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Abstract: This paper analyzes a resonant inductive wireless power transfer link using a single
transmitter and multiple receivers. The link is described as an (N + 1)–port network and the problem
of efficiency maximization is formulated as a generalized eigenvalue problem. It is shown that the
desired solution can be derived through simple algebraic operations on the impedance matrix of
the link. The analytical expressions of the loads and the generator impedances that maximize the
efficiency are derived and discussed. It is demonstrated that the maximum realizable efficiency of
the link does not depend on the coupling among the receivers that can be always compensated.
Circuital simulation results validating the presented theory are reported and discussed.

Keywords: resonant; wireless power transfer; inductive coupling; optimal load; single-input
multiple-output; power gain

1. Introduction

In recent years, several applications have been proposed for resonant inductive Wireless Power
Transfer (WPT) [1–4]. In fact, resonant inductive WPT is an effective solution for wirelessly energizing
electronic devices and several optimal design strategies have been investigated in the literature.

Usually, the goal is to recharge a single device and the focus is on maximizing either the power
delivered to the load or the power transfer efficiency. In this regard, the most widely adopted scheme is
that using a single transmitter, thus corresponding to a Single-Input Single Output (SISO) configuration.
In a SISO configuration the link consists of just two magnetically coupled resonators: a transmitting
resonator connected to the source and a receiving resonator connected to the load (i.e., the device to
be recharged). SISO configurations have been widely investigated in the literature and it has been
demonstrated that the link has to be terminated on its conjugate image impedances for maximizing
both the power on the loads and the efficiency [5–7].

More recently, schemes using multiple transmitters and/or multiple receivers have been also
investigated. The use of Multiple Input Single Output (MISO) schemes could be adopted to obtain an
almost constant performance on a given area/volume this being useful if the position of the receiver is
affected by small uncertainties (as in the case of embedded devices). In this regard, some interesting
results are reported in [8] where it is demonstrated that a two-dimensional region of nearly constant

Energies 2020, 13, 5157; doi:10.3390/en13195157 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-8534-0220
https://orcid.org/0000-0003-4154-1148
http://www.mdpi.com/1996-1073/13/19/5157?type=check_update&version=1
http://dx.doi.org/10.3390/en13195157
http://www.mdpi.com/journal/energies


Energies 2020, 13, 5157 2 of 21

power transfer efficiency can be obtained by using four transmitters. In [9] the use of a linear array
of transmitters, activated two at time, is suggested for providing a constant output voltage to a load
moving along a linear path. The problem of maximizing the efficiency and the power on the load
in MISO schemes has been also analyzed and some interesting results have been reported in [10,11].
In particular, in [10] the solution for maximizing the efficiency has been formulated as a convex
optimization problem. In [11] the optimal loads for both the maximum power and the maximum
efficiency solutions have been presented for the case of a link using either two–transmitter and a
single load or a single transmitter and two–load. In [12], a more abstract approach was used to
maximize the efficiency by modeling the MISO-WPT system as a linear circuit whose input-output
relationship is expressed in terms of a small number of unknown parameters that can be thought of as
transimpedances and gains.

As per schemes using a Single Transmitter and Multiple Receivers (SIMO), they are adopted to
recharge multiple devices with a single transmitter [13–28]. In [20] the use of a multiple-output scheme
is suggested for the recharge of electric vehicles. The problem of maximizing the power delivered to
the loads has been solved in [21], where the expressions of the optimal loads have been derived by
using the maximum power transfer theorem for an N–port.

As per the problem of efficiency maximization, in [23] the use of suitable matching networks is
suggested. In [24], the specific case of a link using two receivers is analyzed and it is demonstrated
that for some specific configurations of the receivers it is convenient to use a non-synchronous scheme
with receivers resonating at a frequency different from that of the transmitter. In [22] a SIMO system
with constant output voltage and operating at 6.78 MHz is presented. The efficiency of the proposed
WPT link is optimized by tuning the input voltage at the transmitter side.

In [25], the loads for maximizing the efficiency have been derived from the expression calculated
for the case of a link using one receiver and that using two receivers. However, the analysis is
performed assuming that the coupling among the receivers can be neglected, this representing a
limitation for real applications. The presence of possible couplings among the receivers has been
analyzed in [26,27]. It is demonstrated that for given loads a coupling among the receivers can be
compensated by using suitable compensating reactances; however, in these papers it is assumed that
the loads are given (i.e., they are not optimized).

Finally, for the problem of efficiency maximization, elegant and comprehensive analysis of
all possible configurations (i.e., the SIMO, MISO and MIMO configurations) have been presented
in [29,30]. A very elegant and general approach is presented in [29]; where, starting from the
impedance or scattering matrix of a multiport the efficiency of a generic MIMO-WPT system is
expressed by the Rayleigh quotient. However, the method is not applied on an inductive WPT system
and the optimal loads are only expressed as function of the port currents and impedance matrix
elements. In [30], the optimal loads are derived from the first-order necessary condition consisting of
imposing the zeroing of the first-order partial derivatives of the efficiency with respect to the input
and output currents. The optimal solution derived in this way is validated by checking the second
order derivatives. The developed analysis is general and overcomes some limitations present in the
previous literature. For instance, for the SIMO case a generic number of possibly coupled receivers is
considered. Similarly, for the MISO case, the formulas are presented for a generic number of possibly
coupled transmitters. However, the analysis developed in [30] is based on the assumption that all
the couplings among the transmitters and the receivers are purely inductive; this assumption limits
the applicability of the approach to practical applications where the conductivity of the propagation
channel is negligibly small.

In this paper, referring to the SIMO configuration, similarly to [29], the problem of finding
the optimal loads maximizing the efficiency is formulated as a generalized eigenvalue problem.
The presented theory is valid for any strictly passive and reciprocal network in SIMO configuration
and is applied in detail for the first time in this paper to the case of a resonant inductive WPT link.
The application of the presented theory just requires the knowledge of the impedance matrix of
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the SIMO network that can be the result of measurements, simulations or theoretical derivation.
The network must not satisfy any particular hypothesis except that of being passive and reciprocal;
consequently, the proposed approach is also applicable in the case of non-purely inductive couplings
(including the case of a propagation channel with non-negligible values of the conductivity).

The general theory is first presented for a generic (N + 1)–port network in SIMO configuration
and then applied to the specific case of a resonant inductive WPT link; the analytical expressions of the
complex loads maximizing the efficiency are derived and discussed. Additionally, the importance of
suitably selecting the generator impedance for maximizing the total output power corresponding to
the maximum efficiency solution is discussed. The correctness of the derived expressions is validated
by the results reported in [30] and by numerical data presented in this paper.

The paper is organized as follows. In Section 2 the problem of efficiency maximization is solved
for a generic SIMO (N + 1)–port network. In Section 3 the derived equations are specialized for the
case of an inductive WPT link, the optimal expressions of the loads and the generator impedances are
reported. In Section 4 theoretical formulas are validated through circuital and full-wave simulations.
Finally, some conclusions are drawn in Section 5.

2. Derivation of the Solution for the General Case

The problem analyzed in this paper is a WPT link using a Single-Input Multiple-Output (SIMO)
configuration: a single transmitter is wirelessly connected to N receivers. In this section, the general
case is analyzed, no specific assumption is made on the coupling mechanism among the transmitter
and the receivers, it is only assumed that the network is passive and reciprocal.

By using a network formalism, the link is modeled as an (N + 1)–port network N, see Figure 1,
described by its impedance matrix Z. The input port is connected to a sinusoidal source VG with
internal impedance ZG and the output ports are connected to an N-port load NL with impedance
matrix ZL. Generally, in practical cases, NL consists of a set of N uncoupled load impedances and,
consequently, ZL is a diagonal matrix

ZL = diag(ZL,n), (1)

with n = 1, . . . , N.
In real applications, the generator could be a complex network, comprising a DC-AC converter

and other circuitry. Accordingly, in general, ZG is the input impedance of the network adopted for
generating the power to be provided at the input port of the network N. The same consideration
applies for each load. In fact, in real applications each load can be a more or less complicated network
which in most cases includes a rectifier for converting the AC power at the output port of the network
into a DC signal. Accordingly, the generic impedance ZLi is the input impedance of the network
connected to the output port i of the link.

The vectors of voltage and current phasors at the network ports, V and I, and the matrix Z can be
partitioned as [

Vi

Vo

]
=

[
Zii Zio

Zoi Zoo

] [
Ii

Io

]
(2)

where Vi and Ii represent voltage and current at the input port, while Vo and Io are the N-vectors of
voltages and currents at the output ports.

By replacing the load equation
Vo = −ZLIo (3)

in (2), and by eliminating Io, the impedance seen at the input port of N can be derived as

Zin =
Vi

Ii
= Zii − Zio (Zoo + ZL)

−1 Zoi. (4)
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In a similar way, by combining (2) with the source equation

Vi = VG − ZG Ii (5)

and eliminating Ii, the relation between voltages and currents at the output ports can be cast in the form

Vo = Vth + ZoutIo (6)

where
Vth =

ZoiVG

Zii + ZG
(7)

is a set of N Thévenin equivalent voltage sources and

Zout = Zoo −
ZoiZio

Zii + ZG
(8)

is the equivalent impedance matrix of the network N with the input port closed on the impedance ZG.
The network N can be thus represented by the equivalent circuit of Figure 2.

The maximum power transfer between the source and the input port of N can be achieved when
the conjugate match condition

ZG = Z∗in, (9)

where ∗ denotes conjugation, is satisfied. In this case, the power delivered to N is equal to the generator
available power

PAG =
|VG|2

8 Re[ZG]
. (10)

As far as the output side is concerned, it can be proved [31] that the power delivered by N is
maximized when the output currents Io assume the values IoM given by

IoM = −
(

Zout + Z†
out

)−1
Vth (11)

where † denotes conjugate transpose, and consequently the available power at the output ports of N is

Pa =
1
4

V†
th

(
Zout + Z†

out

)−1
Vth. (12)

It can be noted that for N > 1, the optimal load is not univocally defined. In fact, the optimal
currents can be obtained by any impedance matrix ZLm such that

ZLMIoM = Z†
outIoM = −VoM (13)

where VoM are the voltages at output ports for Io = IoM. Equation (13) also shows that it is possible to
realize ZLM as a set of N independent passive impedances provided that the possible zero elements of
IoM corresponds to zero elements of VoM, and that the phase difference between any two corresponding
elements of IoM and VoM is ≥90◦ in absolute value.

According to the previous discussion, also the problem of determining the impedances ZG and
ZL which provide the simultaneous maximum power transfer at the input and output ports has not a
unique solution.

To simplify the calculation of the optimal terminations, it is convenient to determine the
corresponding optimal currents, which, on the contrary, are univocally defined.
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Making use of (2), the total power delivered to the loads Po, i.e., the sum of the powers delivered
to each load Poi

Po =
N

∑
n=1

Poi, (14)

can be expressed as a function of the port currents as

Po = −1
4

(
V†

oIo + I†
oVo

)
=

= −1
4

[
I†

o

(
Zoo + Z†

oo

)
Io + I†

oZoi Ii + I∗i Z†
oiIo

] (15)

and, similarly, the input power can be expressed as

Pi =
1
4
(V∗i Ii + I∗i Vi) =

=
1
4

[
I∗i (Zii + Z∗ii) Ii + I∗i ZioIo + I†

oZ†
io Ii

]
.

(16)

The previous equations can be cast in the form

Po =
1
4

I†AI

Pi =
1
4

I†BI
(17)

where the matrices A and B are defined as

A = −
[

0 Z†
oi

Zoi Zoo + Z†
oo

]
(18)

B =

[
Zii + Z∗ii Zio

Z†
io 0

]
. (19)

The power gain of N, defined as the ratio between the output and the input power, can thus be
expressed as

Gp =
Po

Pi
=

I†AI
I†BI

. (20)

In the context of WPT the quantity expressed in (20) is usually referred to as the efficiency of the
link, in this paper it will be referred to as Gp in analogy with the terminology adopted in the context of
two-port networks.

The power gain is maximized when the maximum power transfer is realized at the output port.
Since GP is a generalized Rayleigh quotient, the maximum of GP can be determined by solving a
generalized eigenvalue problem.

As a matter of fact, using the quotient rule and taking into account the fact that A and B are
Hermitian matrices, the differential of GP can be calculated as

δGp = 2
(δI†AI)(I†BI)− (I†AI)(δI†BI)

(I†BI)2 . (21)

Hence, requiring δGp = 0 yields

AI− I†AI
I†BI

BI = 0, (22)
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which can be rewritten as
Ax = λBx (23)

and can be recognized as a generalized eigenvalue problem with λ = Gp being the eigenvalue and
x = I the corresponding eigenvector.

Since, by hypothesis, N is passive and the power supply is provided only at the input port,
the maximum power gain, GM, and the corresponding currents (up to an arbitrary factor) can be
determined by solving (23) with the constrains

λ ≤ 1

Pi ≥ 0

Po ≥ 0.

(24)

After determining the optimal currents

IM =

[
IiM

IoM

]
(25)

by (23), the corresponding voltages

VM =

[
ViM

VoM

]
(26)

can be obtained by (2). Hence the source impedance providing maximum power transfer at the input
port can be calculated by letting

ZGM =
V∗iM
I∗iM

, (27)

while the maximum power transfer at the output port is obtained with any load NL whose impedance
matrix satisfies (13). In particular, if the previously enunciated conditions are satisfied, NL can be
realized as a set of uncoupled loads with impedances

ZLM,n = −VoM,n

IoM,n
(28)

with n = 1, . . . , N.
It is worth observing that the theory presented in this section is completely general, it can

be applied to any passive SIMO network; moreover, for its application it is sufficient to know the
impedance matrix of the network. It is possible to derive the maximum achievable power gain and
the optimal loads starting from the impedance matrix, which can be the results of measurements,
theoretical calculation or a numerical analysis. Figure 3 summarizes how to apply the proposed
approach for the determination of the load impedances maximizing the efficiency of a SIMO Resonant
Inductive WPT Link.
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−
+VG

ZG Ii

+

−

Vi

ZL,1

Io,1

+

−

Vo,1

ZL,N

Io,N

+

−

Vo,N

N NL

Figure 1. Schematic representation of a SIMO WPT link.

ZG

ZL,1

− +

Vth,1

Io,1

+

−

Vo,1

ZL,N

− +

Vth,N

Io,N

+

−

Vo,N

N NL

Figure 2. Equivalent Thévenin representation of the circuit of Figure 1.

Figure 3. Block diagram of the proposed approach to determine the optimal terminations for efficiency
maximization of a SIMO Resonant Inductive WPT Link.

3. The Case of an Inductive Resonant Coupling

In this section, the specific case of a WPT link consisting of (N + 1) magnetically coupled
resonators is considered (Figure 4). More specifically, the link consists of (N + 1) magnetically coupled
inductors, Li, each one loaded by a suitable compensating capacitor, Ci, realizing the resonance
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condition at the operating angular frequency (i.e., ω0 = 1/
√

Li Ci). The inductor losses are modeled
by series resistors Ri related to the quality factors of the coupled resonators:

Qn =
ωLn

Rn
. (29)

The coupling between the inductors Lm and Ln is described by the coupling factor kmn related to
the mutual inductance Mmn

kmn =
Mmn√
LmLn

. (30)

Figure 4. Equivalent circuit of a WPT link with a single transmitter and N receivers, determined by its
impedance matrix Z.

Accordingly, the network is described by the following impedance matrix:

Z =


R0 jωM01 jωM02 . . . jωM0N

jωM01 R1 jωM12 . . . jωM1N
jωM02 jωM12 R2 . . . jωM2N

...
...

...
. . .

...
jωM0N jωM1N jωM2N . . . RN

 . (31)

By introducing the normalization matrix d:

d = diag
(

1√
ωLn

)
, n = 0, . . . , N, (32)

it is possible to obtain the following normalized expression for the impedance matrix of the network:

z = dZd =



1
Q0

jk01 jk02 . . . jk0N

jk01
1

Q1
jk12 . . . jk1N

jk02 jk12
1

Q2
. . . jk2N

...
...

...
. . .

...

jk0N jk1N jk2N . . .
1

QN


. (33)
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Referring to Section 2 and to the Appendix A, for the specific analyzed case it is possible to derive:

z̃ii =
2

Q0

zio =
[
jk01 . . . jk0N

]
zoi = zT

io

z̃oo = diag
(

2
Qn

)
(34)

and

c0 =
N

∑
n=1

k2
0nQn

c1 = −c0 −
2

Q0

c2 = c0.

(35)

Accordingly, by introducing the parameter α:

α =

√√√√1 +
N

∑
n=1

k2
0nQ0Qn, (36)

for the analyzed case, the solving equation is (see the Appendix A):

(α2 − 1)λ2 − 2(α2 + 1)λ + (α2 − 1) = 0. (37)

Equation (37) has two eigenvalues:

GM =
α− 1
α + 1

, GM1 =
α + 1
α− 1

. (38)

It is evident that GM1 > 1; as a consequence, only GM satisfies the first constrain expressed in (24).
By choosing to normalize the input current to 1

iiM = 1, (39)

the following normalized eigenvectors can be obtained

ioM,n = −j
k0nQn

α + 1
. (40)

The corresponding normalized voltages are:

viM =
α

Q0
, (41)

voM,n =
1

α + 1


 N

∑
m=1
m 6=n

k0mknmQm

+ jk0nα

 . (42)

Hence the optimal normalized source impedance is given by:

zGM =
v∗iM
i∗iM

=
α

Q0
, (43)
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however, the optimal N-port load network NL can be realized as a set of uncoupled loads with
normalized impedances:

zLM,n = −voM,n

ioM,n
= rLM,n − j xLM,n (44)

rLM,n =
α

Qn
(45)

xLM,n =
1

k0nQn

N

∑
m=1
m 6=n

k0mknmQm (46)

The corresponding unnormalized expressions are:

RLM,n = α Rn (47)

XLM,n =
Rn

k0n

N

∑
m=1
m 6=n

k0mknmQm. (48)

Discussion of the Results

According to the above reported formulas, the following considerations can be drawn.

• From (38) it is evident that the maximum realizable efficiency of the link only depends on the
quality factors of the resonators and on the couplings between the transmitting and the receiving
resonators; however, it does not depend on the couplings among the receivers. This means that a
possible coupling among the receivers can be always compensated.

• In general, the optimal loads are complex quantities.
• For identical resonators with the same quality factor the real part of the optimal loads is the same

for all the loads.
• The imaginary parts of the optimal loads are zero for uncoupled receiving resonators; this means

that they play a role of compensation.
• By comparing the expression of the reactive parts of the optimal loads with those of the optimal

loads reported in [21] for the maximum power case, it can be easily verified that they are coincident.
This means that the same compensating reactances are required for both the maximum efficiency
case (i.e., for maximizing the power gain) and the maximum power case.

• The proposed approach also provides the optimal value of the generator impedance, see (27);
however, Gp does not depend on the generator. The value provided for ZG in (27) is that
maximizing the power entering the network, and then the power delivered to the loads, when the
loads are those maximizing Gp.

It is worth observing that all the achieved results are in a perfect agreement with those reported
in [30]. With respect to previously proposed approaches, the theory presented in this paper has the
advantage of being completely general, it is valid for any strictly passive and reciprocal network.
Additionally, the application of the presented theory just needs the impedance matrix of the link that
can be the result of measurements or simulations or theoretical evaluation. In fact, the optimal loads
are obtained by solving the eigenvalue problem expressed in (23). To solve the eigenvalue problem one
just needs the matrices A and B that can be directly computed from the Z matrix, see (18) and (19).

4. Validation of the Results

To validate the theoretical data, full-wave and circuital simulations have been performed.
The commercial tool CST Microwave Studio has been used for full-wave simulations, while the
NI AWR Design Environment has been adopted for circuital simulations. Four different WPT links in
SIMO configuration have been analyzed. The first three analyzed cases have identical resonators and a
different number of receivers, as detailed in the following.
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• Case 1: two receivers, see Figure 5a;
• Case 2: three receivers, see Figure 5b;
• Case 3: four receivers, see Figure 5c.

All the analyzed coils (transmitter and receivers) have the same dimensions; they are circular
loops with a radius of 5 mm designed by using a copper wire with a radius of 0.3 mm. An operating
frequency f0 of 500 MHz has been assumed. First, the single loop has been analyzed so to calculate
the equivalent inductance. From full-wave simulations at f0 each loop corresponds to an inductance
of about 20.9 nH. Accordingly, a series capacitor of 4.84 pF has been added to each loop so to make
them resonating at f0. The relative positions of the transmitting and the receiving coils assumed for
the three analyzed cases are illustrated in Figure 5.

(a)

(b)

(c)

Figure 5. WPT links analyzed through full-wave simulations. (a) Case 1: single transmitter and
two-receiver link; (b) Case 2: single transmitter and three–receiver link; (c) Case 3: single transmitter
and four-receiver link. In all cases the transmitter is the loop with the center in the point O0.

To calculate the impedance matrices, each link has been analyzed through full-wave simulations
as a multiport network. The following impedance matrices have been obtained:

ZCase1 =

0.118 1.41 j 1.41 j
1.41 j 0.118 −2.62 j
1.41 j −2.62 j 0.118

 , (49)
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ZCase2 =


0.118 2.66 j 2.66 j 1.17 j
2.66 j 0.118 −1.84 j −1.86 j
2.66 j −1.84 j 0.118 −1.86 j
1.17 j −1.86 j −1.86 j 0.118

 , (50)

ZCase3 =


0.118 0.81 j 0.81 j −1.37 j −1.37 j
0.81 j 0.118 −2.60 j 0.56 j 2.58 j
0.81 j −2.60 j 0.118 2.58 j 0.56 j
−1.37 j 0.56 j 2.58 j 0.118 −2.60 j
−1.37 j 2.58 j 0.56 j −2.60 j 0.118

 . (51)

By comparing the general expression of the impedance matrix of a resonant inductive WPT link
given in (31) with the numerical values calculated through circuital simulations, the values reported
in Tables 1–3 have been derived for the coupling coefficients. By using (47) and (48) it is possible to
calculate the expressions of the optimal loads. The values calculated for the three analyzed examples
are summarized in Tables 1–3. With all the resonators the same quality factor, the resistive part of the
loads is the same for all the receivers.

As per the imaginary parts, for the analyzed cases all the calculated values of XLM,n are negative,
thus corresponding to load impedances with an inductor LM,n in series configurations with the resistive
part RLM,n.

Table 1. Parameters of the equivalent circuit and optimal loads of the WPT link illustrated in
Figure 5a (Case 1).

Ln, (n = 0, 1, 2) Cn, (n = 0, 1, 2) Q f0
(nH) (pF) (MHz)

20.91 4.84 557 500

Coupling coefficients

k01 k02 k12

0.0215 0.0215 −0.0399

Optimal loads

α GM RG RLM,n, (n = 1, 2) LLM,n, (n = 1, 2)
(Ω) (Ω) (nH)

16.94 0.89 1.999 1.999 0.835

Table 2. Parameters of the equivalent circuit and optimal loads of the WPT link illustrated in
Figure 5b (Case 2).

Ln, (n = 0, 1, 2, 3) Cn, (n = 0, 1, 2, 3) Q f0
(nH) (pF) (MHz)

20.91 4.84 557 500

Coupling coefficients

k01 k02 k03 k12 k13 k23

0.0406 0.0406 0.0178 −0.0281 −0.0283 −0.0283

Optimal loads

α GM RG RLM,n, (n = 1, 2, 3) LLM,n, (n = 1, 2) LLM,3
(Ω) (Ω) (nH) (nH)

33.402 0.942 3.941 3.941 0.845 2.695
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Table 3. Parameters of the equivalent circuit and optimal loads of the WPT link illustrated in
Figure 5c (Case 3).

Ln, (n =
0, 1, 2, 3, 4)

Cn, (n =
0, 1, 2, 3, 4) Q f0

(nH) (pF) (MHz)

20.91 4.84 557 500

Coupling coefficients

k01 k02 k03 k04 k12 k13 k14 k23 k24 k34

0.0123 0.0123 −0.0209 −0.0209 −0.0395 0.0084 0.0393 0.0393 0.0084−0.0395

Optimal loads

α GM RG

RLM,n,
(n =
1, 2, 3, 4)

LLM,n,
(n = 1, 2)

LLM,j,
(j = 3, 4)

(Ω) (Ω) (nH) (nH)

19.122 0.901 2.256 2.256 2.522 1.414

The analytical values of the optimal loads have been validated through circuital simulations.
Two different sets of circuital simulations have been performed. A first set of simulations has

been performed by modeling the links with lumped elements equivalent circuits with the parameters
summarized in Tables 1–3; Figure 6 illustrates the circuit analyzed for case 1. The resistors Rn that
appear in Figure 6 are related to the quality factors of the resonators, Qn, through (29). A second set of
simulations has been performed by modeling the analyzed links as (N + 1)–port black–box networks
described by the impedance matrices provided by full–wave simulations, being N the number of
receivers (i.e., N = 2 for case 1, N = 3 for case 2, N = 4 for case 3). In more detail, referring to case 1,
simulations have been performed by replacing the network in the dashed square of Figure 6 with a
three–port black-box component described by the impedance matrix of the link calculated through
circuital simulations.

VG

C0 R0

L0

L1

R1
C1

ZL1

L2

R2
C2

ZL2

k01

k02

k12

Ii

Io1

Io2

Figure 6. Equivalent circuit analyzed for Case 1.

First, the optimal values provided by the theory for the resistive parts of the loads have been
validated. Simulations have been performed by varying the resistive part of the loads, the values
calculated for GP are given in Figure 7a–c.
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Figure 7. Power gain calculated through circuital simulations by varying the resistive part of the loads
RLn. (a) Case 1, the link has two receivers with RL1 = RL2 = RL; (b) Case 2, the link has three receivers
with RL1 = RL2 = RL3 = RL; (c) case 3, the link has four receivers with RL1 = RL2 = RL3 = RL4 = RL.
The figure compares full-wave and circuital simulation results obtained for the case of purely resistive
loads and for the case of loads with the compensating inductances given in Tables 1–3.

The results obtained for the case of purely resistive loads (i.e., ZLn = RL) are compared
with those obtained for the case of loads with the compensating inductances given in Table 3,
i.e., for ZLn = RL + j ω LLM,n. In the figures, the triangles have been used for the results obtained
by modeling the link with the impedance matrix provided by full-wave simulations; however, the solid
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lines have been used for the results obtained by modeling the links with the lumped elements
equivalent circuit. It can be seen that the results obtained for the two representations of the links are
coincident.

As per the optimal values of RL, in each figure the value of RL for which GP is maximized
is highlighted by a dashed vertical line. It can be seen that the values calculated through circuital
simulations confirm the theoretical values. Finally, with regard to the compensating inductances LLM,n,
it seems that they play a more or less important role in maximizing GP depending on the analyzed
case. For instance, according to the achieved results the compensating reactances play a marginal role
in maximizing GP for case 2 while they seem to be more relevant for case 3. However, for all the three
analyzed cases it is confirmed that their presence allows obtaining the maximum value of GP provided
by the theory.

The behavior of the power delivered to the loads as function of the generator impedance has
been also investigated. Simulations have been performed by using as source a voltage generator with
a series impedance RG. The total output power has been calculated by varying RG when the loads
assume the optimal values provided by the theory. The results are given in Figure 8a–c, data obtained
for ZLn = RLM,n and ZLn = RLM,n + j ω LLM,n are compared. The dashed vertical lines highlight the
values of RG maximizing Po for the case ZLn = RLM,n + j ω LLM,n. It can be verified that these values
are in a perfect agreement with the optimal values provided by the theory. As it can be seen, the use of
the generator impedance provided by (43) allows maximizing the power delivered to the loads when
they are set to maximize GP. Additionally, it can be seen that the compensation reactances are crucial
to maximize the power transferred to the loads.

It is worth observing that the output power illustrated in Figure 8a–c is the total output power
delivered (i.e., the sum of the power delivered to the loads) when the network operates at maximum GP.
From the figures it is evident that if RG is not optimized, although the network operates with efficiency
values close to one, only a small portion of the power available from the generator is delivered to
the load.

Finally, the case of a link consisting of three coils with different dimensions has been analyzed
(case 4). The geometry analyzed through full-wave simulations is illustrated in Figure 9. All the coils
have been designed by using a copper wire with a radius of 0.3 mm. The radius of the transmitting
coil is 10 mm, those of the first and second receivers are 7.5 mm and 5 mm, respectively. Also, in this
case an operating frequency f0 of 500 MHz has been assumed.

The impedance matrix as calculated from full-wave simulations is:

ZCase4 =

 0.229 −10.08 j 8.66 j
−10.08 j 0.145 2.82 j

8.66 j 2.82 j 0.118

 . (52)

The parameters derived for the equivalent circuit are summarized in Table 4.
The simulated results obtained for GP are illustrated in Figure 10. Circuital simulations have been

performed by modeling the link as a three–port black–box component described by the impedance
matrix calculated through full–wave simulations. In this case, the two receivers have slightly different
values of the quality factors; accordingly, the theory predicts slightly different values for RLM,1 and
RLM,2. To verify the expected optimal values, simulations have been performed by terminating
the receivers ports on the impedances ZL1 = RL1 + j ω LLM,1 and ZL2 = RL2 + j ω LLM,2 and by
varying both RL,1 and RL,2. From Figure 10 it can be seen that circuital simulations confirm the theory,
a maximum of about 0.98 is obtained for GP when RL1 = 11.07 Ω and RL2 = 9.01 Ω ; however, from the
figure it can also be seen that values of GP very close to its maximum (i.e., values greater than 0.97) are
obtained for a wide range of values of RL1 and RL2.
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Figure 8. Total output power as function of the generator impedance RG corresponding to the optimal
loads ZLM,n = RLM,n + j XLM,n; results obtained with and without the compensating reactances XLM,n.
(a) Case 1; (b) Case 2; (c) Case 3.
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Figure 9. Case 4: WPT link analyzed through full-wave simulations. The link has a single transmitter
and two receivers.

Table 4. Parameters of the equivalent circuit and optimal loads of the WPT link illustrated in
Figure 9 (Case 4).

L0 L1 L2 C0 C1 C2 Q0 Q1 Q2 f0
(nH) (nH) (nH) (pF) (pF) (pF) (MHz)

45.38 28.67 20.91 2.23 3.53 4.84 622 621 557 500

Coupling coefficients

k01 k02 k12

−0.089 0.0894 0.0367

Optimal loads

α GM RG RLM,1 RLM,2 LLM,1 LLM,2
(Ω) (Ω) (Ω) (nH) (nH)

76.38 0.974 17.49 11.07 9.01 0.948 0.852
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1 0
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0 . 9 7
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G P

Figure 10. Power gain calculated through circuital simulations for case 4. Results obtained by varying
the resistive part of the loads when the reactive parts are set according to the optimal values provided
by the theory (see Table 4).

Finally, the behavior obtained for the total output power Po as function of the generator impedance
is illustrated in Figure 11. In this case, simulations have been performed by terminating the ports of the
receivers on the optimal load impedances, i.e., ZL1 = RLM,1 + j ω LLM,1 and ZL2 = RLM,2 + j ω LLM,2.
As for the previously analyzed cases, simulations confirm the importance of suitably selecting the
generator impedance for maximizing Po when the loads are those maximizing GP.
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Figure 11. Total output power calculated for case 4 by varying the generator impedance when the
loads are those maximizing GP.

5. Conclusions

In this paper, the case of a WPT link using a Single-Input Multiple-Output (SIMO) configuration is
analyzed. The solution for maximizing the efficiency is derived from a generalized eigenvalue problem.
The main advantage of the presented theory is its complete generality, no specific assumptions are
made about the link. In fact, the proposed approach is valid for any strictly passive and reciprocal
(N + 1)–port network. Additionally, the desired solution can be derived directly from the impedance
matrix with simple algebraic operations. Theoretical formulas for the optimal loads maximizing the
efficiency are derived for the case of a resonant inductive link with a generic number N of possibly
coupled receivers.

The results obtained this way for the optimal loads are coincident with those reported in
the previous literature were the first-order condition on the partial derivatives of the efficiency
has been exploited in order to find the desired solution. As a further validation of the derived
formulas, several numerical examples have been analyzed through full–wave and circuital simulations.
In particular, four different links have been considered. The first three analyzed links use identical
resonators for the transmitter and the receivers and differ for the number of receivers. The last analyzed
case is a link using two receivers; in this case, the three resonators have been designed so to have
different values of the equivalent inductance. More specifically, the transmitter has been designed so
to have a larger inductance with respect to the receivers, so to obtain higher values of the couplings
with respect to the previously analyzed cases. For all the investigated cases, the impedance matrix
has been calculated through full-wave simulations and the presented theory applied so to determine
the maximum realizable efficiency and the optimal terminating impedances. The correctness of the
analytical data has been verified through simulations performed for evaluating the efficiency of the
links. According to the theoretical data, simulations confirm that the maximum realizable efficiency of
a resonant inductive link in SIMO configuration does not depend on the coupling among the receiving
resonators. In fact, it is demonstrated that a possible coupling among the receivers can be always
compensated by using suitable complex loads.

The possibility of maximizing the power delivered to the loads when they are set to maximize the
efficiency has been also discussed. In fact, the presented theory provides both:

• the expressions of the loads that maximize the efficiency,
• the expression of the generator impedance that allows maximizing the power entering the network

when the loads are those maximizing the efficiency.

Maximizing the power entering the network for a given efficiency corresponds maximizing the
power delivered to the loads. The reported results highlight the importance of also optimizing the
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generator impedance to avoid that. Despite the high efficiency values, only a small portion of the
power available from the generator is transferred to the loads.

As future developments of the presented research, experimental tests will be performed to verify
the application of the proposed theory to a real application. Furthermore, in a future work the analysis
presented in this paper will be extended to a generic MIMO (Multiple Input Multiple-Output) system.
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Appendix A. How to Solve the Generalized Eigenvalue Problem

The following generalized eigenvalue problem is considered:

Ax = λBx. (A1)

In this Appendix the procedure for calculating the eigenvalues λ and the corresponding
eigenvectors x = I will be illustrated. By introducing the variable η:

η =
1
λ

(A2)

it is possible to write:
(B− ηA) x = 0. (A3)

By using (18) and (19), it is possible to obtain:

B− ηA =

[
Z̃ii Zio + ηZ†

oi
Z†

io + ηZoi ηZ̃oo

]
, (A4)

where the following definitions have been introduced:

Z̃ii = Zii + Z∗ii
Z̃oo = Zoo + Z†

oo.
(A5)

The eigenvalues can be obtained from:

det(B− ηA) = 0. (A6)

Considering that for a matrix M partitioned in 4 submatrix M11, M12, M21, M22:

M =

[
M11 M12

M21 M22

]
, (A7)

the determinant is given by:

det(M) = det(M11 −M12M−1
22 M21)det(M22), (A8)
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it is possible to write
det(B− ηA) = −ηN−1(c0η2 + c1η + c2)det(Z̃oo). (A9)

where the coefficients c0, c1 and c2 are given by:

c0 = Z†
oiZ̃
−1
oo Zoi,

c1 = −Z̃ii + ZioZ̃−1
oo Zoi + Z†

oiZ̃
−1
oo Z†

io,

c2 = ZioZ̃−1
oo Z†

oi.

(A10)

Accordingly, the non-trivial solutions are provided by the equation:

c2λ2 + c1λ + c0 = 0. (A11)
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