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Abstract: Integration of Information and Communication Technology (ICT) in modern smart grids
(SGs) offers many advantages including the use of renewables and an effective way to protect,
control and monitor the energy transmission and distribution. To reach an optimal operation
of future energy systems, availability, integrity and confidentiality of data should be guaranteed.
Research on the cyber-physical security of electrical substations based on IEC 61850 is still at an
early stage. In the present work, we first model the network traffic data in electrical substations,
then, we present a statistical Anomaly Detection (AD) method to detect Denial of Service (DoS)
attacks against the Generic Object Oriented Substation Event (GOOSE) network communication.
According to interpretations on the self-similarity and the Long-Range Dependency (LRD) of the data,
an Auto-Regressive Fractionally Integrated Moving Average (ARFIMA) model was shown to describe
well the GOOSE communication in the substation process network. Based on this ARFIMA-model
and in view of cyber-physical security, an effective model-based AD method is developed and
analyzed. Two variants of the statistical AD considering statistical hypothesis testing based on
the Generalized Likelihood Ratio Test (GLRT) and the cumulative sum (CUSUM) are presented to
detect flooding attacks that might affect the availability of the data. Our work presents a novel AD
method, with two different variants, tailored to the specific features of the GOOSE traffic in IEC 61850
substations. The statistical AD is capable of detecting anomalies at unknown change times under the
realistic assumption of unknown model parameters. The performance of both variants of the AD
method is validated and assessed using data collected from a simulation case study. We perform
several Monte-Carlo simulations under different noise variances. The detection delay is provided
for each detector and it represents the number of discrete time samples after which an anomaly is
detected. In fact, our statistical AD method with both variants (CUSUM and GLRT) has around half
the false positive rate and a smaller detection delay when compared with two of the closest works
found in the literature. Our AD approach based on the GLRT detector has the smallest false positive
rate among all considered approaches. Whereas, our AD approach based on the CUSUM test has the
lowest false negative rate thus the best detection rate. Depending on the requirements as well as the
costs of false alarms or missed anomalies, both variants of our statistical detection method can be
used and are further analyzed using composite detection metrics.
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1. Introduction

The integration of Information and Communication Technology (ICT) in the control,
protection and monitoring of power systems can offer several advantages with respect to the efficiency
of the production, transmission and distribution operations. Combining intelligent components
with a well-designed Substation Communication Network (SCN) according to specific norms and
recommendations shall ensure an optimal operation of the power systems with a significant economic
efficiency. However, a major drawback of the increased ICT interconnection is the larger exposure to
malicious cyber-attacks.

Research in this field (e.g., [1–3]) has shown the different vulnerabilities of Smart Grids (SGs).
In order to secure modern power systems, several aspects shall be considered including a reliable
and safe software for control systems [4] and a secure communication network in the power grid.
Electrical substations, in particular, might be subject to several vulnerabilities [2]. For instance,
a modern electrical substation in Ukraine was the target of an attack that is considered to be the biggest
threat to Industrial Control System (ICS) after the infamous Stuxnet [5].

In order to secure the communication network in electrical substations, several aspects shall be
considered. From an information security perspective, confidentiality, integrity and availability of the
data transmitted within the substation network shall be tackled. Confidentiality uses techniques such
as access control to ensure the protection of the data against unauthorized access, disclosure or theft.
Data integrity refers to protecting the data against any improper modification or alteration to guarantee
its accuracy and consistency. Mechanisms to ensure the integrity of the data within ICS or SCN shall
account for the strict Real-Time (RT) requirements expected in such environments. Authentication
methods adapted for those particular conditions have been developed in literature [6–8]. Ensuring the
availability of data in SGs is considered to be the most critical requirement in power systems [9]. Attacks
against SGs might exploit security vulnerabilities to attempt to deny legitimate communications within
the network traffic that would result in blocking legitimate information and services. Additionally to
the availability of the data, the real-time reliability of the communication networks in ICS [10] and in
electrical substations is necessary to guarantee an optimal operation of the grid.

In order to tackle threats such as Denial of Service (DoS) or flooding attacks that might hinder the
availability of the data within the SCN, Intrusion Detection System (IDS) can be adopted. Choosing a
well-adapted IDS relies on several factors among which an adequate knowledge of the characteristics
of the network traffic can be of a great relevance. The focus on the physical process as well as the use
of several protocols among ICS increases the complexity of studying the network traffic behavior.

We present the study of the network traffic within electrical substations based on the International
Electrotechnical Commission (IEC) 61850 standard. First, we analyze the different statistical network
features. A better understanding of the characteristics of the SCN helps us define a well-adapted
mathematical model to describe the network traffic in electrical substations. Second, we define an
Auto-Regressive Fractionally Integrated Moving Average (ARFIMA) model that can accurately account
for the Short-Range Dependency (SRD) as well as the Long-Range Dependency (LRD) in the network
traffic data as shown by the reported results. Deriving a mathematical representation of the network
traffic data in IEC 61850 substations can considerably support the design of the network architecture
of future electrical substations as well as the overall performance of the network communication.
Then, we underline the knowledge about the behavior of the SCN and develop two techniques for a
model-based Anomaly Detection (AD). The proposed approaches are based on statistical hypothesis
testing using the Generalized Likelihood Ratio Test (GLRT) to detect anomalies resulting from changes
in the traffic patterns such as flooding attacks. The AD problem as defined in our approach can be
formulated as a change point detection problem. Statistical detection methods have been used in
general for the previously mentioned problem, considering their high reliability [11]. The novelty of
our work resides in adapting those methods to enhance the availability of the network traffic data in
electrical substations and thus their overall cyber-physical security. Our AD technique is able to detect
multiple anomalies at unknown change times while assuming unknown noise parameters. We select
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carefully specific detectors for the hypothesis testing to suit the characteristics and the requirements
of IEC 61850 electrical substations. Our experiments to test the performance of the model-based AD
approach, with both variants, show strong results in terms of detection accuracy and minimizing False
Alarm (FA) rate and detection time. The main contribution of our work is to adapt two well-known
detectors, GLRT and CUSUM, to present a structured method for the detection of DoS attacks in IEC
61850 electrical substations. The overall detection performance of the new statistical AD method
outperforms available approaches as explained in Section 6.3.

The detailed contributions of this work are as follows:

• We conduct a structured analysis of the GOOSE network traffic in a SCN from a simulation case
study that can be further applied to a network traffic from a real substation

• We model the GOOSE communication in an IEC 61850 substation using an ARFIMA model
including the parameter estimation and the model prediction. We evaluate the accuracy of the
suggested model using well-established criteria from the data-driven modeling field.

• We present a structured AD method based on two different approaches to detect flooding attacks
using two well-known statistical tests while assuming an unknown change time and unknown
model parameters under each hypothesis

• We evaluate the performance of the AD method with both detectors, in terms of basic and
composite detection metrics, using a simulation case study under different rates of SNR.

The remainder of this work is organized as follows: an overview of the different intrusion detection
techniques in power systems with a particular focus on the AD approaches is provided in Section 2.
In Section 3, we analyze the characteristics of the process network traffic. The derived characteristics
help us select an appropriate regression model, in this case an ARFIMA model to describe the data.
Thus, we present the ARFIMA modeling of the process traffic in IEC 61850 Substations in Section 4.
Conclusions about the mathematical modeling of the SCN traffic data lead us to develop two detection
schemes based on statistical hypothesis test as discussed in Section 5. Section 6 mainly focuses on the
evaluation of the selected ARFIMA model as well as the detection approaches using an adequate use
case. In Section 7, we present the conclusions of our work.

2. Intrusion Detection Systems (IDSs) in Energy Systems

There has been extensive work in literature ([12–16]) aiming at detecting anomalies in ICS and
Supervisory Control And Data Acquisition (SCADA) systems. In the present paper, we will focus on
efforts to develop IDSs in a particular application field which is energy systems. There are several
possible ways to classify IDSs. A commonly used one is based on the ability of the IDS to detect,
the so-called, zero-day attacks.

2.1. Signature-Based Approaches

The first category is known as signature-based IDS and its working principle consists mainly of
collecting attack patterns into a database. Comparison between gathered data and collected attack
signatures allows the detection of anomalies. This type of method is very efficient in detecting
anomalies with no False Alarms (FAs) under the condition that meaningful signatures are defined.
Work developed by Premaratne et al. [13] is one of the pioneer studies on IDS in electrical substations.
Their method is based on a Snort rule-based IDS for Intelligent Electronic Devices (IEDs) in IEC 61850
substations. The blacklisting relies on rules established using an experimental setup to simulate attacks.

Analysis of Modbus/TCP traffic using Quickdraw tool to identify anomalies was proposed
in [14]. Quickdraw is a preprocessor of Snort developed by Digital Bond. Several rules including
specifications for Modbus/TCP, DNP3 and Ether/IP protocols are proposed. A framework for dynamic
rules generation and Deep Packet Inspection (DPI) that can be applicable for Snort and Suricata was
developed by Niventhan and Papa [17].
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Signature-based IDS have typically two main drawbacks. First, the challenges related
to the creation of a relevant set of rules that need to be regularly updated and maintained.
Second, signature-based IDS are only able to detect known attacks. When considering the scarcity of
attack databases in ICSs and SCADA systems due to the sensitivity of the data, signature-based IDS
might not be an optimal choice for securing the network traffic also within power systems.

2.2. Anomaly Detection (AD) Approaches

Another category of IDSs is anomaly-based detection. The AD methods are based on
characterizing the normal behavior of a system. It is thus assumed that any abnormality or deviation
from the normal behavior is considered as an anomaly. The main advantage of this technique is the
ability to detect unknown attacks. Thus, AD methods in SCADA and ICSs have been extensively used
over the past few years: indeed, model-based detection is commonly used in conventional IDSs and can
be particularly relevant for monitoring unknown attacks in SCADA systems [12]. Similar assumption
about the periodicity of the network traffic in ICS was demonstrated by Barbosa et al. [18] and
further used to propose an AD tool. The proposed tool, PeriodAnalyser, whitelists the traffic
including Modbus/TCP and Manufacturing Message Specification (MMS) protocols according to a
learned model.

Other anomaly-based IDSs were based on communication patterns to detect anomalies. Some AD
methods use Machine-Learning (ML) techniques to model communication patterns such as One-Class
Support Vector Machine (OC-SVM) [19]. Shang et al. [20] use OC-SVM to model normal communication
that is based on computing a hyperplane in the feature space to distinguish between normal and
anomalous objects. The considered communication includes only Modbus/TCP static exchanges
between a client and a server. The previously mentioned work is telemetry-oriented and is based on
the assumption of periodicity of the network traffic which is not always the case of MMS messages,
for instance. Another limitation is the absence of any semantics in the detected anomalous packets
with little to no insight on the cause of the traffic behavior.

Several AD methods that are based on statistical techniques have been used in the literature.
The network traffic may exhibit several statistical properties that can be analyzed in order to detect
intrusions or attacks. Statistical approaches are commonly used for change point detection and thus
for AD. To detect anomalies in IEC 61850 automation systems, Kwon et al. [21] use network telemetry
metrics and protocol specifications. Metrics considered for Generic Object Oriented Substation Event
(GOOSE) AD are GOOSE message frequency, counter of received GOOSE messages and timestamp
of most recent GOOSE messages. Whereas for MMS, features are limited to the command type.
Testing and evaluation of the method are performed using a dataset of network traffic from a Korean
SG testbed. In the presented model, only periodic GOOSE traffic are considered while omitting
legitimate fault events. Thus, the proposed AD is only based on the mean and the standard deviation
in network metrics which assumes that the network traffic can be simply modeled as a signal embedded
in White Gaussian Noise (WGN). Such hypothesis does not apply to the network traffic in electrical
substations as demonstrated in the present work.

2.3. Hybrid Approaches

To overcome limitations of signature-based approaches and AD systems, an increasing number
of IDSs adopt a hybrid approach to detect anomalies using signatures and anomaly detection.
A three-level IDS was developed by Cheung et al. [12]. The two first levels consider checking the
protocol specifications for Modbus/TCP and network segmentation and access policies, and they
are rule-based. The rules were implemented in the open-source IDS software Snort. The third level
was learning-based. The authors in [15] implemented a DNP3 parser that was integrated to the
open-source network analyzer Zeek (previously Bro). A set of rules to check the packets structure
as well as the semantics was developed. To identify malicious commands, the state estimation of
the simulated system was predicted and results were integrated with the overall IDS. Some other
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works [22,23] integrate also Zeek for detection of intrusions in SCADA systems. In a similar approach
to Cheung et al. [12], Yang et al. [24] proposed IDS specifically designed for IEC 61850 electrical
substations that is further extended to a multidimensional IDS [16]. A four-layer model was presented
including access control detection, protocol whitelisting, model-based detection for station and process
bus and a multiparameter based detection. Specific input features for GOOSE and Sampled Values
(SV) protocols were used in the IDS based on the standard definitions and the configuration system
files. Other telemetry-based characteristics were learned from the traffic including packet transfer
rate per second, transfer byte size per second, length and size of the packets. A simple thresholding
procedure was used to detect if any of the captured traffic characteristics is beyond a minimum and a
maximum value.

Few of the previously mentioned works take into account the specific characteristics of electrical
substations based on IEC 61850. We present an adequate statistical method based on a well-defined
statistical hypothesis testing for the detection of flooding attacks which combines a good detection
performance of ML methods with the robustness of statistical approaches [11].

For a summary of the mathematical notations used in Sections 3–5, the reader may refer to the
glossary at the end of the paper.

3. Characteristics of the Process Network Traffic

Adaption of recommendations in the IEC 61850 standard allows the use of advanced technologies
including IEDs, standardized protocols, a systematic object-oriented structure for the configuration
of the Substation Automation System, Ethernet-based communication and possibility of remote
control actions.

Typical IEC 61850 substation models have a hierarchical structure with three different levels,
namely the station, bay and process layers. The station level includes engineering workstations,
Human-Machine Interfaces (HMIs) and gateways to the Energy Management System (EMS) and
SCADA systems in order to monitor and regulate the generation, transmission and distribution of the
power to the consumers. IEDs from the bay level are mainly responsible for the protection and control
operations within the substation. They communicate with each other and with the station level via a
station bus using MMS and GOOSE protocols.

Voltage and current signals are transmitted from power equipment to the process level through
Merging Units (MUs) and relays that control for instance the tripping of CBs. GOOSE and SV protocols
are used between the process and the bay levels to multicast digital voltage and current signals from
Current Transformers (CTs) and Voltage Transformers (VTs). The process level network is Ethernet
switch-based fiber-optic network. An Ethernet switch is also used for the station bus.

The use of different protocols throughout the SCN results in an increased challenge of
understanding the network communication patterns. In the present work, we will mainly focus
on the process level network. There are different types of messages exchanged within the substation
and are divided into three types from a data flow perspective [25]. Cyclic data flows are time-driven
data that are commonly used for transmitting power measurements from field devices.

For instance, SV messages, that are generated from MUs and transmitted to P&C IEDs in the bay
level, result in cyclic data flows. This communication carries time-critical information and contains
large amounts of data. When a fault occurs, GOOSE messages change from a cyclic mode to a burst
mode. Burst data transmit information about protection actions and changing status of CBs. In fact,
the process network layer has unique characteristics as it includes large multicast traffic that is periodic
in general but which includes bursty sequences. Such features can be challenging to analyze using
traditional models.

Thus, a first step for us is to analyze the process traffic. We underline a set of relevant
characteristics that is established based on [26]. Floyd and Paxson introduce a method to “search for
invariants” to tackle the difficulties in modeling Internet traffic [26]. The term invariant is used to refer
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to a behavior that was empirically proven to hold in a very wide range of environments. In this work,
we consider three invariants in order to characterize the process traffic.

3.1. Diurnal Patterns

One of the properties that can be observed in the network traffic is the variation in the activity,
for instance, according to specific times. This dependency is not only related to human activity but also
to network protocols, especially those used in the industrial field [26]. Observations of the number
of active connections, packets per second and bytes per second might reveal diurnal patterns in the
network activity. To conclude the presence of diurnal patterns, a relatively large dataset of several
days or weeks shall be available.

3.2. Distributional Considerations of the Data

The data flow for the SCN traffic was characterized by several models depending on the type of
the transmitted messages. According to the transmitted information between different components of
an electrical substation, seven types of messages are defined in IEC 61850 to transmit different types of
information such as the protection commands or the measurement values from physical devices [27].
Fast or medium speed messages have different characteristics from, for instance, file transfer function
or access control command messages. Thus, they can be divided into three different categories based
on their data flow characteristics, namely, cyclic, stochastic and burst data [25]. A Pareto distribution
for burst data flow was suggested in [25], whereas in [7], a Weibull distribution was used instead as
it is claimed to fit better increasing retransmission scheme of bursty GOOSE messages. Network in
general Internet traffic can be characterized by heavy-tail distributions such as Ethernet bursts [28]
and FTP activity.

Modeling the network traffic in electrical substations is a challenging task due to the different
operation modes including normal operation and burst data in case of faults. Studies focusing on
describing the network traffic ([29–31]) show that the GOOSE network traffic exhibits short-range
dependency, self-similarity and LRD features. Some research works have been conducted to model the
substation communication network. However, few of them consider the self-similarity of the network
traffic such as [29,30]. In the next section, we will study the possible presence of self-similarity features
in the GOOSE network traffic data.

3.3. Self-Similarity

The self-similarity can be seen in practice by the presence of extended periods where the traffic is
larger than the sample mean at different time scales. The degree of self-similarity in the network traffic
is commonly determined using the Hurst parameter [32].

These periods of “spikes” in the traffic are referred to as “burstiness” [33]. Let x[k], k = 0, ..., N− 1
be a time-series of size N. If the time-series x is self-similar, the following holds

x d
= m1−Hx(m) for all m ∈ N (1)

where d
= is an equality in the sense of finite dimensional distribution, H is the Hurst parameter and

x(m) is the aggregated sequence by m of x:

x(m)[k] = 1/m
k+(m−1)

∑
k=1

x[k] (2)

Several tests have been commonly used in literature ([26,33]) to show self-similarity of the
data. Two of the most known visual methods to show self-similarity are the R/S analysis and the
variance-time plot [34].
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For the next description of both tests, let x[k] be the throughput at time k with N being the size of
the time series.

Variance-Time Plots

The first test to verify the self-similarity of a time- series is the variance-time plot. The presence
of self-similarity can be checked by observing the variance function of x(m)[k] defined in Equation (2)
versus the aggregation level m.

The variance σ2 of the aggregated process defined in Equation (2) is calculated as follows:

σ2 = S2(x(m)) =
1

(N/m)

N/m

∑
k=1

(
x(m)[k]− x̄(m)

)2
(3)

The variance plot, depicted in Figure 1, is defined by plotting the variance of the aggregated
process x(m)[k], versus different aggregation levels in log-log scale.

1 1.5 2 2.5 3 3.5 4

3

4

5

6

log10(m)

lo
g
1
0
(σ

2
)

Figure 1. Variance-time diagram.

The Hurst parameter H can be obtained from the previous plot with a line fitted to the curve
using least-squares with the relation H = 1 + β/2 which gives a value of Ĥ = 0.87 for the dataset
presented in Section 6.1.

Rescaled Adjusted Range R/S

The R/S method is based on first dividing the time-series into nonoverlapping intervals of length
l. The partial sum for each of the intervals is then calculated. Let µ̂ or x̄ be the sample mean of the time
series x with starting point ki and size L,

µ̂i = x̄i = 1/L
ki+L

∑
k=ki

x[k] (4)

and σ̂i be the sample standard deviation of a the time series x with starting point ki and end point kni

Si = σ̂i =

(
1/L

L−1

∑
k=ki

(x[k]− x̄i)
2

)1/2

(5)
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The partial sum Wi,u is defined as follows:

Wi,u =
i+u

∑
k=i

(x[k]− x̄i) (6)

with u being a running index of k within the interval [0, l].
The rescaled adjusted range (R/S) statistic is defined as the quotient of the difference between the

maximum and the minimum of the partial sum and the standard deviation of the considered time
series and is calculated as follows [35]:

R/Si = 1/Si

[
max

0≤u≤l
Wi,u − min

0≤u≤l
Wi,u

]
(7)

Figure 2 represents the log10(R/Si) versus log10(l) for the considered dataset. The slope of the
regression with the least-squares method of log10(R/Si) versus log10(l) represents the estimate of the
Hurst parameter Ĥ which is equal to 0.58 for the dataset described in Section 6.1.

1 2 3 4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

log10(l)

lo
g
1
0
(R

/S
i)

Figure 2. R/S diagram.

According to both tests, results show that the estimate of the Hurst parameter Ĥ of the considered
dataset lies between 0.5 and 1 which indicates the self-similarity of the considered process. The time
series representing the GOOSE network traffic in electrical substation has a statistical LRD between the
current value and values in different times of the series. One of the commonly used models to describe
long-memory characteristics is the ARFIMA model [36].

4. ARFIMA Modeling of the Process Traffic in IEC 61850 Substations

After discussing the unique features of the IEC 61850 GOOSE traffic, we select an Auto-Regressive
Fractionally Integrated Moving Average (ARFIMA) model to describe the network traffic. In the
following, we present explanations of concepts necessary to describe a suitable model for the process
network traffic as well as an adapted AD for DoS attacks in GOOSE communication.

4.1. ARFIMA Model

Considering the particular characteristics of the IEC 61850 GOOSE traffic described in Section 3,
an ARFIMA model is, thus, suitable to describe the substation communication network. The ARFIMA
model is a fractional time series model that is able, up to a certain degree, to capture strong coupling
between the observations at different times. Signals containing spikes that exhibit properties of
self-similarity and LRD cannot be processed by conventional time series models.
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An ARFIMA model consists of an Auto-Regressive (AR) part, a Moving Average (MA) filter,
and an integration term (I) which is employed for differencing the raw measurements we select for
modeling the IEC 61850 GOOSE traffic. (ARFIMA model is also referred to as Fractional ARIMA
(FARIMA) model in some references [29,30]).

The ARFIMA model is a generalization of the integer order models being the autoregressive
integral moving average (ARIMA) and autoregressive moving average (ARMA) model—two of the
most known filters of these models.

The use of fractional difference operator rather than an integer one as in ARIMA models,
was suggested by Hosking et al. [37] in the context of hydrology in order to represent the LRD.

An ARFIMA process is expressed as following:

φ(B)(1− B)dx[k] = θ(B)e[k], e[k] ∼ N (0, σ2
e ) (8)

where x[k] is the GOOSE traffic in the SCN, φ(B) = 1− φ1B− φ2B2 − ...− φpBp is the autoregressive
average polynomial and θ(B) = 1 + θ1B + θ2B2 + ... + θqBq is the moving average polynomial. p is the
auto-regressive order, q is the moving average order and d is the level of differencing. The term e[k]
is a sequence of independent and identically distributed (i.i.d) random variables, representing noise
(error in data), i.e., white noise with variance σ2

e .
(1− B)l is called the difference operator with B being the backshift operator and defined by

Bl x[k] = x[k− l] (9)

Contrarily to the ARMA or ARIMA model that can only represent the short-range dependency,
the ARFIMA model can capture the LRD as the parameter d is no longer restricted to integer values [37].
Accordingly, the difference operator can be expressed using a binomial expansion of the real number d
with the Gamma function:

(1− B)d =
∞

∑
k=0

(
d

k

)
(−B)k (10a)

=
∞

∑
k=0

Γ(d + 1)
Γ(k + 1)Γ(d + 1− k)

(−B)k (10b)

where Γ(.) represents the gamma (generalized factorial) function that is defined as:

Γ(x) =
∫ ∞

0
e−ttx−1dt (11)

Indeed, after calculating the Hurst parameter H and concluding the parameter d such as
d = H − 0.5 [37], a fractional differentiation of order d is applied.

In the following, general approaches for the estimation of the parameters and the prediction of
the model will be discussed.

4.2. General Model Predictor

In a good model, the prediction errors shall be small [38] which indicates that the model can
describe well the data. The general prediction model is expressed as a function of past data and
parameters as:

x̂[k] = f (x[k− 1], Θ̂) (12)

where x̂[k] depends on measurement of x up to k − 1 and Θ̂, the estimated parameter vector.
The prediction errors are thus expressed as follows:

ε[k] = x[k]− x̂[k] (13)
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where ε[k] is the model residual at time k.
Estimation methods attempt to find the parameter vector Θ that minimizes ε[k] in Equation (13).

4.3. Maximum Likelihood Estimation

The Maximum Likelihood Estimator (MLE) is one of the most popular approaches to obtain a
practical estimator that has an optimal performance when large enough data records are used [39].
The MLE is defined as the value of Θ that maximizes the likelihood function p(x; Θ). The MLE is
asymptotically efficient for large data records which defines the nature of the approximation obtained
using the estimator.

The parameter vector can be estimated by maximizing the likelihood function [40]:

p(x; Θ) =
1

(2πσ2)
Nest

2 [det Λ]
exp

[
−1

2

Nest−1

∑
k=0

εTΛ−1ε[k]

]
(14)

where Λ is the covariance matrix of the noise, Θ represents the model parameters and σ2 is the noise
variance. In Equation (14), Nest represents the size of the estimation dataset.

As a first example, we will consider the computation of the MLE of a parameter vector of a signal
consisting in a signal embedded in WGN.

Explanatory example: signal embedded in WGN

Let us consider the data
x[k] = A + e[k], k = 0, 1, ..., N − 1 (15)

where A is a constant and e[k] is WGN with variance σ2. The vector parameter Θ = [A σ2]T shall be
estimated. The Probability Density Function (PDF) is defined as follows

p(x; Θ) =
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N−1

∑
k=0

(x[k]− A)2

]
(16)

Taking the first derivatives of Equation (16) yields

∂ ln p(x; Θ)

∂A
=

1
σ2

N−1

∑
k=0

(x[k]− A) (17a)

∂ ln p(x; Θ)

∂σ2 = − N
2σ2 +

1
σ4

N−1

∑
k=0

(x[k]− A)2 (17b)

When solving for A from Equation (17a), the following equality holds:

Â = x̄ =
1
N

N−1

∑
k=0

x[k] (18)

When solving for A from Equation (17b) and using Equation (18):

σ̂2 =
1
N

N−1

∑
k=0

(x[k]− x̄)2 (19)

The MLE is obtained as follows:

Θ̂ =




x̄

1
N

N−1
∑

k=0
(x[k]− x̄)2


 (20)
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The MLE will be further applied for parameter estimation as part of the proposed AD method.
In the following, the model used for the description of the substation network traffic is presented.

4.4. Description of the Process Network Traffic as an ARFIMA Model

The diagram in Figure 3 gives an overview of the proposed estimation and detection method.

Estimation Predictor Validation

Predictor Detector

γ

Not OK

OK

xest

n

Θ̂
xval

x̂val

Θ̂
x

x̂
Alarm

Figure 3. Diagram of the modeling and detection method.

Given the model order n, the parameter vector Θ is estimated from the signal xest. In the case of
an ARFIMA model, the order is defined by n = (p, q). This will be further explained in Section 4.1.

Using a validation dataset xval , the model predictions are computed. Comparison between the
real and the predicted signals, through the validation step, is necessary to evaluate the accuracy of the
estimated model. If the validation step is successful, the model can be further used for prediction and
detection or else the estimation step shall be repeated. A model issued after the validation step will be
further used in a detection method. The detector generates an alarm depending on the result of the
comparison between a well-defined statistical test and a threshold γ.

The choice of the threshold is decisive in the AD method. Generation of an alarm in case of an
anomaly depends on the detector and the selected threshold. For the evaluation of the two variants
of the new AD method, a complete spectrum of different threshold values is used as explained in
Section 6.3.

The ARFIMA model was described in Section 4.1. According to Haslett and Raftery [41] an
approximate one-step ARFIMA predictor of x[k] is given by

x̂[k] = φ(B)θ−1(B)
k−1

∑
j=1

Φkjx[k− j] (21)

with

Φkj = −
(

k

j

)
Γ(j− d)Γ(k− d− j + 1)

Γ(−d)Γ(k− d + 1)
, for j = 1, ..., K (22)

where Γ(.) represents the gamma (generalized factorial) function that is defined in Equation (11).
The prediction errors ε[k] can be derived by replacing Equation (21) in Equation (13).

Then, by maximizing Equation (14), an estimation of the parameter vector θ is obtained.
The MLE of an ARFIMA model can be estimated numerically. For the computations of the

ARFIMA MLE, approximations have been developed such as [41,42]. An overview of different
likelihood-based methods for estimation of long-memory time series models was presented in [43].
Since the statistical hypothesis testing considered in this work depends on the MLE of the ARFIMA
model, a numerical approximation will be used.

5. Statistical Hypothesis Testing for the AD Method

The network traffic in electrical substations based on IEC 61850 can be described using an ARFIMA
model as introduced in Section 4.
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In order to detect DoS attacks in the communication network of electrical substations, we seek a
relevant approach to formulate this scenario as a detection problem. The main idea is to distinguish
between presence or absence of anomaly using two competing hypotheses. The hypothesis H0,
referred to as the null hypothesis, indicates absence of anomaly, whereas H1 indicates presence of
an anomaly. Since the noise parameters are assumed to be unknown, the detection problem is thus
referred to as the composite hypothesis testing [39].

For the statistical AD method, we use two well-known detectors namely Generalized Likelihood
Ratio Test (GLRT) and Cumulative sum (CUSUM).

The GLRT decides forH1 if

LG(x) =
p(x; Θ1,H1)

p(x; Θ0,H0)
> γG (23)

with a threshold γG which shall be chosen as a compromise between the Detection Rate (DR) and FAs.
The term Θ contains the ARFIMA parameters as well as the noise variance.

The numerator and denominator in Equation (23) represent the PDF under the hypotheses
H1 and H0, respectively. Since the occurrence time of an anomaly is unknown, the GOOSE traffic
measurements x[k] should be analyzed sequentially for computation of Equation (23). In this work,
two approaches of Equation (23) are proposed for the AD. In both approaches, the hypothesis is
evaluated sequentially in two subsets as the change time n0 is unknown.

In the first approach, referred to as the GLRT detector (D_G), the hypotheses in Equation (23) are
defined as follows:

H0 : p(x, Θ1 = Θ̂0, Θ2 = Θ̂0)

=
1

(2πσ̂2)(N/2)
exp

[
1

2σ̂2

N−1

∑
k=0

(
x[k]− x̂

[
k | Θ̂0

])2
]

H1 : p(x, Θ1 = Θ̂1, Θ2 = Θ̂2)

=
1

(2πσ̂2)(N/2)
exp

[ 1
2σ̂2

(n0−1

∑
k=0

(
x[k]− x̂1[k | Θ̂1]

)2
+

N−1

∑
k=n0

(
x[k]− x̂2[k | Θ̂2]

)2
)]

with x̂i
[
k | Θ̂i

]
= f

(
xi[k− 1]; Θ̂i

)
for i = 1, 2

(24)

where Θ̂ is the MLE of Θ under each hypothesis. The parameter vector is Θ̂ =
[
φ̂, Θ̂, d̂, σ̂2

]T
.

The change time denoted by k = n0 is unknown and should be investigated using Equation (23)
whose hypotheses are evaluated with Equation (24).

As shown in Equation (24), in H0 the time series is assumed not to have any change since the
parameter vector Θ is assumed to be the same among the entire dataset. In contrast, a change in n0

is assumed to occur inH1 which represents a possible anomaly in the process. The MLE under each
hypothesis can be numerically computed for the ARFIMA model. Several algorithms for computation
of the MLEs can be found in e.g., [39,40].

The AD algorithm is described in Figure 4 and explained in the following steps:

1. The algorithm starts by setting the user-defined parameters which are the order of the ARFIMA
model i.e. n and a threshold γG which is defined empirically based on test results for FAs and DR.

2. The null-hypothesis H0 is computed with data contained between k1 and N0. H1 is computed
using two data subsets: the bounds of the first one are represented by k1 and k2 − 1 and the
second one is evaluated between k2 and N0. Models forH0 andH1 are computed according to
Equation (24) whilst N0 ≥ N.
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3. LG(x) is computed as the ration between the pdf of each hypothesis as described in Equation (23).
If LG > γG holds, a change time k2 is assigned to kalarm and an alarm is generated. The bounds of
the dataset forH0 andH1 are also updated for further computations.

4. If LG > γG does not hold, k2 is incremented and H1 is computed in a new iteration.
This procedure is repeated until k2 > N0 and the bounds of the datasets for the computation of
the PDFs in each hypothesis are updated.

Start

Set user-defined
parameters

� model order: n,

� threshold: γG

k1 ← 1,
k2 ← n0,

N0 ← k2 + n0

N0 ≥ N

End

H0 : {x}N0

k=k1

H1 :

{
{x}k2−1

k=k1

{x}N0

k=k2

compute LG(x)

LG > γG kalarm ← k2

k1 ← k2 + 1,
k2 ← k2 + n0 − 1,
N0 ← k2 + n0

k2 ← k2 + 1k2 > N0

k1 ← k2 + 1,
k2 ← k2 + n0,
N0 ← k2 + n0

Yes

No

Yes

No

No

Yes

Figure 4. Flow diagram of the statistical AD method based on the GLRT test.

The CUSUM algorithm, first presented in [44], is used as a detector (D_C) in the second variant of
the AD approach. The CUSUM decides forH1 if

g[k] > γC (25)

with γC a user-defined threshold and g[k] the decision function defined by:

g[k] = (g[k− 1] + s[k])+

where (g[k− 1] + s[k])+ = sup(0, g[k− 1] + s[k])
(26)

The decision function is initialized by g[k] = 0 and reset each time the condition
Equation (25) holds.
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The log-likelihood ratio increment s[k] is expressed in Equation (27) according to [45]:

s[k] =
1
2

ln
σ̂2

0
σ̂2

1
+

(ε0[k])2

2σ̂2
0
− (ε1[k])2

2σ̂2
1

with ε[k]i = xi[k]− x̂i[k] , i = 0, 1

(27)

εi[k] and σ̂2
i are the residuals and sample variance at time k for the i-th hypothesis. The model output

x̂i[k] is computed using Equation (21). In our case and most of the practical cases, the model parameters
are unknown prior to the experiment, MLE estimates are used instead.

The AD algorithm based on the CUSUM detector is shown in Figure 5 and described as follows:

1. The algorithm starts by setting the user-defined parameters which are the order of the ARFIMA
model i.e., p, q, d and the size of the time windows, M0 and M1 used for data scanning.
The threshold γC is defined empirically based on test results for FAs and DR.

2. As reported in [45], the model for H0 is computed using a dataset defined by a growing time
window M0 whereas the model forH1 is computed with data contained in a sliding fixed-size
time window M1. Bounds of the datasets used for the computation of models for both hypothesis
are represented by k1 and k2. Models forH0 andH1 are computed while k2 ≤ N holds.

3. The decision function g[k] is computed iteratively according to Equation (26). If g[k] > γC holds,
an alarm is generated indicating that anomaly is detected.

4. Once an anomaly is detected, the detection time is set, the bounds k1 and k2 are updated and the
detection function g[k] is reset.

This algorithm is able to detect multiple anomalies at unknown change times and assuming
unknown noise parameters.

Start

Set user-defined
parameters

� model order: n;

� size of windows:
M0,M1 with
M0 �M1

� threshold: γC

k1 ← 1,
k2 ← M0

k2 ≥ N

End

H0 : {x}k2k=k1

H1 : {x}k2k=k2−M1

compute g[k]

g[k] > γC kalarm ← k2

k1 ← k2 + 1,
k2 ← k1 +M0 − 1
g[k]← 0

k2 ← k2 + 1

Yes

No

Yes

Figure 5. Flow diagram of the statistical AD method based on the CUSUM test.
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6. Results and Discussion

In this section, the proposed use case is first described including the generation of the network
traffic in IEC 61850 substations as well as the perpetrated DoS attack. Then, performance evaluation of
the AD method with both variants GLRT and CUSUM, is presented.

6.1. Description of the Use Case and the Threat Model

We use in the present work a synthesized dataset generated by the Advanced Digital Sciences
Center (ADSC) [46]. The testbed describes the operation of a 66/11 kV electrical substation
model including circuit breakers and IEDs. A typical network architecture was adopted using
the recommended protocols in IEC 61850 standard i.e., GOOSE and SV communication between
CTs, VTs and IEDs via Ethernet VLAN and MMS protocol at the station level for the connection
between Human–Machine Interfaces (HMIs) and IEDs. All 18 simulated IEDs are within the same
multicast group.

The GOOSE data traffic shown in black in Figure 6 describes an attack-free scenario. The normal
operation in an electrical substation might also include disturbances such as a breaker failure or a
busbar protection where specific GOOSE messages are sent to address such event changes.

Normal operation in the electrical substation might be hindered by disturbances or malicious
actions. In the following, a description of the considered threat model is introduced. In modern
electrical substations, HMIs are equipped with monitoring and control interfaces that are remotely
accessible. Attackers are assumed to be able to compromise this entry point through, for instance, social
engineering in order to connect to IEDs. Among others, a DoS attack on the GOOSE communication
was simulated and resulting network data was recorded. For our adversary model, a DoS attack on
the the GOOSE communication is simulated.

Different variants of this attack are reported in the literature. Poisoning attack reported in [1]
can result in a DoS when an attacker injects a spoofed GOOSE packet with a very high status number
(StNum). Another variant is the high rate flooding attack that injects multiple GOOSE packets with
incremental StNum that exceed the StNum of a legitimate packet. The last situation, called semantic
attack, is based on monitoring the network traffic and spoofing the GOOSE packets with a higher rate
of changing StNum than the normal. This would result in preventing subscribers from processing
legitimate packets. Another variant of GOOSE DoS attack is demonstrated in [47] by causing an IED
to lose availability due to the injection of a consequent number of GOOSE packets that is greater that
the limit allowed for the packet transmission time.

The simulated attack was generated synthetically using an attack-free network scenario, an attack
script and a traffic attack replay tool such as tcp replay. An automatic trace generator program is used
to get an attack-induced trace by injecting malicious GOOSE packets. The attack model is based on
compromising the GOOSE communication. By spoofing the transmitted messages, the attacker can
masquerade a legitimate IED to inject maliciously crafted GOOSE messages. There are several ways to
perpetrate a DOS attack. In the considered case, the simulated DoS results from flooding the network
with bogus frames. More details about the generation framework of the different attack and attack-free
scenarios can be found in [46]. Impact of losing availability in critical infrastructures’ networks can be
much more severe than, for instance, in commercial systems.

6.2. Evaluation of the Modeling of GOOSE IEC 61850 Traffic

We evaluate the model using the data presented in Section 6.1. The dataset used for validation
is denoted by xval in Figure 3 which represents GOOSE network traffic in SCN. Figure 6 shows the
output of the ARFIMA model for the validation GOOSE traffic, x̂val , in red, and the dataset used for
comparison xval in black.
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Figure 6. GOOSE network traffic used for estimation (depicted in black) and arfima model prediction
(depicted in red).

To further assess the goodness-of-fit of the model, the following criterion is used:

fit = (1−NRMSE (xval [k], x̂val [k])) · 100 % (28)

where a perfect fit is 100 %. Thereby the Normalized Root Mean Square Error (NRMSE) is defined by:

NRMSE =

√√√√√√√√

N
∑

k=1
(xval [k]− x̂val [k])

2

N
∑

k=1
(xval [k]− x̄val)

2
(29)

with x̄val =
1
N

N
∑

k=1
xval [k] being the sample mean of the validation dataset, xval [k] the measured GOOSE

network traffic at time k and x̂val [k] the model prediction. The fit of the data to the ARFIMA model as
expressed in Equation (28) yields 73.65 % which indicates that the chosen model can describe well the
time series.

In addition to the model fit, an analysis of the residuals confirms the adequacy of the chosen
ARFIMA model. The residuals obtained in the validation step are computed using the predictor of the
model with the parameters θ̂, φ̂, d̂ and a validation dataset x̂val .

The Auto-Correlation Function (ACF) of the residuals are computed and shown in Figure 7.
The ACF of ε[k] (see Equation (13)) falls into the confidence level which indicates that the residuals can
be considered as WGN and confirms that the model describes the GOOSE traffic data satisfactorily.

6.3. Performance of the Anomaly Detection (AD) Method

We evaluate the performance of the proposed statistical AD methods, GLRT and CUSUM,
using several criteria that are further discussed.

A FA indicates that H1 is chosen when H0 is true. FAs are also referred to as false positives
(FPs). True positives (TPs) (i.e., a hit) refer to the fact that the detector decides correctly forH1. A true
negative (TN) (i.e., correct rejection) indicates that H1 is correctly rejected. A false negative (FN)
(i.e., miss) occurs whenH0 is chosen whenH1 is true. Those concepts will be further used to define
some assessment criteria.

Accuracy, one of the performance metrics considered, refers to the frequency with which the
detector identifies properly the anomaly. However, accuracy might be misleading for the assessment
of the AD method in case of a high imbalance between FP and FN.
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Figure 7. Auto-correlation of ARFIMA model residuals.

When the cost of FNs is high, the True Positive Rate (TPR) also called DR or recall might help give
additional information about the model. The True Negative Rate (TNR), also called specificity, indicates
the proportion of correctly classified nonanomalous samples w.r.t. the total number of samples of the
dataset. The False Positive Rate (FPR) represents the rate of FAs which is referred to as type I errors in
statistics. False Negative Rate (FNR) or miss rate represents the proportion of type II error, i.e.,H0 is
chosen whenH1 is true.

The computation of the different performance metrics are presented in the following:

DR =
True positives

True positives + False negatives
= 1− FNR (30a)

TNR =
True negatives

True negatives + False positives
= 1− FPR (30b)

FPR =
False positives

False positives + True negatives
(30c)

FNR =
False negatives

False negatives + True positives
(30d)

The detection time is another performance indicator used to assess AD algorithms and describes
the instant when an anomaly is detected.

Several experiments including a DoS attack at time k = 1350 are generated using the ARFIMA
model previously described. WGN with sample variance derived from the estimated model is used for
simulation. The performance of the GLRT and CUSUM detectors defined in Equations (24) and (26),
is evaluated for several thresholds γs.

The experiments are performed using the R programming language version 3.6.2 on an Intel
i7-2.00 GHz with 32 GB RAM. A total number of 25 Monte-Carlo simulations are performed for each
threshold and under different realizations of WGN for each experiment. A realization of one of the
experiments is shown in Figure 8. The result of the two proposed detectors for one of the experiments
is shown in Figures 9 and 10.

Before a change occurs, the values of LG and g[k] oscillate within a certain range. When a change
occurs, the values of both detectors change abruptly which indicates that an anomaly was successfully
detected as shown in Figures 9 and 10. In case of the CUSUM detector as shown in Figure 10, no FAs
were present. In Figure 9, the first peak represents a FA as the value of LG exceeds the threshold γG
(dashed red line). The test statistic g[k] is reset in the CUSUM detection approach after a change is
detected. Further changes can be, thus, detected.
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Figure 8. Simulated GOOSE network traffic with a DOS attack.
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Figure 9. Results of the GLRT detection test.
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Figure 10. Results of the CUSUM detection test.
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It is worth noting that both approaches are able to detect several changes. However, in the specific
case of a DoS attack, we are interested in detecting the first change as shown in Figures 4 and 5.

To evaluate the performance of our AD method, three scenarios with different signal-to-noise
ratios (SNRs) are considered.

The SNR is defined by:

SNR = 10 log10
σ2

x
σ2

e
dB (31)

where σ2
x and σ2

e are the variances of the signal x and noise e, respectively.
The performance of the CUSUM and GLRT detectors under different SNRs can be observed using

the Receiver Operating Characteristic (ROC) plot. ROC plots help describe the tradeoff between FPR
and FNR over a complete spectrum of operating conditions including the settings of the decision
threshold. The ROC curve represents the relation between the probability of detection PD i.e., TPR and
the probability of false alarm PFA i.e., FPR to help assess the performance of the detectors depending
on the requirements of the application. An algorithm is considered to be good if the ROC curve
reaches rapidly the upper left-hand corner i.e., if the area under the curve is large. Under simple
assumptions such as the analysis of a signal embedded in Gaussian noise, the ROC curve can be
typically derived analytically. This is not the case in our work as we are using a more complex
model that requires experimental computation of the ROC curve. The performance of both detectors
degrades, overall, for lower SNR values, i.e., a high noise content is shown in Figures 11 and 12.
This can be explained by high deviations of the estimates with respect to the true values when the
noise variance increases.

For different case studies, authors in [16] report a detection rate of 100 %; however, a hybrid
approach using whitelisting and deep packet inspection (DPI) is adopted. Similar detection results are
reported in [48] with the use of critical state analysis that are based on a comprehensive description of
the physical models of the considered power system. Our technique proposed in the present work
has a comparable detection rate as other approaches for detection of DoS attacks. However, a major
advantage of our method is that we do not require to include DPI or to build a set of rules that need to
be constantly maintained.

To achieve a good performance, IDSs based on ML approaches generally use supervised
algorithms which require two different datasets for the training of the detection algorithm. This is a
considerable limitation as they increase the deployment and operational costs.
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Figure 11. ROC curve of the GLRT detector.
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Figure 12. ROC curve of the CUSUM detector.

Our AD statistical method is compared with the most relevant approaches available in the
literature ([21,29]) and the results are listed in Table 1.

In [21,29], statistical AD methods for the detection of attacks in 61,850 substations, are proposed.
In [21], the authors present a statistical detection based on a comparison of the residuals with a
variance-based threshold while assuming a model to describe a signal embedded in WGN for the
network traffic. In contrast to [21], where the residuals are obtained from a signal embedded in WGN,
we consider a modified version with the residuals computed from our ARFIMA model.

The approach presented in [29] is based on an anomaly score resulting from the comparison of
the network traffic with a minimum and a maximum value extracted from real measurements. No
details were provided in [29] for the choice of the user-defined parameters necessary for the anomaly
detection score. Thus, we choose empirically adapted values that would allow a high probability of
anomaly detection for the considered case study. We implemented both approaches for comparison
with our method which has two different variants as defined in Section 5. Under similar operating
conditions and using the same scenario, the results of 25 Monte-Carlo simulations are presented in
Table 1.

Table 1 shows the performance of the detectors for SNR = 10 dB. The first column in Table 1
represents normalized values of the thresholds for the AD methods.

The detection time for the CUSUM and GLRT is defined when the conditions in
Equations (23) and (25) hold. The delay time is expressed in samples and it represents the number
of discrete time samples after which the anomaly is detected. The wider the window size for data
scanning is, the larger the detection delay is. However, the detection statistics such as the accuracy
improve with larger window size. Thus, there should be a compromise between the detection delay
and the detection statistics. The average delay in the detection time of the CUSUM is around 1.6%
smaller than in the GLRT test.

For a better readability of the different results, we only include in Table 1 the FPR and the FNR
as the other basic detection criteria can be directly concluded from Equation (30d). On average,
the detection delay obtained from the modified approach introduced in [21] is the smallest. It is around
5.8% faster than our approach with the CUSUM variant. The largest detection delay is obtained for
the approach developed in [29] which is, on average, 30% slower than our modified version of [21].
The quick detection delay in the modified [21] can be explained by the direct comparison of the
residuals with a threshold. In contrast, detection tests in other approaches are computed using the
residuals processed in data windows. Our approach based on CUSUM test (D_C) performs better than
the D_G approach w.r.t. the detection delay.
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Table 1. Comparison of detection results with available methods.

Threshold Detection Delay *
Basic Composite

FPR [%] FNR [%] Cexp CID

[21] [29] D_G D_C [21] [29] D_G D_C [21] [29] D_G D_C [21] [29] D_G D_C [21] [29] D_G D_C

0.1 7 7 7 7 12.27 20.22 11.29 13 7.54 7.91 7.6 7.41 0.1224 0.2078 0.1161 0.1613 1.9172 1.5655 1.9541 1.6069
0.2 8 9 8 8 12.39 19.38 9.79 11.26 7.53 7.85 7.66 7.62 0.1229 0.1998 0.105 0.145 1.916 1.5875 2.0424 1.6803
0.3 8 9 8 8 12.25 18.19 8.61 9.98 7.56 7.9 7.71 7.66 0.1238 0.1907 0.1001 0.1331 1.9048 1.615 2.1143 1.746
0.4 7 10 11 9 12.29 16.85 7.62 8.62 7.55 7.91 7.79 7.74 0.1243 0.1804 0.0969 0.1206 1.9016 1.6506 2.1921 1.8298
0.5 9 14 11 9 12.23 15.19 6.5 7.66 7.57 8.01 7.99 7.86 0.1244 0.1693 0.0938 0.112 1.8999 1.6983 2.3059 1.8993
0.6 8 13 9 9 12.21 14.01 5.77 6.67 7.57 8.1 8.13 7.96 0.1248 0.1622 0.0915 0.1032 1.8976 1.737 2.4017 1.9864
0.7 8 13 8 8 12.28 12.78 5.05 6 7.56 8.19 8.24 8.09 0.1249 0.1551 0.0891 0.0975 1.8971 1.7839 2.5178 2.0538
0.8 8 14 8 11 12.25 11.86 4.52 5.24 7.56 8.31 8.39 8.29 0.1249 0.1498 0.0849 0.0912 1.8967 1.8245 2.6187 2.1425
0.9 8 13 9 8 12.29 10.89 4.01 4.69 7.56 8.55 8.69 8.56 0.1255 0.1442 0.0815 0.0873 1.8933 1.8715 2.728 2.212
1 9 11 14 8 12.24 9.8 3.49 4.12 7.56 8.91 8.98 8.79 0.1252 0.1376 0.0781 0.083 1.8952 1.9328 2.862 2.3

* Detection delay expressed in discrete time k.
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Our D_G approach has, on average, the lowest FPR with a value of 6.66%. The FPR of the detection
algorithm presented in [29] is the highest with a value of 14.92% whereas for our AD approach based
on the GLRT detector, it is around 7.72%.

The AD based on the CUSUM detector exhibits the lowest average FNR with a value of 7.4% thus
the highest DR with a value of 92.6%. The modified approach from [21] has a slightly higher FNR
than our AD D_C with a value of around 7.56%. The FNR of the GLRT detector is 0.72% higher than
the CUSUM detector. This can be explained by the fact that the CUSUM test uses values of previous
computation of the test statistics g[k] as expressed in Equation (26).

In summary, our approach based on the GLRT detector has the the lowest FPR whereas the
one based on the CUSUM test has the lowest FNR when compared with [21,29]. Thus, to better
compare the performance of the IDSs, we use the two composite detection metrics presented in [49].
The composite metrics give an overall overview of the detection performance and are computed using
the basic performance criteria. Those additional metrics do not, however, replace the basics ones [50].
The expected cost metric, Cexp, required a user-defined parameter C which is the ratio of the cost of an
IDS failing to detect an intrusion and the the cost when an IDS generates an alert when an intrusion
has not occurred. The expected cost metric Cexp is computed as follows:

Cexp = min(C× FNR× B, TNR× (1− B)) + min(C× TPR× B, TPR× (1− B)) (32)

where B is the base rate, i.e., the probability that there is an intrusion in the observed dataset. For our
experiments, we consider that the cost of a FNR is much higher than the cost of FPR, i.e., the value
of C is chosen to be equal to 10 following [49]. To compare the performance of the different IDSs,
the approach with the lowest Cexp is considered to be the best [49]. The minimal value of Cexp for each
approach is shown in bold in the Table 1. Our AD based on the GLRT detector has the lowest expected
cost Cexp = 0.083 compared with the other AD methods. Although the cost-based metric Cexp gives a
practical way to relate the different basic metrics to compare the performance of IDSs, it is however
dependent on the subjective measure C. The ratio of the cost of an IDS failing to detect an intrusion
and the the cost of generating a FA can be difficult to define as it depends on several factors such as
the number of working hours, man-power cost, etc.

A second composite metric CID, first introduced in [50], provides a more objective evaluation of
the performance of the considered IDSs. The intrusion detection capability CID presents the ratio of
the mutual information between the IDS input and output to the entropy of the input. For derivation
details of this metric, the reader can refer to [50]. To compare IDSs, the maximum value of CID obtained
for each approach shall be compared between them. The maximum value of CID for each approach is
depicted in bold in Table 1. The value of CID of our AD approach based on the GLRT detector D_G is
around 2.86 which is the highest value among all the considered approaches. This observation supports
the results concluded from the first composite metric Cexp. Under similar operating conditions, our
novel AD approach based on the GLRT test is experimentally proved to perform better than [21,29] for
the detection of DoS attacks.

7. Conclusions & Outlook

Increased use of ICT in ICS in general and in SCADA critical infrastructures in particular have
considerably improved the interconnection between the different components. Power systems are
highly dependent on digital control, supervision and monitoring for a safe and optimal operation.
Some of the networking protocols used in this sector were not primarily designed with security in
mind which exposed the whole power grid domain as an attractive target for attackers. In order to
help improve the Cyber-Physical Security (CPS) of the Smart Grid (SG), the present work tackles the
challenge to enhance the availability of the data in communication networks in electrical substations
based on IEC61850.
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We introduce a structured analysis of the Substation Communication Network (SCN) traffic in
order to gather necessary knowledge about the description of the GOOSE network traffic. Based on the
studied characteristics, we discuss the Auto-Regressive Fractionally Integrated Moving Average
(ARFIMA) model to mathematically describe the GOOSE network traffic in IEC 61850 electric
substations. Our modeling of the communication network supports the research in forecasting
the traffic with a high accuracy and in designing the GOOSE network architecture of electrical
substations. The estimated ARFIMA model is evaluated on a simulation case study representing
a substation testbed.

The obtained model is used for developing an Anomaly Detection (AD) based on statistical
hypothesis testing. We apply two different approaches for the AD namely, the Generalized Likelihood
Ratio Test (GLRT) and the CUSUM test. The statistical AD method with both detectors is able to
successfully locate Denial of Service (DoS) and other flooding attacks on a simulation use case that
includes a Denial of Service (DoS) attack. Based on the implemented simulations, both detectors
were shown to have better performance in terms of basic and composite detection metrics as well as
detection delay, when compared with available approaches.
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Glossary

B Backshift operator.
CID The intrusion detection capability metric .
Cexp The expected cost metric .
H Hurst parameter.
L Length of non-overlaping intervals composing a time-series.
M0 Initial size of the dataset for the calculation of the CUSUM detector.
M1 Length of fixed-sized sliding window for the calculation of the CUSUM detector.
N Size of a time-series.
Si The standard deviation of a subset x calculated over the interval [i, i + (n− 1)].
Wi,u The partial sum of a subset x calculated over the interval [i, i + (n− 1)].
Γ(.) The gamma (generalized factorial) function.
Λ The covariance matrix of the measurement noise.
Θ(B) Moving average (MA) polynomial operator of an ARFIMA model.
Θ The parameter vector.
ε Model residuals.
x Time-series.
x(m) The aggregated sequence by m of x.
B The base rate.
γc The threshold for the CUSUM statistical detection.
γg The threshold for the GLRT statistical detection.
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µ̂ Sample mean.
σ̂ Sample variance.
φ(B) Autoregressive (AR) polynomial operator of an ARFIMA model.
σ2

e Variance of a white Gaussian noise process.
d The difference coefficient.
e[k] Value of e at k.
g The CUSUM decision function.
k Discrete time index.
ka Time at which an attack occurs.
l Delay order of the back-shift operator.
m The level of aggregation.
n ARFIMA model order defined by n = (p, q).
p The order of the autoregressive process.
q The order of moving the average.
s[k] Log-likelihood ratio increment.

Abbreviations

ACF Auto-Correlation Function

AD Anomaly Detection

CPS Cyber-Physical Security

CUSUM Cumulative sum

DoS Denial of Service

DPI Deep Packet Inspection

GLRT Generalized Likelihood Ratio Test

GOOSE Generic Object Oriented Substation Event

HMI Human-Machine Interface

ICS Industrial Control System

ICT Information and Communication Technology

IEC International Electrotechnical Commission

IED Intelligent Electronic Device

LRD Long-Range Dependency

ML Machine-Learning

MLE Maximum Likelihood Estimator

MMS Manufacturing Message Specification

MU Merging Unit

NRMSE Normalized Root Mean Square Error

PDF Probability Density Function

ROC Receiver Operating Characteristic

RT Real-Time

SCADA Supervisory Control And Data Acquisition

SCN Substation Communication Network

SG Smart Grid

SRD Short-Range Dependency

SV Sampled Values

TNR True Negative Rate

TPR True Positive Rate

WGN White Gaussian Noise
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