT ensemble learning models, the OWA ranges
between 20.44–45.35%, 44.69–89.28%, and 42.02–88.51%, for commercial electricity price on one, two,
and three-months-ahead forecasting, respectively.

The reason for the high forecasting error of COA-CEEMD-GBM and COA-CEEMD-ELM is attributed
to forecasting errors and its high variability for each component. In general, the proposed model employed
ELM or GBM for the first two components in the context of adopted datasets, as mentioned in Table 3.
For these components, the GBM and ELM models achieved lower forecasting errors.

When considering the COA-CEEMD-GBM and COA-CEEMD-ELM models for the commercial
dataset, the GBM and ELM models have achieved a high forecasting error values for the components 3
and 4. A similar analysis can be conducted in the context of industrial dataset. Therefore, this results
lead the models to achieve a high forecasting error in the general model.

In the industrial context, the same pattern is observed, once the regarding the MODWT based
models is ranged between 62.95–92.26%, 63.65–90.15%, and 55.06–87.29% in horizons of one up to
three-months-ahead, respectively.

Therefore, it should be noted that the use of different models to compose an ensemble of
components improves the final accuracy of the forecasting model. This is verified for the case of
commercial as well as industrial electricity prices. The observed superiority of the proposed approach
regarding these compared models should be attributed to the fact that diversity of heterogeneous
ensembles is higher than homogeneous ensembles, which plays an important role in ensemble learning
model [72].

4.2. Comparison of Proposed and Non-Decomposed Models

Table 6 shows the performance of the developed and non-decomposed models, named GP, ELM,
SVR, and GBM.

Concerning the enhancement of hybrid model regarding non-decomposed models, the OWA
in one-month-ahead forecasting ranged between 9.02–45.02% and 27.36–92.62% in commercial and
industrial electricity prices, respectively. Similar behavior is observed for the other two time windows.
In fact, the OWA ranges between 42.02–88.51% and 22.91–90.28% for two-months-ahead horizon,
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as well as 8.25–86.38% and 12.71–87.59%, for three-months-ahead horizon. The performance of the
proposed ensemble learning model is excellent, once that the forecasting errors are lower than 5%.

In respect of the non-decomposed approaches, the GBM and ELM models have difficulty in
training and predicting the electricity prices due to high level of uncertain of the prices, which justify
the lower performance. In this way, results lead to high forecasting errors and lower stability as point
out in Tables 5 and 6, as well as in Figure 10.

In respect of the results thatare presented in Table 6, the outcomes of this paper reinforce findings
presented by Hao et al. [73], which point out the benefits of using decomposition techniques as a way
of pre-processing time series. In particular, the use of the COA-CEEMD approach is important for the
development of an effective model for forecasting electricity prices. Second, to Yeh et al. [40], the use
of signal decomposition as the pre-processing step is useful in the analysis of time series field because
through the use of this technique it is possible to deal with non-stationarity and non-linearity behaviors
of the data. Additionally, the results that are described in this section corroborate the findings of
Agrawal et al. [74], once the ensemble learning models achieved better accuracy than its members.

In comparison to the proposed model with the ARIMA model, the naïve, and theta models,
there are the following results. When considering the average (standard deviation) of RMSE for the
proposed model over the three forecasting horizons, the average accuracy equals 17.05 (2.96) and
15.38 (3.33) in the commercial and industrial datasets, respectively. When considering the ARIMA
model, the average accuracy equals to 22.24 (5.02) and 24.06 (4.28), in the commercial and industrial
datasets, respectively. In respect to the naïve method, the average accuracy equals 23.84 (5.14) and
24.30 (4.54), in the commercial and industrial datasets, respectively. Finally, for the theta model,
the average accuracy equals to 23.50 (5.06) and 24.25 (4.35), in the commercial and industrial datasets,
respectively. In the context of described accuracy, the proposed model outperforms the results of
these three benchmarks approaches. The naïve model forecasting the next h steps-ahead equal to
the previous h time steps, which do not address satisfactory information to the decision making
process. The ARIMA, naïve, and theta models are less complex than the proposed model, and they
also achieved competitive results. However, these approaches are not adequate for forecasting the
time series adopted in this paper (single input and multiple-output). Moreover, they do not allow for
incorporating the information of exogenous variables such as supply and demand, as well as to access
the importance of these features.

4.3. Statistical Tests to Compare Proposed and Benchmark Models

In order to demonstrate the statistical comparisons between errors of the proposed and compared
models described in Sections 4.1 and 4.2, in Table 7 can be seen the statistic of DM test, as well as when
the comparisons are statistically significant.

Table 7. Statistic of DM test for statistical comparison of proposed approach versus other models

Model
Forecasting Horizon

One-Month-Ahead TwO-Months-Ahead ThRee-Months-Ahead

Commercial Industrial Commercial Industrial Commercial Industrial

COA-CEEMD–ELM −10.63 *** −9.88 *** −5.68 *** −5.70 *** −4.61 *** −4.41 ***
COA-CEEMD–SVR −3.53 *** −0.64 −1.65 * −1.09 * −1.52 * −2.72 **
COA-CEEMD–GP −1.75 ** −3.69 *** −0.80 −1.25 * −0.65 −1.32 *

COA-CEEMD–GBM −9.37 *** −9.95 *** −5.45 *** −5.89 *** −4.18 *** −4.45 ***
MODWT–ELM −11.10 *** −8.33 *** −6.07 *** −5.84 *** −6.66 *** −4.37 ***
MODWT–SVR −-5.34 *** −7.03 *** −3.51*** −5.94 *** −2.73 *** −3.84 ***
MODWT–GP −5.13 *** −6.99 *** −3.84 *** −4.94 *** −3.18 *** −4.52 ***

MODWT–GBM −9.49 *** −10.15 *** −5.45 *** −5.89 *** −4.14 *** −4.47 ***
ELM −9.06 *** −9.85 *** −5.17 *** −6.32 *** −4.94 *** −4.59 ***
SVR −3.20 *** −4.29 *** −5.34 *** −7.86 *** −2.10 ** −1.67 *
GP −2.55 ** −2.88 ** −6.10 *** −7.06 *** −1.33 * −2.20 ***

GBM −9.42 *** −10.21 *** −5.51 *** −6.48 *** −4.19 *** −4.51 ***

Note: *** 1% significance level; ** 5% significance level; * 10% significance level.
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Through the DM test, it can be stated that, in 95.83% of the cases, the proposed approach reached
statistically lower errors than the other models. The GP model reaches similar errors regarding the
proposed forecasting framework, but greater than proposed modeling.

Figure 7 illustrates the importance of each variable to the forecasting proposed models.
It is possible to observe that the past electricity prices are the most important. In the next,

the demand variables (commercial and industrial consumption) and supply hydraulic energies have
similar importance. Finally, thermal and nuclear supply are less important, but they should be
considered by the forecasting model.

Figures 8 and 9 expose that the self-adaptive decomposed ensemble learning model learn the data
behavior, being able to obtain forecast prices that are similar to the observed values. For commercial
and industrial datasets, the good performance (regarding RMSE and sMAPE) in the training set is
maintained in the test set.

Finally, Figure 10a,b present the standard error of each model in the out-of-sample forecasting for
the adopted forecasting horizons, i.e., red (one-month-ahead), blue (two-months-ahead), and green
(three-months-ahead). Moreover, each letter represents one model, i.e., COA-CEEMD-ELM (A),
COA-CEEMD-SVR (B), COA-CEEMD-GP (C), COA-CEEMD-GBM (D), proposed (E), ELM (F), SVR (G),
GP (H), GBM (I), MODWT-ELM (J), MODWT-SVR (K), MODWT-GP (L), and MODWT-GBM (M).
The best models are represented by smaller bars. The models with better accuracy presented in
Tables 5 and 6 reached better stability (errors with lower standard deviation), especially the proposed
COA-CEEMD heterogeneous ensemble learning model. Therefore, the results that are exposed in
previous sections are confirmed.

Based on Figure 11 it is possible to evaluate the residue (partial auto-correlation function—PACF)
of final models adopted in each case study, from training set results. In this respect, once most of the
lags are inside the boundaries, we can see that the models are well fitted.
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Figure 11. Partial autocorrelation for residue of proposed model in each dataset.

5. Conclusions

In this paper, a self-adaptive decomposed heterogeneous ensemble learning model was proposed
in order to forecast multi-step-ahead (one, two, and three-months-ahead) Brazilian commercial and
industrial electric energy prices. Exogenous variables, such as demand (commercial and industrial
consumption) and supply (hydraulic, thermal, and nuclear) (MWh), were adopted. In the first
stage, the COA optimizer was adopted to define the hyperparameters of pre-processing CEEMD.
In the sequence, the four obtained components (three IMFs and one residue component) by
COA-CEEMD were trained and predict the time series by different forecasting models (ELM, GBM,
GP, and SVR). The grid-search approach was conducted in order to choose the most suitable model
for each component. The final forecasts were obtained through a heterogeneous ensemble learning
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of components directly integrated. Finally, the average importance of each variable used as model
inputs was computed for the proposed forecasting model.

Our findings suggest that: (i) the COA-CEEMD ensemble learning models achieve better
forecasting accuracy than single forecasting models; (ii) the pre-processing of the energy prices
through COA-CEEMD is better than MODWT; (iii) the use of different models for components
allow for improving the final accuracy concerning the use of a homogeneous ensemble model
of components; (iv) the proposed approach reaches better accuracy than the compared models,
and the good performance is constant when the forecast horizon is expanded; and, (v) the variables
importance ranking, from the smallest to the larger is, energy prices lagged, demand, and supply.
Moreover, competitive results are achieved by ARIMA, naïve, and theta models regarding the proposed
framework. However, these models do not allow us to evaluate the importance of exogenous inputs,
which plays a key role in the decision-making process.

The evaluation of the electricity price forecast can be used to assess feasibility for future expansions
of the electric system, through the incentive of investment in the electric sector using incentive policies.
Defining how much energy may cost in the future can facilitate the justification for investing in new
electricity generation ventures. In Brazil, there is a potential for the use of wind farms, due to the
geographic characteristics of the country. The evaluation of the investment potential in this segment
can be analyzed based on the forecast of future water inflow, when considering that the cost of energy
is calculated based on the level of the water reservoirs.

For future works, it is desirable (i) to decompose the raw data using an ensemble of pre-processing
and to evaluate the effect of different ranges of splitting training and test sets in the forecasting systems;
(ii) reconstruct the decomposed signal through the weighted integration considering the no negative
constraint theory; (iii) selection of the models for components through optimization techniques and
considering the metaheuristics in order to obtain the best hyperparameters, such as the new approaches
like [75–79]; (iv) developing an adaptive version of COA to define the number of coyotes and packs;
and, (v) to perform cross-country comparisons using different forecasting models linking between
models accuracy and economic aspects.
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Abbreviations

The following abbreviations are used in this manuscript:

ARIMA Autoregressive Integrated Moving Average
CEEMD Complementary Ensemble Empirical Mode Decomposition
COA Coyote Optimization Algorithm
DM Diebold-Mariano
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
ELM Extreme Learning Machines
GBM Gradient Boosting Machines
GP Gaussian Process
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IMF Intrinsic Mode Function
IPEA Institute of Applied Economics Research
LSTM Long Short-Term Memory
LOOCV-TS Leave-One-Out Cross-Validation Time Slice
MOWDT Maximal Overlap Wavelet Discrete Transform
MWh Mega-Watt Hour
OI Ortogonal Index
OWA Overall Weight Average
PACF Partial Auto-Correlation Function
SVR Support Vector Regression
sMAPE Symmetric Mean Absolute Percentage Error
RMSE Relative Mean Square Error
R2 Coefficient of Determination
VMD Variational Mode Decomposition
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